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We consider a linear, one-layer feedforward neural network per-
forming a coding task under noisy conditions. We determine
the family of synaptic couplings that maximizes the mutual
information between input and output distribution. Optimiza-
tion is performed under different constraints on the synaptic
efficacies. We analyze the dependence of the solutions on input
and output noises.

INTRODUCTION

A feedforward neural network of a given architecture provides a cod-
ing of its input data. In this work we consider a one-layer linear network,
and we are interested in the network configurations (i.e., the structure
of the synaptic couplings) which are able to resolve as many features as
possible of the input data distribution, under noisy conditions. Finding
such “optimal” codings can be useful for both the statistical applications
of neural networks and the neural modeling of early sensory processing.
Works concerned with several aspects of this problem can be found in
[1, 2, 3].

The data, representing the environment, are generated according to
some probability distribution and sent to the network as its input. The
network updates its synaptic weights in an unsupervised way, according
to a given rule, possibly inspired by an optimization principle. Several
alternatives have been suggested. Oja [4, 5] proposed a Hebbian updat-



ing modified in such a way that the couplings can not grow indefinitely.
This rule produces synaptic couplings, between an input layer with IV
neurons and an output layer with p neurons (p < N), that converge to
values that span the same subspace as the p principal components of the
input data distribution [6]. However, the effect of noise in the network
is not considered. Sanger [7] has given a different rule that converges to
a solution with a similar behaviour.

An alternative method is to use optimization criteria based on infor-
mation theory. For instance it has been argued [1, 8] that the network
builds an efficient coding by minimizing the redundancy in the data,
a criterion that tends to decorrelate the output activities. A related
procedure, the infomax principle, maximizes the information that the
output has about the input [2]. Several authors [9, 10, 11, 12] have con-
sidered the maximization of the mutual information in a linear channel
with noise and, under some hypothesis, they exhibited a solution for
the optimal couplings. These works, however, leave several points to be
clarified, such as the details of the solutions and their stability, and the
role played by the different possible constraints imposed on the synaptic
configurations,

In this work, using notions derived from information theory, we char-
acterize the optimal solutions for the synaptic configuration. In par-
ticular, we determine the family of synaptic couplings that maximizes
the mutual information between input and output distribution. This
optimization is performed under different assumptions on the allowed
synaptic configurations. We study analytically in detail the dependence
of the solutions on input and output noises in the case in which the in-
put distribution is gaussian. For this case we perform a rigorous stability
analysis of the solutions. A brief account of preliminary results in this
direction has been given in [13], while a full account of the calculation
is given in [14].

THE MODEL

On general grounds, an information channel, transforming an in-
put (source) set of units & = {&,...,6n} into an output set V =

{V1,...,Vp}, can be characterized by the mutual information Z given
by:
- = - = P - -
7(V,8) = / (7, & 1og L8)_ggai (1)
P(V)P(§)

where we use the same symbol P to denote the different probability
distributions. For details about information theory see, e.g., [15].

We consider a situation in which the actual realization of the infor-
mation channel is a neural module, as Figure 1 illustrates. The element
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Figure 1: The neural network as information processor.

Ji; of the pxN matrix J connects the input unit &; to the output unit V;;
for later convenience we define the N-component vectors j;-, i=1,...,p:
the elements of .J; are the connections Jij, j=1,..., N, from all the in-
put units to the i-th output. We consider only the case p < N.

The input and output variables, f and ‘7, take on continuous values,
and we assume a linear transfer function for the neurons in the limit
of noiseless channel. In the presence of channel noise, characterized by
a parameter b, we assume that the conditional probability distribution
P(V|§) is the gaussian given by:

2

N
> ik ; (2)
1

j=

4 = 1 1
P(V|§)=Wexp _EZ Vi—
i=1

that gives a linear deterministic channel for b — 0. This expression has
to be modified if there is also an input noise. We assume that there is an
additive gaussian noise ¥ in input, such that the input to the j-th input
unit is & + v;, with 7 uncorrelated with §: < 1;§; >= 0, < v; >= 0,
< vvj >= (bo/2)d;;. In this case (2) is replaced by:
P = 1 -
/7P det[bl, + by JJT]

exp {~ (V= 78) - 1, + 00717 (V= JE) ), 3)

where we have adopted matrix notation; 1, is the unit matrix of dimen-
sion p, and J7 is the Nxp transpose matrix of .J.




We must make assumptions about the environment; we assume that
the input distribution is a gaussian, characterized by the correlation
matrix C defined by < &;& >= (1/2)Ci. Since Z will not depend on
< &; >, we also assume for simplicity < & >= 0. Therefore we have:

PE) = o exp (=€) (4)

—

Now the output probability distribution P(V'), needed for the computa-
tion of Z, can be easily computed. Finally we obtain the result for Z,

which is: -
I llog det[bl, + J(boln +C)J 5)
2 det[b1, + by JJT]
The base of the logarithm simply determines the scale of Z; we can
therefore take the natural logarithm.

We limit ourselves to a discussion of the properties of the .J con-
figurations maximizing Z, focusing in particular on the effects of both
input and channel noise. We do not consider here any particular dy-
namics leading the Js to the maxima. Several authors (see, e.g., [3]
and references therein, and [2]) have discussed a possible biological rele-
vance of maximizing the mutual information in early sensory processing
pathways.

It can be easily seen that, if b # 0, Z grows asymptotically (to a
finite value if by # 0 or to infinite if by = 0), provided the Js are al-
lowed to grow without limit. To cope with the general case, in order to
maximize Z, we need therefore to limit the growth of the Js; a possibil-
ity is to redefine the cost function of our optimization problem adding
a “penalty” damping term: 7 — 7 = 7 — (p/2)Tr(JJT), where p is a
positive parameter; this added term can be generically interpreted as a
tendency of the connections J;; to “forget”. Another possibility is to
impose a constraint on the Js that prevents their unlimited growth; we
analyze the case in which a real constraint is imposed on the Js, namely
a global constraint of the form 3. ij = o0, where 0 is a constant. We
can then have an indication on how the features of the optimal solutions
that we find, depend on the particular strategy that we choose to limit
the growth of the Js.

RESULTS

We will show few details about the calculations for the damped case,
while, for the case of the global constraint, we will only show the differ-
ences from the first case.



For the damped case the function to be maximized is now:

- 1 det]pl, + J(boly +C)JT] 1 T
=21 L — ZpT :
2 %8 detbl, + boJ JT] 3T (6)

We note the important property that both Z and 7 are invariant under
orthogonal transformations J — AJ, where A is any orthogonal pxp
matrix. This means that the points corresponding to a given value of Z
cover an hypersurface in the Nxp-dimensional space of the Js, and that
they are connected by orthogonal transformations. We remark that the
transformations A are not rotations in the space of the N-dimensional
vectors j;, but act on the p-dimensional space of the columns of the
matrix J. This invariance property is used throughout all the derivation
of the results. To find the maxima of Z we first look for its fixed points,
and then, by a stability analysis, we determine which of these fixed points
are maxima. Fach fixed point is actually an hypersurface, due to the
invariance property.

Fixed Points

The fixed points are given by the following matrix equation:

0T 0T
Computing the derivative of Z we find, after some rearrangements:
JC = (b1, + b J I pJ + JCTT (b1, + boJJT) L Ibo + JCT pJ.  (8)

Now define T' as the subspace of RN spanned by the vectors j;, i =
1,...,p at a fixed point (the dimension of I is so far unspecified); then
consider an N-component vector X € I't and right multiply (8) by X;
from the fact that JX =0 by definition, we obtain:

JCX =0=CX eI (9)

This means that I'* is an invariant subspace of C; since C = C7 this also
means that [' is an invariant subspace of C. So our first result is that
at the fixed points the vectors j; lie in a subspace spanned by (a so far
unknown number of) eigenvectors of C.

It can be proved that, at the fixed points, the same orthogonal trans-
formation simultaneously diagonalizes the symmetrical pxp matrices JJ©
and JCJT. Therefore, in any hypersurface in J space where 7 is an ex-
tremum, there is a point (apart from permutations of the vectors J;),
where the matrices JJ” and JCJT are both diagonal; we can loosely say,
for short, that when we are at this point we are in the diagonal base. We



continue the study of the properties of the extrema of 7 in the diagonal
base. In this base JJT — D and JCJT — D', where D and D' are
diagonal pxp matrices; we denote their elements by: D;; = d;; f;, and
Dj; = &;j ;. Notice that f; = |7;]]? in the diagonal base. We right mul-
tiply (8) by JT, and write the resulting equation in the diagonal base,
to obtain:

D' = (b1, + byD)pD + D* (b1, + byD) "' boD + pD'D. (10)

It can be proved that in the diagonal base the vectors J; are eigenvectors
of C corresponding to eigenvalues Ay (;), and that a; = A(;) fi. The value
k(i) is so far arbitrary, the only condition being that different i are
associated to different k, since JJT is diagonal. The eigenvalues of C,
all positive, are numbered such that A\; > A2 > ... > Ay > 0. Now (10)
gives an equation for f;. For each i, this equation always admits three
real solutions; one is always zero, one is always negative, and the third
is positive if:

pb < Akgiy; (11)

if this expression is not satisfied also the third solution is negative. Since
negative solutions for f; are not acceptable, we are left, for each ¢, with
a choice between the solution f; = 0 and the positive solution, provided
(11) is satisfied. The appropriate choice to be made is determined by
the stability analysis.

Stability Analysis

We give in the following an outline of the procedure, omitting the details
of the heavy algebra involved.

To determine, among the fixed points, the maxima of 7, we perform
a stability analysis. More precisely, we write the matrix expression

0T 0T

AJ w—ﬁ—p,

(12)
where AJ is a finite variation of .J in which each element .J;; changes by a
quantity equal to the component of the gradient of 7 on the axis labeled
by (i,j) of the Nxp-dimensional space of the Js. In (12) we substitute
for J the generic fixed point plus a small perturbation, i.e., denoting by
Jo the generic fixed point solution, and by € the perturbation, we put
J — Jo +¢. We linearize the resulting equation keeping only the terms
of the first order in the perturbation; we then project the variation of
J onto the possible directions in J space and verify in this way if that
fixed point is stable. As before, we work in the diagonal base.

We multiply (12) by a complete base of the N-dimensional space,
thus exhausting all the possible directions in the J, Nxp-dimensional



space. For convenience we divide the process in two steps: first we
project onto a complete base of I'" and then onto one of I'. At the end
of this analysis we can determine which of the fixed points are stable.
In the next subsection we show the characteristics of these stable fixed
points.

The Stable Fixed Points

We define the number m, determined by the number ¢ of eigenvalues of C
which are greater than pb: if ¢ < p, then m = ¢, otherwise m = p. Above,
studying the generic fixed point, we have seen that, in the diagonal base,
each f; is associated with an eigenvalue Ay ;) of C; besides, if pb < Ag(;)
we have the freedom to choose f; = 0 or fz > 0, otherwise only the
solution f; = 0 exists. The stability analysis show that the stable fixed
points are those for which:

e In the diagonal base, m vectors f are associated with Ay,..., A\,
and the correspondlng fi are positive; if m < p, the remaining
(p — m) J; are zero. All the other J configurations where 7 is
maximum can be reached performing an orthogonal transformation
J — AJ. As a consequence, in a generic base, p — m vectors j;
are linearly dependent on the other m. The conclusion is that the
vectors j;, t=1,...,p lie in a subspace I' spanned by the first m
eigenvectors of C.

It has to be noted that when the channel noise b increases, higher and
higher principal components are destabilized: in the diagonal base more
and more vectors J; go to zero, while in a generic base the decrease of
dim I’ shows up by the decrease of the number of linearly independent
vectors. In particular, when pb > A;, all the vectors J_; are zero. The
input noise by is not relevant in the determination of the noise thresh-
olds, but only in fixing the value of Z, in particular at the maximum.
Another point to be noted is that in the diagonal base the output dis-
tribution p(V) is factorized, and the non-zero J produce at the output
the projection onto the principal components of the input distribution.
In Fig. 2 we show, for the optimal network, in the dlagonal base, the
output distribution p( /) and the conditional distribution p(V|§)

The Global Constraint

Now the function to be maximized is Z itself, but under the constraint
Eij Jizj = o, that means that the sum of the square moduli of the vectors

Ji, ..., j;, is constant. We notice that the expression which is to be kept
constant can also be written as TrJ.JT; from here we see that, like Z,
this quantity is invariant under any orthogonal transformations A. This
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Figure 2: Case m < p. First row: the output activity distribution;
second row: the conditional distribution of the output for a generic £.

gives the possibility to study the fixed points in the diagonal base, as in
the damped case.
To find the fixed point we have to solve the equation:

0T
57 P71 =0 (13)

where now p is a Lagrange multiplier, needed to satisfy the constraint.
The analysis proceeds as before. The conclusion for the stable fixed
points is the same as that emphasized with the black dot in the previous
subsection. The difference is in the dependence of the value of m on the
noises b and (now also) bg. Without showing the cumbersome expression
that gives this dependence, we point out the most relevant feature:

e At fixed b, increasing b starting from b = 0 (or from an arbitrarily
small positive value if bg = 0, to avoid Z — 00), one crosses succes-
sively p — 1 thresholds, in each one of which the dimension of the
space spanned by the vectors j; decreases by one, starting from p;
at the end the dimension of the space is one (as expected, at least
f1 must remain positive to satisfy the constraint). At fixed b, and
increasing by starting from by = 0, the situation is the following.
For by = 0 the dimension of the space spanned by the vectors j;
depends on the value of b; it can be computed that the dimension
ispifb < (oX,)/(p=Ap X0, )\i) Increasing by one crosses succes-
sively the thresholds at which the dimension of the space increases
by one up to the value p.



To summarize, the maximization of Z under the global constraint
leads to J configurations that have the same general properties as in the
damped case. The main difference is in the determination of the noise
thresholds, where the dimension of I' changes. Now both the channel
and the input noise, b and by, are relevant.
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