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We consider a linear� one�layer feedforward neural network per�

forming a coding task under noisy conditions� We determine

the family of synaptic couplings that maximizes the mutual

information between input and output distribution� Optimiza�

tion is performed under di�erent constraints on the synaptic

e�cacies� We analyze the dependence of the solutions on input

and output noises�

INTRODUCTION

A feedforward neural network of a given architecture provides a cod
ing of its input data� In this work we consider a onelayer linear network�
and we are interested in the network con�gurations �i�e�� the structure
of the synaptic couplings� which are able to resolve as many features as
possible of the input data distribution� under noisy conditions� Finding
such �optimal� codings can be useful for both the statistical applications
of neural networks and the neural modeling of early sensory processing�
Works concerned with several aspects of this problem can be found in
��� �� ���

The data� representing the environment� are generated according to
some probability distribution and sent to the network as its input� The
network updates its synaptic weights in an unsupervised way� according
to a given rule� possibly inspired by an optimization principle� Several
alternatives have been suggested� Oja ��� �� proposed a Hebbian updat



ing modi�ed in such a way that the couplings can not grow inde�nitely�
This rule produces synaptic couplings� between an input layer with N
neurons and an output layer with p neurons �p � N�� that converge to
values that span the same subspace as the p principal components of the
input data distribution ���� However� the e�ect of noise in the network
is not considered� Sanger ��� has given a di�erent rule that converges to
a solution with a similar behaviour�

An alternative method is to use optimization criteria based on infor
mation theory� For instance it has been argued ��� �� that the network
builds an e�cient coding by minimizing the redundancy in the data�
a criterion that tends to decorrelate the output activities� A related
procedure� the infomax principle� maximizes the information that the
output has about the input ���� Several authors ��� ��� ��� ��� have con
sidered the maximization of the mutual information in a linear channel
with noise and� under some hypothesis� they exhibited a solution for
the optimal couplings� These works� however� leave several points to be
clari�ed� such as the details of the solutions and their stability� and the
role played by the di�erent possible constraints imposed on the synaptic
con�gurations�

In this work� using notions derived from information theory� we char
acterize the optimal solutions for the synaptic con�guration� In par
ticular� we determine the family of synaptic couplings that maximizes
the mutual information between input and output distribution� This
optimization is performed under di�erent assumptions on the allowed
synaptic con�gurations� We study analytically in detail the dependence
of the solutions on input and output noises in the case in which the in
put distribution is gaussian� For this case we perform a rigorous stability
analysis of the solutions� A brief account of preliminary results in this
direction has been given in ����� while a full account of the calculation
is given in �����

THE MODEL

On general grounds� an information channel� transforming an in
put �source� set of units �� � f��� � � � � �Ng into an output set �V �
fV�� � � � � Vpg� can be characterized by the mutual information I given
by�

I��V � ��� �

Z
P ��V � ��� log

P ��V � ���

P ��V �P ����
d��d�V � ���

where we use the same symbol P to denote the di�erent probability
distributions� For details about information theory see� e�g�� �����

We consider a situation in which the actual realization of the infor
mation channel is a neural module� as Figure � illustrates� The element
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Figure �� The neural network as information processor�

Jij of the pxN matrix J connects the input unit �j to the output unit Vi�

for later convenience we de�ne the N component vectors �Ji� i � �� � � � � p�
the elements of �Ji are the connections Jij � j � �� � � � � N � from all the in
put units to the ith output� We consider only the case p � N �

The input and output variables� �� and �V � take on continuous values�
and we assume a linear transfer function for the neurons in the limit
of noiseless channel� In the presence of channel noise� characterized by
a parameter b� we assume that the conditional probability distribution
P ��V j��� is the gaussian given by�

P ��V j��� � �

��b�p��
exp

���
���

�

b

pX
i��

	

Vi �

NX
j��

Jij�j

�
A

�
��
�� � ���

that gives a linear deterministic channel for b � �� This expression has
to be modi�ed if there is also an input noise� We assume that there is an
additive gaussian noise �� in input� such that the input to the jth input
unit is �j � �j � with �� uncorrelated with ��� � �i�j 	� �� � �i 	� ��
� �i�j 	� �b�
���ij � In this case ��� is replaced by�

P ��V j��� �
�p

�p det�b�p � b�JJT �
�

� exp
n
�
�
�V � J��

�
� �b�p � b�JJ

T
���

�
�V � J��

�o
� ���

where we have adopted matrix notation� �p is the unit matrix of dimen
sion p� and JT is the Nxp transpose matrix of J �



We must make assumptions about the environment� we assume that
the input distribution is a gaussian� characterized by the correlation
matrix C de�ned by � �i�k 	� ��
��Cik� Since I will not depend on
� �i 	� we also assume for simplicity � �i 	� �� Therefore we have�

P ���� �
�p

�N det C
exp

�
��� � C����

�
���

Now the output probability distribution P ��V �� needed for the computa
tion of I� can be easily computed� Finally we obtain the result for I�
which is�

I � �

�
log

det�b�p � J�b��N � C�JT
det�b�p � b�JJT �

� ���

The base of the logarithm simply determines the scale of I� we can
therefore take the natural logarithm�

We limit ourselves to a discussion of the properties of the J con
�gurations maximizing I� focusing in particular on the e�ects of both
input and channel noise� We do not consider here any particular dy
namics leading the Js to the maxima� Several authors �see� e�g�� ���
and references therein� and ���� have discussed a possible biological rele
vance of maximizing the mutual information in early sensory processing
pathways�

It can be easily seen that� if b �� �� I grows asymptotically �to a
�nite value if b� �� � or to in�nite if b� � ��� provided the Js are al
lowed to grow without limit� To cope with the general case� in order to
maximize I� we need therefore to limit the growth of the Js� a possibil
ity is to rede�ne the cost function of our optimization problem adding
a �penalty� damping term� I � �I � I � ��
��Tr�JJT �� where � is a
positive parameter� this added term can be generically interpreted as a
tendency of the connections Jij to �forget�� Another possibility is to
impose a constraint on the Js that prevents their unlimited growth� we
analyze the case in which a real constraint is imposed on the Js� namely
a global constraint of the form

P
ij J

�
ij � � where  is a constant� We

can then have an indication on how the features of the optimal solutions
that we �nd� depend on the particular strategy that we choose to limit
the growth of the Js�

RESULTS

We will show few details about the calculations for the damped case�
while� for the case of the global constraint� we will only show the di�er
ences from the �rst case�



For the damped case the function to be maximized is now�

�I � �

�
log

det�b�p � J�b��N � C�JT �
det�b�p � b�JJT �

� �

�
�Tr�JJT �� ���

We note the important property that both I and �I are invariant under
orthogonal transformations J � AJ � where A is any orthogonal pxp
matrix� This means that the points corresponding to a given value of �I
cover an hypersurface in the Nxpdimensional space of the Js� and that
they are connected by orthogonal transformations� We remark that the
transformations A are not rotations in the space of the N dimensional
vectors �Ji� but act on the pdimensional space of the columns of the
matrix J � This invariance property is used throughout all the derivation
of the results� To �nd the maxima of �I we �rst look for its �xed points�
and then� by a stability analysis� we determine which of these �xed points
are maxima� Each �xed point is actually an hypersurface� due to the
invariance property�

Fixed Points

The �xed points are given by the following matrix equation�

��I
�J

�
�I
�J

� �J � �� ���

Computing the derivative of I we �nd� after some rearrangements�

JC � �b�p � b�JJ
T ��J � JCJT �b�p � b�JJ

T ���Jb� � JCJT �J� ���

Now de�ne  as the subspace of RN spanned by the vectors �Ji� i �
�� � � � � p at a �xed point �the dimension of  is so far unspeci�ed�� then

consider an N component vector �X �  � and right multiply ��� by �X�

from the fact that J �X � � by de�nition� we obtain�

JC �X � � �� C �X �  �� ���

This means that  � is an invariant subspace of C� since C � CT this also
means that  is an invariant subspace of C� So our �rst result is that
at the �xed points the vectors �Ji lie in a subspace spanned by �a so far
unknown number of� eigenvectors of C�

It can be proved that� at the �xed points� the same orthogonal trans
formation simultaneously diagonalizes the symmetrical pxpmatrices JJT

and JCJT � Therefore� in any hypersurface in J space where �I is an ex
tremum� there is a point �apart from permutations of the vectors �Ji��
where the matrices JJT and JCJT are both diagonal� we can loosely say�
for short� that when we are at this point we are in the diagonal base� We



continue the study of the properties of the extrema of �I in the diagonal
base� In this base JJT �� D and JCJT �� D�� where D and D� are
diagonal pxp matrices� we denote their elements by� Dij � �ij fi� and

D�
ij � �ij �i� Notice that fi � k �Jik� in the diagonal base� We right mul

tiply ��� by JT � and write the resulting equation in the diagonal base�
to obtain�

D� � �b�p � b�D��D �D��b�p � b�D���b�D � �D�D� ����

It can be proved that in the diagonal base the vectors �Ji are eigenvectors
of C corresponding to eigenvalues �k�i�� and that �i � �k�i�fi� The value
k�i� is so far arbitrary� the only condition being that di�erent i are
associated to di�erent k� since JJT is diagonal� The eigenvalues of C�
all positive� are numbered such that �� 	 �� 	 � � � 	 �N 	 �� Now ����
gives an equation for fi� For each i� this equation always admits three
real solutions� one is always zero� one is always negative� and the third
is positive if�

�b � �k�i�� ����

if this expression is not satis�ed also the third solution is negative� Since
negative solutions for fi are not acceptable� we are left� for each i� with
a choice between the solution fi � � and the positive solution� provided
���� is satis�ed� The appropriate choice to be made is determined by
the stability analysis�

Stability Analysis

We give in the following an outline of the procedure� omitting the details
of the heavy algebra involved�

To determine� among the �xed points� the maxima of �I� we perform
a stability analysis� More precisely� we write the matrix expression

!J �
��I
�J

�
�I
�J

� �J� ����

where !J is a �nite variation of J in which each element Jij changes by a

quantity equal to the component of the gradient of �I on the axis labeled
by �i� j� of the Nxpdimensional space of the Js� In ���� we substitute
for J the generic �xed point plus a small perturbation� i�e�� denoting by
J� the generic �xed point solution� and by � the perturbation� we put
J �� J�� �� We linearize the resulting equation keeping only the terms
of the �rst order in the perturbation� we then project the variation of
J onto the possible directions in J space and verify in this way if that
�xed point is stable� As before� we work in the diagonal base�

We multiply ���� by a complete base of the N dimensional space�
thus exhausting all the possible directions in the J � Nxpdimensional



space� For convenience we divide the process in two steps� �rst we
project onto a complete base of  � and then onto one of  � At the end
of this analysis we can determine which of the �xed points are stable�
In the next subsection we show the characteristics of these stable �xed
points�

The Stable Fixed Points

We de�ne the numberm� determined by the number q of eigenvalues of C
which are greater than �b� if q � p� thenm � q� otherwisem � p� Above�
studying the generic �xed point� we have seen that� in the diagonal base�
each fi is associated with an eigenvalue �k�i� of C� besides� if �b � �k�i�
we have the freedom to choose fi � � or fi 	 �� otherwise only the
solution fi � � exists� The stability analysis show that the stable �xed
points are those for which�

	 In the diagonal base� m vectors �Ji are associated with ��� � � � � �m�
and the corresponding fi are positive� if m � p� the remaining
�p � m� �Ji are zero� All the other J con�gurations where �I is
maximum can be reached performing an orthogonal transformation
J � AJ � As a consequence� in a generic base� p � m vectors �Ji
are linearly dependent on the other m� The conclusion is that the
vectors �Ji� i � �� � � � � p lie in a subspace  spanned by the �rst m
eigenvectors of C�

It has to be noted that when the channel noise b increases� higher and
higher principal components are destabilized� in the diagonal base more
and more vectors �Ji go to zero� while in a generic base the decrease of
dim shows up by the decrease of the number of linearly independent
vectors� In particular� when �b 	 ��� all the vectors �Ji are zero� The
input noise b� is not relevant in the determination of the noise thresh
olds� but only in �xing the value of �I� in particular at the maximum�
Another point to be noted is that in the diagonal base the output dis
tribution p��V � is factorized� and the nonzero �Ji produce at the output
the projection onto the principal components of the input distribution�

In Fig� � we show� for the optimal network� in the diagonal base� the
output distribution p��V � and the conditional distribution p��V j����

The Global Constraint

Now the function to be maximized is I itself� but under the constraintP
ij J

�
ij � � that means that the sum of the square moduli of the vectors

�J�� � � � � �Jp is constant� We notice that the expression which is to be kept
constant can also be written as TrJJT � from here we see that� like I�
this quantity is invariant under any orthogonal transformations A� This



Figure �� Case m � p� First row� the output activity distribution�
second row� the conditional distribution of the output for a generic ���

gives the possibility to study the �xed points in the diagonal base� as in
the damped case�

To �nd the �xed point we have to solve the equation�

�I
�J

� �J � �� ����

where now � is a Lagrange multiplier� needed to satisfy the constraint�
The analysis proceeds as before� The conclusion for the stable �xed
points is the same as that emphasized with the black dot in the previous
subsection� The di�erence is in the dependence of the value of m on the
noises b and �now also� b�� Without showing the cumbersome expression
that gives this dependence� we point out the most relevant feature�

	 At �xed b�� increasing b starting from b � � �or from an arbitrarily
small positive value if b� � �� to avoid I � 
�� one crosses succes
sively p� � thresholds� in each one of which the dimension of the
space spanned by the vectors �Ji decreases by one� starting from p�
at the end the dimension of the space is one �as expected� at least
f� must remain positive to satisfy the constraint�� At �xed b� and
increasing b� starting from b� � �� the situation is the following�
For b� � � the dimension of the space spanned by the vectors �Ji
depends on the value of b� it can be computed that the dimension
is p if b � ��p�
�p��p

Pp
i��

�
�i
�� Increasing b� one crosses succes

sively the thresholds at which the dimension of the space increases
by one up to the value p�



To summarize� the maximization of I under the global constraint
leads to J con�gurations that have the same general properties as in the
damped case� The main di�erence is in the determination of the noise
thresholds� where the dimension of  changes� Now both the channel
and the input noise� b and b�� are relevant�
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