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The information coming into a module, which is part of a global system, will in general require
pre-processing that consists in building a representation - expressing it in a new code - convenient
to the task to be performed by this particular module. This information, coming either from
the environment or from another module in the system, will undergo this operation in what we
can call an encoder. In this work we describe our results for a perceptron architecture viewed
as an encoder, using encoding principles based on Information Theory. In particular we show
how to evaluate the information capacity and the typical mutual information, quantities which
are relevant to analize the different criteria used to code the information. Techniques taken from
statistical mechanics of disordered systems will be shown to be useful for these calculations.

1. Introduction

The notion that Information Theory may provide optimization principles determining the
synaptic weights J;; of the neural network has been used by many authors ' 2 3 * 5. Sev-
eral different principles of this kind have been proposed. In particular the ”infomax” principle
of Linsker ®, maximizes the transmission of information taking place in the network. Various
implementations of the search for minimal redundancy and decorrelating codes have also been
carried out ' 2 4 3. These principles specify cost functions, and define methods of unsupervised
learning and self-organization: in the resulting algorithms, the couplings are modified according
to the patterns presented to the input layer, but no desired output is specified.

Most of the works done so far refer only to linear output units, so little is known about the
properties of information processing by non-linear neurons. Apart from this, some clarification
of the relation between the different proposals seems to be necessary. Note that choosing one
particular cost function is a statement on what is (might be) useful for the subsequent modules.
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2 Information Processing by a Perceptron

In this paper we discuss several aspects of elementary information processing by a neural
network, in the line of ! 3 and ®. This processing, performed by an encoder that we will take
as a neural network with a perceptron architecture, consists in finding a convenient encoding
of the input information that implements one of the criteria that we mentioned before. Notice
that since our output neurons are binary units this example represents an extreme case of
non-linearity. We will not be concerned with the algorithmic aspects, but with the theoretical
analysis of the performance of a network, comparing several optimization principles. For further
details about this work the reader is referred to ¢ and 3.

This work is organized as follows. In section 2 we describe the encoder as a perceptron
architecture and in section 3 we show how to evaluate the maximal rate of information that it
can process. In these two sections we also define some basic quantities in information theory.
We begin section 4 with a discussion of different criteria for efficient coding, at the end of this
section these are applied to the perceptron. Section 5 is devoted to describe how to evaluate
information theoretical quantities such as the mutual information with techniques taken from
the statistical mechanics of disordered systems. The conclusions are contained in section 6.

2. The Encoder

We consider the problem of processing a signal 5 = {{;}j=1,..~ produced by a source with
statistical structure P¢. In a first stage along the communication line the signal 5 is received by
an encoder that produces a new code as the set V= {Vi}iz1,..p of the activities of its p output
neurons.

We take for this encoder a perceptron architecture (that is, a feedforward network with one
input layer, no hidden units and one output layer) that we want to analyze as an elementary
module processing information. It consists of a set of N input and p output neurons with
synaptic connections J; ;. The output neurons are taken as linear threshold elements. We will
consider only a deterministic transfer function: for every output neuron i (i = 1,...,p)

N
Vi = sgn(d_ Ji j&)- (1)
j=1
The input 5 may be discrete or continuous, but in both cases, since the output is discrete the
mutual information & °
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is well defined. Here Py, and P (17, {?) are the output state probability and the joint probability of
the input and output vectors. Logarithms will be always expressed in base 2, so that information
quantities are measured in bits. We will consider continuous, noiseless inputs and unbiased input
distributions (< &; >=0). Let us notice that for a deterministic system the mutual information
can be written as

I(V,8) ==Y PyInPy, (3)
7

and that the output state probability can be expressed as:

—

Py = [ dEPQ(VI) (4)
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where Q(V| ) is the conditional probability to find the output state 1% given the input pattern
£.

3. The Information Capacity
The information capacity is defined as
C = MazpI(V,§), (5)

and measures the maximal information that the system can transmit. From the point of view
of a subsequent module receiving this output, the system acts as an encoder and C' has the
meaning of the maximal rate at which information can be delivered to the next module.

It is clear that the maximum condition in the capacity definition is achieved for a source such
that the probabilities for all possible output states (i.e. codewords) are equal. The evaluation
of the capacity is then equivalent to the calculation of the number of different possible output
states. Since there are p binary output units, the maximal possible number of codewords is 27,
so that

C <p. (6)

However not every codeword may be realizable. Each one of the p output neurons cut the
N-dimensional input space with an hyperplane, so that the number of accessible output states
is the number of domains obtained with p hyperplanes: the state V; specify on which side of
the ith hyperplane the input pattern lies, and {V;}i—;,.., code for one particular domain of the
input space. This number of domains, A(p, N), has been obtained from geometrical counting
by Cover '° in the context of supervised learning. A remarkable result is that it depends only
on p and N, whenever the hyperplanes are ”in general position” (that is any £ < N vectors j;

are linearly independent). Then
min(p,N)

Ap,N)= > G (7)

=0

where C’Il) is the combinatorial number #ﬁl)!. The information capacity is thus
C =InA(p, N). (8)

From formula (7) one sees that the 27 output sates are available up to p = N. Above this value
there is a change in the behavior of the capacity. In the large N limit (since the information
fed into the network scales with N we will measure information quantities in bits per input
neuron) we have

. _ ]« ifa <2
Am C/N =c= { aS(1/a) if a> 2 9)
Here
a=p/N (10)
and S(z) is the entropy function (measured in bits):
S(z) =—[zlnz + (1 —2z)In(1 — z)]. (11)

One sees that the fraction of unrealizable codewords for « in the interval between one and two
is negligeable and goes to one above o = 2. Note that for large o the capacity c increases as
In a.
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4. Criteria for Efficient Coding

4.1. Information preservation and redundancy

Now for a given source P the mutual information depends on the couplings. It is then desirable
to optimize the transmission of information by the system, searching for the best possible choice
of couplings. Maximization of the mutual information ? provides us with a reasonable criterion
to determine the synaptic couplings:

(PI)  maxy, I(V,§). (12)

However this is not the only possibility to use information theory in unsupervised learning.
The concept of what an efficient code is will depend on the operating conditions of the system
and on the way the module receiving the coded information will use it. According to these
requirements one can propose alternative coding principles. One possibility, which has been
considered in several papers by Atick et al. %, aims at reducing the redundancy of the code.
Indeed, for a given input source and a given system the information /I cannot be larger than
the information capacity C of the system, and the redundancy

Re=C—1 (13)

is a measure of how inefficiently the module is being used. Then, if the information capacity
were higher than the source information I;, it might be convenient to optimize the network
parameters in such a way that the redundancy R is as small as possible:

(PC) min,; Re (14)

Now we have seen that for the perceptron the information capacity depends only on p and N
(whereas for linear neurons?, and more generally for continuous transfer functions, the infor-
mation capacity depends on the couplings). Hence in our case for a given architecture (i.e.
for given values of p and N), minimizing the redundancy R is equivalent to maximizing the
mutual information I, that is to applying the principle PZ.

4.2. Barlow’s proposal of redundancy reduction

Another point of view was introduced long ago by Barlow ! 2. Its original proposal is that
factorial codes play an important role in the way the brain performs information processing
He argues that the current knowledge an organism has about its environment comes from the
previous observation of correlations. The realization that the occurrence of two successive
events is not casual should be taken into account by proper changes in its brain that will alter
the future behavior of the animal. Its ability to recognize what is new from what is old in
the environment would allow it to decide to which features of a given natural scene or event
to pay attention and consequently to take fast decisions. Barlow’s proposal of factorial coding
is a way to solve this problem: the brain would code the input visual scene in such a way
that the occurrence of correlations in the coded message is a signal that something unusual is
happening. This means that the complicated statistical structure of the environment, given by
P, after coding is transformed into a Py such that

Py = [ P(V) (15)

=1
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i.e., a factorial or decorrelating code. Here P;(V;) is obtained from Py by summing over all
possible states of all the other output units.

These remarks lead one to consider the mutual information conveyed by a single output
neuron, independently of all the others. Let us indicate by Ii(%,g) the mutual information
associated with the ¢-th output neuron; for a deterministic system it is given by

\/Z,f ZP Vi) In P,(V;). (16)

Since
p —

DLV, &) > 1(V,§) (17)

i=1
one can define a redundancy
p
i=1
that measures how far from being factorial is the code obtained at the output layer. Looking
for codes with neurons as uncorrelated as possible means minimizing the redundancy Rp

(PB) minJU RB (19)
where the minimization is under the constraint that I is large enough, say I ~ I,.

4.3. Application to the perceptron

Let us now come back to the case of the perceptron. We have thus first to consider one given
output neuron 7. Under the conditions of unbiased inputs and no thresholds, the hyperplane
defined by the couplings j; cuts the input N-dimensional space into two parts with statistically
half of the input patterns in each of them. Hence each neuron gives one bit of information, so

that
p

> 1(Vid) = (20)

Since p > C > I, this implies that all three principles, PZ, PC and PB are equivalent for the
perceptron.

The situation can be summarized as follows: if igp = Iy/N is finite, there is an optimal value
a = «q for which the information capacity matches the available information, ¢ = i3. At a
given value of «, the best that can be done is to maximize i = I /N, hopefully up to i = ¢ for
« below oy and up to 7 = iy above . And optimizing the architecture may allow to reach the
optimal point where 7 = 75 = c.

5. The Mutual Information and the Replica Technique

The result of the preceeding section is that one should find the couplings which maximizes the
mutual information I. For p smaller than N (o < 1) and for a Gaussian input distribution, it is
not difficult to find the optimal solution: one has to decorrelate the inputs exactly as for a linear
system 3. The problem is much harder for p larger than N, and for a non-Gaussian distribution.
In the case of a Gaussian distribution however, it is possible to replace the search for the optimal
solution by a simpler problem, namely the search for the best statistical ensemble of couplings:
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one can compute the typical mutual information per input unit, 7, when the coupling vectors
are taken from an ensemble, with given correlations between their components. At the end we
will look for the correlations which maximize 7. Another motivation for computing 7 is that it
will give us the amount of information given by a ”"naive” network - that is in the absence of
any optimization. This will tell us how much information can be gain by learning.

Denoting by << . >> the average over the coupling distribution p, the information 7 is

1= liMmyoo << I >> /N =limy_o << H(Py) >> /N. (21)

To evaluate this average we make use of the replica technique 7. We will not give all the
technical details, but we will point out what is specific to the present computation.
The mutual information I(V/, 6—) is associated to a given input distribution FP. In this paper

we consider unbiased but spatially correlated Gaussian input patterns, i.e.

1 1
P = ———exp|—= i G_l i§Sj 22
= g 0l TG el (22

with G the correlation matrix.

We take the coupling vectors as p independent random vectors, each one having unbiased
but correlated components. However we do not need to assume any specific distribution: all
what will matter in the large N limit is the first two moments of p({J;;};7 = 1,..., N). We

thus consider
<< Jij >>=0 (23)

<< Jij Jig >>= iy Lji. (24)

At the end we will look for the correlation matrix I’ which maximizes 7.
We want to compute

~ 1
<i(V,€) >= —NZ<<PV1nPV>> (25)
14

in the large N limit and for a fixed ratio & = p/N. In the language of statistical physics the
{Ji;} and the {V;} are "quenched” variables, whereas the input patterns {¢;} are ”annealed”
variables as can be seen from the definition of Py in eq. (4). According to the replica method
eq. (25) is written as

<I(V,€) »= =3 < Py lim((P)" = 1)/n>>, (26)
14

where the small n limit is taken at the end of the calculations, after the large N limit. Due to
the normalization

> Py =1, (27)

one can write also
Y < [P "R exp(—nNi). (28)
%

The computation of the left hand side of (28) follows closely the one of standard Gardner’s
calculations . Under the "replica symmetry” ansatz, the result is as follows. Defining s by

s =71[GT], (29)
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with .
T[] = limN_,ooNTr o (30)
one obtains that the asymptotic mutual information can be written as:
. 1 00
1=<i(V,€) >= eatrygli(s — @)+ rln(1 - 4G 1) +2a [ DzS(h)] (31)

where Dz is the Gaussian measure

dz 1
Dz = —— exp(—=2?), 32
and S is the entropy function defined in eq. (11), with its argument A a function of z and ¢
given by

h=H(|—L2) (33)

with H(y) = [° Dz.
The saddle point equations for the order parameters ¢ and ¢ are

q—s+7[(1-¢GT)'GT]=0 (34)

. d [
020 /_Oo DzS(h) =0, (35)

that give ¢ and ¢ as functions of a.

A few technical remarks follow. Let us outline the main steps leading to the above formulae.
From the expressions (4) and (28) one has a product of n + 1 integrals (replicas), with a
product of p ©-distributions in each of them. These ©-distributions are written in an integral
representation. Then one performs the average over the couplings according to (24). After
integration over all the "microscopic” degrees of freedom, one ends up with an integral over
a small number of macroscopic parameters, the ”order parameters”. The integrand being the
exponential of NV times a function of these parameters, one can apply the saddle point method.
This can be done under some hypothesis on what the saddle point is. We made here the replica
symmetric ansatz, which is reasonable (in analogy with Gardner’s calculation for continuous
couplings), and one ends up with four order parameters. A particularity of our calculation is
the normalization condition (27), which means that when setting n = 0 exactly in (28) one
should find 1. This condition fixes half of the order parameters. The parameter s is one of the
two parameters fixed by the n = 0 condition. We note also that the cavity method” can be
used, and that the term proportional to « is easily understood within this framework: it is the
gain of information due to an infinitesimal increase of a.

Finally we note that, apart from the fact that we have here n + 1 replicas, instead of the n
that appear in storage capacity (Gardner type) calculations, the evaluation of 7 is done in the
very same way. In fact, as explained in ¢ '3 it is interesting to compare our computation with
those done for the storage capacity of a perceptron with one output unit, continuous couplings,
for which the task is to memorize p = aN input-output pairs '. Of particular interest is the
case of correlated patterns recently studied by Monasson 2.

Let us now analyze the result. The parameter ¢ has an interpretation: it is the value of the
typical scalar product between two input patterns having a same output V. When the number
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of output neurons is small the volume of input space associated to a given output is large, two
patterns taken at random in it are statistically orthogonal: in the small o limit ¢ goes to 0.
When the number of output neurons becomes very large, the typical domain size decreases to
zero, hence when « goes to infinity one finds that ¢ goes to 1. This particular limit can be
easily analyzed for any given matrices G and I'. As ¢ tends to one ¢ goes to infinity and one
finds the the asymptotic expression

— a—0o0

7 A7 Ina. (36)

In section 3 the same asymptotic behavior was found for the information capacity c. This
means that, whatever the correlations in the couplings and in the inputs, the asymptotic mutual
information scales exactly as the information capacity, and one finds that ¢—7 goes to a constant
which depends on G'I'. The best choice of correlations for the couplings is easily found to be

=G, (37)

a result quite similar to the case of linear neurons in the low noise limit *. For this optimal
choice, the mutual information is equal to its value for uncorrelated patterns and uncorrelated
couplings (i.e. G =1 and I' = 1). This is not surprising: the largest possible gain of information
corresponds to signals with the largest entropy.

6. Conclusions

We have shown in this work how general principles based on Information Theory can be im-
plemented when a perceptron architecture is taken as an encoder of signals coming either from
the environment or from other modules in the brain. Different principles such as maximal in-
formation transmission, minimal redundancy and decorrelating codes become, for this system,
equivalent. This is a result of the peculiarity of this network architecture that the information
capacity and the information conveyed by individual output neurons do not depend on the
sypnaptic couplings.

When these criteria are applied to a typical (noiseless) encoder characterized by two-point
correlations ' between synapsis, the result I' = G~! immediately follows. As in * the synapsis
develop in such a way that they cancel the source correlations.

The evaluation of the typical mutual information of a statistical ensemble of encoders was
done with the replica technique. For the case of real valued input units the replica symmetric
ansatz is correct. This is expected because the domain of input states £ producing a given
codeword is connected. Note also that it respects the upper bound given by the information
capacity, approaching it from below in the large o limit.

An interesting feature of the perceptron is that the deterministic rule eq.(1) defining the
output neuron state V can be interpreted in two ways. One is, as in this work, that we have p
output neurons where the J; ; are the couplings and the 5 are the input patterns. But one can
as well say that we have a perceptron with only one output neuron, 5 being the coupling vector.
In that case we have p input patterns j;, the ith one having V; as output. This observation
establishes an interesting connection between unsupervised and supervised learning that allows
to make some predictions about the perceptron as an encoder from what is known for the
perceptron as an information storage device. We present these results in 3. We have seen
here several consequences of this relation. One of them is the expression for the information
capacity found in section 3, it is to be compared with the information storage capacity of the
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single output neuron perceptron found in '*. In particular the critical storage capacity has to
be the same as the value of @ where the information capacity changes behavior. The duality
between the two systems is also reflected in the fact that the results found in section 5 for the
mutual information depend only on the product G' T" of input pattern and synaptic correlations.

Work on extensions of the present communication is in progress, some important questions
are the effect of noisy inputs and stochastic outputs. The replica technique can again be used for
these cases . A more difficult problem from the technical point of view is the case of discrete
input neurons, although some predictions can be made from what is known about supervised
learning 3. This case most probably will require the use of one-step replica symmetry breaking.
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