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We investigate the consequences of maximizing information transfer in a simple neural network,
with bounded and invertible transfer functions. In the case of a vanishing additive output noise,
and an even smaller input noise, the main result is that maximization of information (over
receptive fields and transfer functions) leads to a factorial code - hence to the same solution as
required by the redundancy reduction principle of Barlow.

1. Introduction

In the present paper we consider the infomaz principle of Linsker! (that is, the maximization
of information transfer) and its relationship with the redundancy reduction principle of Barlow?.
Our main concern will be the study of the adaptation of a network with non linear transfer
functions according to those criteria. Most of the published works deal with linear neurons. In
the literature there exists only a few and not systematic studies of non linear processing. Still,
there are works on the optimization of the transfer function 2, on the study of input distributions
to which a given transfer function is optimally adapted *; on the use of redundancy reduction
for binary, more generally discrete, coding %°; on networks of binary neurons studied with the

tools of statistical mechanics "®; on the effect of a weak non linearity °, and on neurons with

non linear transfer functions in the limit of large output noise!®.

We will consider non linear processing in the limit of a small output noise. Although we
will not deal with a specific realistic case, we note that this small noise situation has been
discussed in the theoretical modelling of the early visual system !'. In a previous work®, we
studied the case of a noiseless perceptron with binary (McCulloch and Pitts) neurons. We

showed in particular that for such a network the infomazr and redundancy reduction principles

*Laboratoire associé au CNRS (URA 1306) et aux Universités Paris VI et Paris VII.
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are equivalent. Here we consider the case of neurons with arbitrary invertible transfer functions,
in the presence of a small output noise. We will ask what is the consequence of maximizing
information transfer, the optimization being both over the synaptic efficacies and over the
transfer functions. One outcome of our work is precisely to partly elucidate the origin of the
similarity of results obtained with the infomax and the redundancy reduction principles.

In the present paper we just sketch the main results. Details and extensions can be found

in 12,

2. Joined adaptation of synaptic efficacies and transfer functions

We consider a feedforward neural network with N inputs and p outputs. We assume the output
activities {V;},7 =1, ..., p to be given by

The potentials h; are deterministic functions of the input signal &, and of a set of parameters.
A particular case is the one where they are linear functions of the input signal, the parameters
being then synaptic efficacies. For simplicity, we will always call the parameters ”synaptic
efficacies”. The input signal has a distribution (not necessarily Gaussian), which induces a
distribution W(k) for the potential.

The z;’s are noise terms with an arbitrary distribution v(2) (the z;’s need not to be indepen-
dent random variables). Its strength is given by the total variance, 3;(< 22 > — < z; >?2) = pT.
In this section there is no input noise.

For an additive output noise, the mutual information I between the input and the output

code 17, can be expressed as
I=H(q)— H(v) (2)

where ¢ = ¢(V) and v = v(2). In the limit T — 0, one can make the change of variable V — A,
with

This gives
P
H(g)=—-D( |11 ) (4)
i=1
with

DY | Hf ~ [diw(i (f")( = (5)

Hence, one finds that the mutual information is, up to a constant, equal to minus the Kullback
distance of the potential distribution to the probability defined by the product of the f.

This fact has several important consequences. The main one is that the mutual information
will be maximized with synaptic efficacies realizing the factorization

U(h) = [T Wi(h), (6)

together with the individual adaptations of the transfer functions according to
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Hence, we obtain in particular the remarkable fact that the infomaz principle of Linsker ' and
the redundancy reduction principle of Barlow %!!, which precisely requires to build a factorial
code, lead to identical predictions for the receptive fields (within our working hypotheses of zero
input noise and low output noise). Note however that it is only the maximization of mutual
information which predicts both the receptive fields and the transfer functions.

One should notice that any factorial code will optimize the information transfer. For exam-
ple, if one has a Gaussian input distribution and a given number of p < N output units, any
choice of p different principal components will give the same optimal information transfer. We
will see in the next section how a small input noise lifts this degeneracy.

Another consequence, from the algorithmic point of view, is that the optimization with
respect to the couplings, and the adaptation of the transfer functions, may be considered
separately: one can first deal with the linear part of the processing (that is the transformation
mput — ﬁ, asking for a factorial code for the potential distribution), and then compute the
transfer functions from (7). It is remarkable that receptive fields can be predicted from the
analysis of a purely linear system, even when non linear processing is taken into account.
The application to linear processing of the principle of redundancy reduction a la Barlow, as
discussed in 1, in the low noise limit, can be understood as just a practical way of finding a
code which will maximize information transfer. Note however that, if it is not possible to find
a factorial code for the potentials, it is not obvious whether such strategy will be the most
efficient.

3. Taking into account input noise

We want to see the effect of a non zero input noise of strength A. To do so, one has to pay
attention to the fact that the limits 77 — 0 and A — 0 do not commute. Indeed, I is finite
whenever any noise is present, whether it is on the inputs or on the outputs. Consider the case
of zero output noise and finite input noise: then going from the (noisy) postsynaptic potential
to the output is nothing but a (reversible) change of variable, so that the mutual information
is equal to the one given by the linear system 5 + noise — h. In that case, considerations of the
preceeding section apply. In the present section we are interested in the opposite limit: what
we want is the perturbation of the previous calculation at first order in A - and we should still
have that I goes to infinity as 7" — 0. This is obtained by computing first the A expansion
at a finite value of 7', and then taking the limit 7" — 0. We will see that the relevant small
parameter is in fact %.

We will assume Gaussian input and output noise: the output of the ith neuron is given by

Vi=f(hi +yi) + 2 (8)
where z; is the output noise as before, and y; the input noise of correlation matrix A C:
<Yy > — <y ><yy >= A Cyy, (9)
C being O(A%). We assume uncorrelated output noise:
< zizp > — <z ><zp >=T ;. (10)

After some algebra '? one gets in the T — 0 limit;:

I= 10-% cm/dh\p h)fi2 + O(A) (11)
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where I is the value at A = 0 computed in the previous section. Hence, at leading order in
A/T, the optimal solution is still a factorial code. In the particular case of a Gaussian input
distribution, one then finds that the above mutual information is maximized when only the p
largest principal components are selected.

4. Conclusions

In this paper we considered the problem of maximizing information transfer with a network
of neurons made of N inputs and p outputs, focussing on the case of non linear transfer functions
and arbitrary input distributions. We assumed that both the transfer functions and the synaptic
efficacies could be adapted to the environment.

The main consequence of our analysis is that, in the limit of small additive output noise (and
an even smaller input noise), the infomaz principle of Linsker implies the redundancy reduction
principle of Barlow. Moreover we have shown that this result still holds for linear processing
whenever infomax is performed under some constraint which can be written as a sum of terms,
each one depending on one output unit only *2. This explains why the results obtained by Atick
and coworkers '* and by Linsker® are so similar.

A practical consequence is that optimization of receptive fields, that is of the synaptic effi-
cacies, and of transfer functions can be done separately: one may first look for a linear trans-
formation which realizes a factorial code, and then adapt the transfer functions independently
for each output neuron. Of course, this is true only if a factorial code does exists.

One may say that an optimized network is extracting qualitative information, (looking at
statistically independent features), and quantitative information, looking at the most relevant
features only (the input noise providing a scale for measuring the input signal).

Finally, we note that the same analysis can be done in the time domain. In such case,
maximizing information will lead to, again, decorrelation, which in this case has the meaning of
source separation '*'*. Recently an algorithm has been proposed for source separation, based
on an ad hoc cost function related to the statistical correlations of a set of neuronlike units's.
Source separation algorithms have also been proposed as odor coding algorithms in the olfactory
system of insects ', hence an approach very similar to the one of Barlow for the visual system.

As we suggested '2 it should be interesting to see whether decorrelating algorithms, with
a two stage strategy where both transfer functions and synaptic efficacies are adapted, could
be defined from gradient ascent on the mutual information with non linear output units. Very
recently 17 this use of infomax for decorrelation (but with a fixed transfer function) has been
explored in the case of zero noise.
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