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1 Social Interactions in Economic Theory:
an Insight from Statistical Mechanics

Denis Phan1, Mirta B. Gordon2, and Jean-Pierre Nadal3

1 ENST de Bretagne and ICI Université de Bretagne Occidentale
2 Laboratoire Leibniz-IMAG, 46, Av. Félix Viallet, 38031 Grenoble Cedex 1,

France
3 Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue

Lhomond, 75231 Paris cedex 05, France

Abstract. This Chapter extends some economic models that take advantage of
a formalism inspired from statistical mechanics to account for social influence in
individual decisions. Starting with a framework suggested by Durlauf, Blume and
Brock, we introduce three classes of models shifting progressively from rational
towards adaptive expectations. We discuss the risk and opportunity of transposing
the tools, methods and concepts from statistical mechanics to economics. We also
analyze some issues seldom addressed, such as a comparison between two models of
heterogeneous idiosyncratic preferences, corresponding to cases with quenched and
annealed disorder in statistical physics, respectively.

1.1 Introduction

The present Chapter provides a bird’s eye view of some literature in eco-
nomics that exhibits strong links with statistical mechanics (introduced in
the Chapters ?? by Gordon and ?? by Galam, this book). The aim of this
literature is to determine aggregate behaviours based on models where indi-
vidual decisions are subject to social influence or social interaction effects.

Föllmer [29] was among the first to realize that the social effects in microe-
conomic models could be introduced through the Gibbs’ probabilistic frame-
work. His paper determined conditions for the existence of a price system in a
pure exchange economy with random interdependant preferences. Almost at
the same time, the question of the influence of neighbourhood on behaviour
and micro-macro tradeoff was explored in the field of social sciences (see [65]
for an early model of binary choices with externalities and Phan, chap. ??,
this book, for the Shelling’s model of segregation) In 1980 Kindermann and
Snell [44] suggest possible applications of Markov Random Fields [43] within
the growing field of social networks (for recent survey, see e.g Wasserman
and Faust [70]). In 1982, an economist, Beth Allen [1,2] proposed two models
of stochastic macro-dynamics based on local interactions. On the one hand,
she deals with the diffusion of new technologies with externalities. On the
other hand, she considers the role of transmission of information among in-
dividuals in a stochastic model with local interactions. Earlier attempts to
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model social and economic phenomena by physicists, date back at least to
the ’70 (Weidlich [71,72]). More recently, we can mention works by Galam et
al [34,31]. Most of these papers are not well known within economics.

In the middle of the 80’s, Kirman [45,51] suggests the use of stochastic
graph theory in order to take into account the local communications between
agents within the markets. The real take-off for the statistical mechanics mod-
els of locally interacting agents written by economists began in the 90’s in
the USA. The main contributor was Stephen Durlauf [20–23]. See also among
others, Ioannides [40] and Glaeser et al. [36,37]. On the heterodox economic
side, Markov Random Fields have also been introduced in innovation eco-
nomics, by Dalle [19] among others. During this period both Brocke [12] and
Blume [7,8] introduced explicit links between game theory and statistical me-
chanics In the case of social influence, the inferential approach raises the ques-
tion of a common reference. Mansky [56] examines the “reflection problem”
that arises when the researcher tries to infer whether the average behaviour
of a group influences the individual behaviour of the members of the group
by an endogenous social effect. Given the reflection problem, Brocke [12]
proposes a behavioural foundation of the common physicists’ simplification,
the so-called “mean field approximation” (see Galam, Chap. ??, this book).
Instead of building his expectation through pairwise interactions with his
neighbours, each agent bases his expectation on the average behaviour. The
approach through this class of models has been reviewed in numerous synthe-
sis papers by Durlauf and co-workers, Blume and Brock [9,13,24,26], hereafter
referred to as DBB. Useful technical reviews of this literature are also pro-
vided by Ioannides [41]. Kirman ([46,48] and Chapter ??, this book) provides
complementary and stimulating discussions about the role of interactions and
networks in economics.

In recent years, a growing field of so-called “econophysics” has developed
within the physicists’ community (see for instance [28,54,57]). Within the im-
portant part of this literature devoted to mathematical finance, several mod-
els address the effect on the market of interactions between agents [57,15,14].

Within a unified formal framework with notations close both to Gordon
(Chap. ??, this book) and Durlauf [26], this Chapter presents a class of models
that generalize standard economic models of individual discrete choices by
including the social influence explicitly.

In section 1.2 we review the models proposed by DBB. This approach
has helped to disseminate the tools of statistical mechanics into the field
of economic models. It is close to both the game theoretic framework and
rational expectations theory. Section 1.3 review our own results [59,64,69]
on a model of a discrete choice monopolist market with demand externality.
The model remains close to the DBB framework, but has a simpler expecta-
tion structure: no expectations at all on the demand side (myopic customers
have no strategic behaviour) and adaptive expectations on the supply side.
Considering the optimal price for a monopolist, we exhibit an interesting phe-
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nomenon, analogous to a first order phase transition in physics. Phan (Chap.
??, this book), and Weisbuch and Stauffer (Chap. ??, this book), discuss
dynamical aspects of such models. The models considered in these sections
postulate a logit distribution of individual payoffs, widely used by economists
to formalize individual decisions. Section 1.4 considers the search process over
heterogeneous sellers, initially developed for the modeling of a wholesale fish
market [49,60,73], with the aim of showing that the logit choice function may
be deduced from an exploration-exploitation compromise between the imme-
diate maximization of the surplus and the search for information about the
market. The conclusion of the Chapter presents a short summary and opens
some new perspectives.

1.2 Discrete choice with social interactions (I):
Individual strategic behavior and rational
expectations

1.2.1 Basic model of individual behaviour

The DBB basic model considers a population of N agents. Each agent has to
make a binary choice si in the set {-1, 1}. Agents are assumed to maximise
an expected utility:

Vi (si) = (hi + εi) si + Êi[S(si, s−i)] (1.1)

Specification (1.1) embodies both a “private” and a “social” component. The
private component includes a deterministic part: hisi and a stochastic part:
εisi, where εi is a random variable independent of the agent’s choice. This
random variable can be understood as representing some kind of boundedness
in the agent’s rationality. It can also be interpreted as the result of external
shocks imposed on the agents. If the law of εi has zero mean, hisi can be
interpreted as the expected utility of agent i, in the absence of social effects.
The social component S(si, s−i) takes into account the interactive dimension
of the decision process, i.e. the social effect on the utility of agent i due to the
behaviour of the other agents. s−i denotes the choice vector of the neighbours
of agent i, a subset of agents denoted ϑi. More specifically, DBB assume
information asymmetry: each agent i knows his own choice, but has to make
assumptions about the behaviour of the agents in his “neighbourhood” ϑi.
The quantity Êi[.] denotes agent’s i belief, or subjective expectation, about
the effect of such neighbourhood behaviour on his own utility.

The maximisation of the N equations (1.1) should be done simultaneously
by all the agents, i = 1, ..., N . In these equations, classical rationality is
relaxed at two different levels. The “noise” εi introduces some indeterminacy
into the private component of the utility. The other source of boundedness in
rationality may arise when the subjective expectations Êi[.] are inconsistent
with the a posteriori probability distribution of choices.
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The choice that maximizes (1.1) is si = 1 if hi + εi + Êi[S(+1, s−i)] ≥
−hi − εi + Êi[S(−1, s−i)], that is,

si = +1 if − εi ≤ hi +
Êi[S(+1, s−i)] − Êi[S(−1, s−i)]

2
(1.2)

Otherwise si = −1. Thus, in this model there are two different levels of
indeterminacy, since the choice depends on the values taken by the random
variable εi, and on the subjective beliefs. The latter depend on the utilities,
hk and εk, as well as on the beliefs of the neighbours of i. None of these
quantities are available to i. Even if there were no random payoffs, that is, if
εi = 0 for all i, the agents ignore the payoffs and beliefs of their neighbours.

Knowing the probabilities Pi(εi), it is possible to calculate the expectation
of the agents choices as a function of their beliefs, since

Pi(si = +1|Êi[S(+1, s−i)]; Êi[S(−1, s−i)]) =

Pi(−εi ≤ hi +
Êi[S(+1, s−i)] − Êi[S(−1, s−i)]

2
). (1.3)

In the case of rational expectations [12], the subjective expectations Êi[.]
coincide with the true mathematical expectations E[.]. This imposes a non-
trivial self-consistence condition, further discussed in section 1.2.2.

Let us denote Jik the (marginal) social influence on agent i, that is, the
incidence on individual i of the decision of agent k ∈ ϑ(i). Formally, DBB
define Jik as the second order cross-derivative of S(si, s−i) with respect to
si and sk (this definition applies to the restriction of a continuous function
S(si, s−i) to binary arguments, si and sk):

∂2S(si, s−i)
∂si∂sk

= Jik, (1.4)

and assume a positive influence, i.e. strategic complementarity [17,18]. There
are at least two simple specifications for S that satisfy condition (1.4). On
the one hand, one can assume a negative quadratic conformity effect [5]:

S(si, s−i) = −
∑

k∈ϑi

Jik

2
(si − sk)2 (1.5)

In this case, when agents are disconnected (Jik = 0) or when choices are
similar (si = sk), the social effect vanishes. As soon as an agent’s decision
differs from that of one of his neighbours, there is a local effect of negative
value. As a consequence, 2Jik can be interpreted as the loss of agent i if his
own choice si does not agree with the choice of his neighbour k. If Jik = Jki

there is reciprocity.
Another specification currently considered in the literature is the following

positive and multiplicative expression:

S(si, s−i) = si

∑

k∈ϑi

Jiksk. (1.6)
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Specifications (1.5) and (1.6) both lead to the same optimization problem for
utility (1.1): since s2

i = s2
k = 1 for all i, k, the quadratic conformity effect

(1.5) may be written as follows:

S(si, s−i) = +
∑

k∈ϑi

Jiksisk −
∑

k∈ϑi

Jik

2
(
s2

i + s2
k

)

= si

∑

k∈ϑi

Jiksk −
∑

k∈ϑi

Jik. (1.7)

which differs from (1.6) by an irrelevant constant value. Hereafter we use
formulation (1.6).

We further assume that each agent i knows precisely his marginal losses
Jik due to non conformity, and has only to estimate his neighbours’ choices
in (1.6):

Êi[S (si, s−i)] = Êi[si

∑

k∈ϑi

Jiksk] = si

∑

k∈ϑi

JikÊi[sk]. (1.8)

Then, the subjective expectation of agent i about the social effects is com-
pletely determined by his beliefs Êi[sk] about his neighbours’ choices. In-
troducing (1.8) into (1.1), the maximization of the utility can be written as
follows:

max
si∈{−1,1}

Vi(si) = max
si∈{−1,1}

si(hi + εi +
∑

k∈ϑi

JikÊi[sk]) (1.9)

Introducing these asumptions into (1.3), we obtain

Pi(si = +1|{Jik; Êi[sk]}k∈ϑi}) = Pi(−εi ≤ hi +
∑

k∈ϑi

JikÊi[sk]). (1.10)

Let us define the “field” variables

ẑi = hi +
∑

k∈ϑi

JikÊi[sk] (1.11)

where the hat indicates that these depend on the subjective beliefs of agent
i.

A formal analogy between the present model and the Ising model of sta-
tistical mechanics appears if we assume, following DBB, logistic distributions
for the agents’ random payoffs εi:

Pi(−εi ≤ z) =
1

1 + exp(−2βiz)
, (1.12)

The parameters βi control the width of the distributions. Notice that a logistic
distribution of parameter β has a sigmoidal shape very similar to that of an
error function of standard deviation

σ ∼ 1
β

, (1.13)
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and presents the advantage of having an analytical expression.
With logit assumption (1.12) , probability (1.10) becomes

Pi(si = ±1|βi, ẑi) =
exp(±βi ẑi)

exp(βi ẑi) + exp(−βi ẑi)
(1.14)

From (1.14) we obtain the mathematical conditional expectation of agent i’s
choice, given his own expectations about the other agents’ behaviours:

E[si|βi ẑi] =
exp(βi ẑi) − exp(−βi ẑi)
exp(βi ẑi) + exp(−βi ẑi)

= tanh(βi ẑi). (1.15)

Notice that in (1.15), we write E[si|βi ẑi] without a hat, to represent the true
mathematical expectation of agent i’s choice, given the field ẑi. To calculate
this expectation, it is necessary to know the distribution of the random payoffs
εi. In principle, this knowledge is not available to the agents, who may assume
probability laws P̂i(si = ±1|βi, ẑi) which may be very different from (1.14).

In the following, let us assume that probabilities (1.14) are known to the
agents. Then (1.15) only depends on the product βiẑi, where the expectations
about the neighbours’ choices that enter the definition of ẑi are subjective,
and in general are not equal to the mathematical expectations of the choices
of agents k ∈ ϑi. Up to now, the way the agents determine their subjective
expectations Êi[sk] entering the definition of ẑi have not been specified. They
can, at least in principle, be arbitrary.

At this stage the link with statistical physics is as follows. For any given
set of expected utilities ẑ = {ẑi, i = 1, ..., N}, agents choices are indepen-
dent random variables. Their joint probability is just the product of prob-
abilities (1.14), which is formally equal to the Gibbs Law for a system of
non-interacting Ising spins (see equation (42), section 4 of the Chapter ??
by Gordon, and the Chapter ?? by Galam, this book), where each spin is
in a local magnetic field ẑi, at a local temperature Ti = 1/βi. Accordingly,
the (true) expectation (1.15) of agent i’s choice corresponds to the average
magnetization of the spin i in a field ẑi.

Furthermore, if βi = β is the same for all agents, all the spins are at the
(same) reservoir’s temperature T = 1/β; we may drop the subscripts i in the
βi and in the mathematical expectations, and write E[si|βẑi]. When T goes
to zero, which corresponds to the limit β → ∞, the expected (subjective)
utilities are maximized by choices si = sign[ẑi]. If β is finite, the probabilities
of choices given by (1.14) with βi = β lead to the average choice (1.15). In the
extreme case of a very high temperature (small β) the random payoffs may
be so large that the two possible choices have almost the same probability,
the corresponding mathematical expectations being close to zero.

1.2.2 Equilibrium with rational expectations

Within the special (neo-classical) approach of rational expectations, all the
agents have the same, rational, behaviour. This results from the preceding
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formulation, if one assumes that the expectations of each agent i about the
choices of his neighbours, Êi[sk] in the right hand side of (1.9), are consistent
with the true mathematical expectations of these neighbours deduced using
probabilities (1.14). That is, for all i and all k, rationality requires:

Êi[sk] = E[sk|βkẑk], (1.16)

for all k ∈ ϑi, where E[sk|βk ẑk] stands for the true mathematical expectation
of agent k’s choice (see equation (1.15)).

Depending on the kind of neighbourhood, conditions (1.16) may be more
or less easy to satisfy. In the simplest case where the agents’ utilities do not
depend on social effects [39], that is Jik = 0 for all i, k, each agent maximizes
his own utility independently of the others, and the probability of choices
is given by (1.14) with ẑi = hi. Another treatable case is that of complete
asymmetry, in which the neighbours of agent i do not suffer from his social
influence; that is, if whenever Jik �= 0, then Jki = 0. Under such conditions, if
the choices are made in an adequate (temporal) order, the agents may make
their decisions with complete knowledge. This is not possible in the general
case, in which if Jik �= 0 (the choice of agent k has an effect on the utility of
i), then Jki �= 0. In this case, equations (1.16) become entangled.

In the absence of selfconsistency, the Êi[sk] are nothing but numbers (they
may even not be mathematical expectations over any specific distribution at
all): they are the numerical value of E[sk] assumed by agent i. The choice of
i depends on these numbers through the fields ẑi = hi +

∑
k∈ϑi

JikÊi[sk] and
we have (see definition (1.15)) E[si|βiẑi] = tanh[βiẑi].

The selfconsistency conditions for rationality obtained from (1.15) and
(1.16) require that the numbers Êi[sk] satisfy

Êi[sk] = tanh[βk(hk +
∑

l∈ϑk

JklÊk[sl])] (1.17)

meaning that the beliefs of agent i about his neighbours choices must coincide
with his own expectations.

System (1.17) has at least one fixed point. If we assume that the agents’
random payoffs all obey the same probability law, that is, βi = β, and that
there is perfect reciprocity in the social effects, that is, the interactions are
symmetrical, Jik = Jki, then equations (1.17) coincide with the mean field
equations of the Ising model with interactions Jik, in local external fields hi,
at temperature β−1. The solution is far from trivial: depending on the sign
and range of the interactions Jik, on the distribution of the local fields hi,
and the temperature, many different fixed points may exist.

In the extreme case where the agents’ private utilities hi are random,
the present model is rather similar to the Ising Model in Random Fields,
introduced in this book, Chap. ?? by Galam. Even if hi = h is the same for
all the agents, a huge number of fixed points, of the order of 2N , may exist
under some conditions, like in the spin-glass models of physics.
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An interesting simple case, considered in DBB, is that of the homogeneous
system with local interactions, where all neighbourhoods ϑi have the same
size n, the interaction parameters all have the same value J/n with J > 0, all
the agents have equal private payoffs hi = h, and the same βi. In this case of
perfect reciprocity and rationality, all the agents have the same expectations:

Êi[sk] = E[s|βẑi] = m (1.18)

for all i and all k. Then, the effect of the social influence represented by the
sum

∑
l∈ϑk

JklÊk[sl] in (1.17) reduces to J m for all i and k. The expected
value of the social choice is the solution of the single mean field equation of
the Ising model:

m = tanh(β(h + Jm)) (1.19)

According to well known standard results in statistical mechanics [67],
there exist either one or three solutions to (1.19), depending on the relative
magnitudes of the private utility, the distribution width of the stochastic
term and the intensity of the social effects. These results were summarised
for economists in [13]:

i) if h = 0, then
a) if βJ < 1 then there is a single solution to (1.19), m = 0
b) if βJ > 1, besides the solution m = 0 there are two other solutions:

a positive one (m > 0) and a negative one (m < 0).
ii) if h �= 0, then

a) if βJ < 1, there is a single solution to (1.19), with sign(m) = sign(h).
b) if βJ > 1 and J > h > 0, besides the solution with sign(m) = sign(h),

there are two other solutions, with m < 0.

Notice that the latter solutions, which only arise if the social effects are strong
enough, correspond to average choices driven by the social component, which
are in contradiction with the private component of the utility function. This
situation may arise when the agent’s utility is dominated by these social
effects. Figures 1.1 represent the left right hand side of equation (1.19) as a
function of h, for different values of the parameters. The solutions correspond
of the intersections between these curves and the straight line y = m.

1.2.3 Economic Interpretation

The magnitude of J represents the weight of the social influence on the
individual choice. In this model, the larger J , the stronger the influence of the
others choices on each agent behaviour, and the weaker the relative weight
of the private component, h. For large values of J , these social effects result
in the emergence of a specific order, produced by the social interaction, in
which all the agents make coordinated choices.

Assuming that every agent anticipates the same solution m, then each
agent i can make his choice according to the same probability law P (si|β ẑi =



1 Economic theory and statistical mechanics 9

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

 m

J=1
h=0

 

 

 β=0.5
 β=1.0
 β=1.5

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

 

J=1
h=0.5

 

 

m

 β=0.5
 β=1.0
 β=1.5

Fig. 1.1. Solutions of the Ising model with J = 1, for h = 0 and h = 0.5, and
different values of the parameter β

β(h+Jm)) as usual within the framework of rational expectations. However,
even in the case of homogeneous interactions, the possibility of having an
equilibrium requires a strong hypothesis (i.e. all the agents know the proba-
bility distribution of the random payoffs, and the values of h and β). In this
simple and idealized framework of perfect rational equilibrium, every agent,
as well as the modeller, may compute the equilibrium parameter m. Thus,
the equilibrium state is known before any agent has actually made his choice.
However, this paradoxical conclusion may only be reached when there is a
single equilibrium. For, when social influence matters, multiple equilibria may
exist even with perfect knowledge, as seen above. In particular, one of the
possible equilibria corresponds to individual choices that disagree with the
individual preferences. This arises when the degree of conformism is so strong
(J large) that the interactions may lead the mean social choice to differ from
the one that would result without interactions. Thus, the knowledge of private
individual preferences is not sufficient to predict the collective behaviour, as
pointed out by Durlauf [26]: “When individual behaviour is driven by a desire
to be similar to others, this does not provide any information on what they
actually do; rather it merely implies that whatever behaviour occurs, there
will be substantial within-group correlation due to the conformity effects”.

In order to select one equilibrium, and to characterize its properties, some
collective dynamical process has to be taken into account. This requires leav-
ing the strict perfect rational expectations framework. One interesting and
already classical approach is through adaptive rationality, as in [38]. If the
agents have to make choices repeatedly, the Êi[sk] may be estimated using a
probabilistic approach, with tools of statistical inference. These allow us to
determine either the underlying probabilities P̂i[sk], or, directly, the expecta-
tions Êi[sk]. In such an adaptive framework, it is not necessary for the agents
to know in advance the population parameters (e.g. fields hi), and not even
to anticipate the set of possible solutions: it is the collective dynamics that
may allow the population to converge towards a possible equilibrium. Cases
of adaptive rationality will be discussed in the following sections.
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1.3 Discrete choice with social interactions (II):
Market price and adaptive expectations

1.3.1 Monopoly market with homogeneous product

In this section we explore the effects of localised externalities (social influence)
upon the properties of a market with discrete choices [3]. More specifically, we
focus on the simplest case: a single homogeneous product and a single seller
(the monopoly case). Following Kirman [46,47,50], the resulting market is
viewed as a complex interactive system with a communication network. On
the demand side, behaviour remains close to the DBB framework, but without
expectations. Customers are assumed to be myopic and non strategic. On the
supply side, the only cognitive agent in this process is the monopolist. In the
general case, the local interactions produce complex phenomena, and the
behaviours shift from rational towards adaptive expectations.

Within this framework, we discuss an issue not addressed by DBB: the
comparison between two models of idiosyncratic heterogeneity. In one model,
the payoffs are randomly chosen and remain fixed. In the other, the prefer-
ences of agents are assumed to fluctuate independently around a fixed (ho-
mogeneous) value. The former case is known by physicists as a model with
quenched disorder, whereas the latter corresponds to an annealed disorder.
In both cases we assume that the heterogeneous preferences of the agents are
drawn from a same (logistic) distribution. The equilibrium states of the two
models generally differ, except in the special case of homogeneous interac-
tions with complete connectivity. In this special situation, which corresponds
to the mean-field case in physics, the expected aggregate steady-state is the
same in both models.

In the basic model [59,64,69], the agents have a classical linear willingness
to pay function. Each agent i either buys one unit of a given good (ωi = 1)
or does not buy it (ωi = 0). A rational agent chooses ωi in order to maximize
his surplus function Vi:

max
ωi∈{0,1}

Vi = max
ωi∈{0,1}

ωi(hi + εi + Jϑ

∑

k∈ϑi

ωk − p) (1.20)

where hi represents the idiosyncratic (deterministic) preference of the agent,
εi is a random component that may temporarily modify this preference, and
p the price of one unit.

The relation with Statistical Mechanics is completely transparent if we
transform the variables ωi ∈ {0, 1} into si = ±1 through

ωi =
1 + si

2
, (1.21)

which is nothing but a change in notation. After introducing (1.21) together
with the definitions h̃i = hi + 1

2

∑
k∈ϑi

Jik and J̃ik = 1
2Jik into (1.20), we
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obtain:
Ṽ (si) =

si

2
(h̃i + εi +

∑

k∈ϑi

J̃iksk − p). (1.22)

All the expressions in the present Chapter can be put in terms of either si

or ωi using transformation (1.21). In the following we will make use of the
encoding ω ∈ {0, 1}.

TP versus McF discrete choice models. Within this basic framework,
Nadal et al [59] compare two extreme special cases of the discrete choice
model. Following the typology proposed by Anderson et al. [3]), they dis-
tinguish a “psychological” and an “economic” approach to the individual’s
choice. Within the psychological perspective (Thurstone [68]), the utility has
a stochastic aspect because “there are some qualitative fluctuations from
one occasion to the next ... for a given stimulus” (this point of view will be
referred to hereafter as the TP-case). On the contrary, for McFadden [58]
each agent has a deterministic willingness to pay, that may differ from one
agent to the other. The seller (in a “risky” situation) cannot observe each
specific idiosyncratic willingness to pay, but knows its statistical distribution
over the population (we call this perspective the McF-case). Accordingly, the
“TP” and “McF” perspectives only differ by the nature of the individuals’
willingness to pay.

In both cases, for simplicity one assumes homogeneous local interactions
and identical neighbourhood structures ϑ, of size n, for all the agents,

Jik = Jϑ ≡ J/n > 0. (1.23)

In the McF model, the agents differ by their “private” idiosyncratic terms
hi. These are randomly distributed over the agents, but remain fixed dur-
ing the period under consideration. The temporal variations εi are strictly
zero. For physicists, this model with fixed heterogeneity belongs to the class
of quenched disorder models (the values hi are equivalent to random, time-
independent, local fields). More precisely, the McF model is equivalent to
a random field Ising model (RFIM), at zero temperature (deterministic dy-
namics). Since we assumed ferromagnetic couplings (that is, the interaction
J between Ising spins is positive), the spins si tend to take all the same value.
This “agreement” may be broken by the influence of the heterogeneous ex-
ternal fields hi. Due to the random distribution of hi over the network of
agents, the resulting organisation is complex. In the following, we introduce
the following notation: hi = h+ θi, and we assume that the θi are logistically
distributed with zero mean and variance σ2 = π2/(3β2):

lim
N→∞

∑

i

θi = 0 ⇒ lim
N→∞

1
N

∑

i

hi = h (1.24)

In the TP model the agents all have the same deterministic component
h, but have an additive random idiosyncratic characteristic, εi. The εi are
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i.i.d. random variables of zero mean, that are refreshed at each time step. In
physics this problem corresponds to a case of annealed disorder. The time
varying random idosyncratic component is equivalent to having a stochastic
dynamics. Agent i decides to buy according to the logit choice function , with
conditional probability

P (ωi = 1|zi) = P (εi > zi) = 1 − F (zi) ≡ 1
1 + exp(βzi)

,

with zi = p − h − Jϑ

∑

k∈ϑi

ωk. (1.25)

This model is then equivalent to an Ising model in a uniform (non random)
external field h − p, at temperature T = 1/β. Expression (1.25) differs from
(1.12) by a factor 2 in the exponent due to the factor 1/2 in front of equation
(1.22).

From the physicist’s point of view, McF and TP models are quite different:
random field and zero temperature in the former, uniform field and non zero
temperature in the latter. The properties of disordered systems have been
and still are the subject of numerous studies in statistical physics (for an
introduction and some references, see the Chapter ?? by S. Galam, this book).
An important result is that quenched and annealed disorder can lead to very
different behaviours.

TP model is well understood. Even if a general analytical solution of the
optimization problem (1.20) does not exist, the mean field analysis gives ap-
proximate results that become exact in the limiting situation where every
agent is connected (i.e. is a neighbour) to every other agent. The exact anal-
ysis of the case where the agents are placed on a 2-dimensional square lattice,
and has four neighbours, has been a tour de force due to Onsager [61]. On
the contrary, the properties of the McF model are not yet fully understood.
However, a number of important results have been published in the physics
literature since the first studies of the RFIM by Aharoni and Galam [32,33]
(see also [30], [66]). Several variants of the RFIM have already been used in
the context of socio-economic modeling ( [34,62], Weisbuch and Stauffer, this
Book).

From the theoretical point of view, there is a special value pn of the price
that corresponds to an unbiased situation: the situation where, on average,
the willingness to pay is neutral, that is, there are as many agents likely to
buy as not to buy. Since the expected willingness to pay of any agent i is
h + θi + J/2 − p, its average over the set of agents is h + J/2 − p. Thus, the
neutral state is obtained for

pn = h + J/2. (1.26)

In the large N limit, even at finite T (a case not discussed in the present
Chapter), symmetry breaking may occur: in spite of this neutrality in in-
dividual preferences, in the equilibrium state there is a majority of agents
adopting the same behaviour (to buy or not to buy).
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At T = 0 (deterministic dynamics), there is an interesting hysteresis
phenomenon. The model has been shown to describe many physical sys-
tems (Sethna [66]), and has been applied to financial and economic systems
(see [10,64], and Chapters ?? and ??, this book).

Equilibrium for a given price. The simplest case with social effect is the
“global” externality case with homogeneous interactions and full connectivity,
i.e. with neighbourhood size n = N − 1, and consequently Jϑ = J/(N − 1).
This is equivalent to the mean field theory in physics. In the McF case, the
probability of having a positive payoff at price p is given by the distribution 1-
F (zi), where F is the same logistic function as defined in equation (1.25). On
the other hand, in the TP case, let us assume that the agents make repeated
choices, and that the time varying components εi(t) are drawn at each time
t from the same logistic distribution as the θi. In this special situation, the
equilibrium distribution of choices for a given price is the same in both cases.
In the McF case, it is convenient to identify a marginal customer indifferent
between buying and not buying. Let hm = h + θm be his private component
of willingness to pay. This marginal customer has zero surplus (Vm = 0), that
is:

θm = p − h − J

N − 1

∑

k∈ϑ

ωk (1.27)

Consider the penetration rate η, defined as the fraction of agents that
choose to buy, (i.e. θi > θm): η = 1 − F (θm). Then, in the large N limit,we
have:

θm ≈ z(p) = p − h − ηJ. (1.28)

This approximation of (1.27) allows us to define η as a fixed point. With the
logistic distribution, we have:

η = 1 − F (z(p)) = 1/(1 + exp(βz(p))) (1.29)

Let us note that this fixed-point equation (1.29) is formally equivalent to
the individual expectation for ωi in the TP case (1.25).

The supply side. On the supply side, we consider a monopolist facing het-
erogeneous customers in a risky situation where the monopolist has perfect
knowledge of the functional form of the agents surplus functions and the re-
lated maximisation behaviour (1.20). He also knows the statistical (logistic)
distribution of the idiosyncratic part of the reservation prices (hi). But, in
the market process, the monopolist cannot observe any individual reservation
price. Assume the simplest scenario of “global” externality, where the inter-
actions are the same for all customers, as in equation (1.23). As just seen, in
this case the TP model and the McF one have the same equilibrium states.
Thus, hereafter we discuss only the McF model.
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In this case, the social influence on each individual decision is equal to ηJ ,
where η (the fraction of customers) is observed by the monopolist. That is,
for a given price, the expectation of the number of buyers is given by equation
(1.29). Assuming null cost for simplicity, the monopolist can maximize his
expected profit p Nη. Since in this mean field case, this profit is proportional
to the total number of customers, one is left with the following maximization
problem:

pM = arg max
p

Π(p), with Π(p) ≡ pη(p), (1.30)

where η(p) is the solution to the implicit equation (1.29). Thus, pM satisfies
dΠ/dp = 0, which gives dη/dp = −η/p at p = pM . Deriving the implicit
equation (1.29) with respect to p, we obtain a second expression for dη/dp.
Thus, at p = pM :

−dη

dp
=

f(z)
1 − Jf(z)

=
η

p
, (1.31)

where z, defined in (1.28), has to be taken at p = pM , and f(z) = dF (z)/dz is
the probability density. Because the monopolist observes the demand level η,
we can use equation (1.29) to replace F (z) by 1−η. After some manipulations,
equation (1.31) gives an inverse supply function ps(η), and equation (1.29)
an inverse demand function pd(η):

ps(η) =
1

β(1 − η)
− Jη (1.32)

pd(η) = h + Jη +
1
β

ln
1 − η

η
(1.33)

Finally, we obtain pM and ηM at the intersection between supply and demand:

pM = ps(ηM ) = pd(ηM ). (1.34)

As might be expected, the result for the product βpM depends only on the
two parameters βh and βJ . Indeed, the variance of the idiosyncratic part
of the reservation prices fixes the scale of the important parameters, and in
particular of the optimal price.

Let us first discuss the case where h > 0. It is straightforward to check
that in this case there is a single solution ηM . It is interesting to compare the
value of pM with the value pn corresponding to the neutral situation on the
demand side (1.26). For that, it is convenient to rewrite equation (1.33) as

β(p − pn) = βJ(η − 1/2) + ln[η/(1 − η)]. (1.35)

This equation gives p = pn for η = 0.5, as it should. For this value of η,
equation (1.32) gives p = pn only if β(h + J) = 2: for these values of J
and h, the monopolist maximizes his profit when the buyers represent half
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of the population. When β(h + J) increases above 2 (decreases below 2),
the monopolist’s optimal price decreases (increases) and the corresponding
fraction of buyers increases (decreases). Finally, if there are no social effects
(J = 0) the optimal price is a solution of the implicit equation:

pM =
1

βF (pM − h)
=

1 + exp (−β(pM − h))
β

. (1.36)

The value of βpM lies between 1 and 1 + exp(βh). Increasing β lowers the
optimal price for the monopolist: since the variance of the distribution of
willingness to pay gets smaller, the only way to keep a sufficient number of
buyers is to lower the prices.

Consider now the case with h < 0, that is, on average the population
is not willing to buy. Due to the randomness of the individual’s reservation
prices, hi = h + θi, the surplus may be positive but only for a small fraction
of the population. Thus, we would expect that the monopolist will maximize
his profit by adjusting the price to the preferences of this minority. However,
this intuitive conclusion is not supported by the solution to equations (1.34)
when the social influence represented by J is strong enough. The optimal
monopolist’s strategy shifts abruptly from a regime of high price and a small
fraction of buyers to a regime of low price with a large fraction of buyers
as βJ increases. This behaviour is analogous to what is called a first order
phase transition in physics [67] (see Galam, Chap. ?? this book): the fraction
of buyers jumps at a critical value of the control parameter βJ1 from a low
to a high value. Before the transition, above a value βJ0 < βJ1 the equations
(1.34) present already several solutions. Two of them are local maxima of the
monopolist’s profit function, and one corresponds to a local minimum. The
global maximum is the solution corrsponding to a high price with few buyers
for βJ < βJ1, and that of low price with many buyers for βJ > βJ1. Figure
1.2 present these results for the particular value βh = −2, for which it can be
shown analytically that βJ0 = 4, and βJ1 ≈ 4.17 (determined numerically).

The preceding discussion only considers fully connected systems. The the-
oretical analysis of systems with finite connectivity is more involved, and
requires numerical simulations. The simplest configuration is the one where
each customer has only two neighbours, one on each side. The corresponding
network is a ring, and has been analysed numerically by Phan et al. [64]), who
show that the optimal monopolist’s price increases both with the degree of
the connectivity graph and the range of the interactions (in particular in the
case of small worlds). Different sets of buyers’ clusters may form, so that it
is no longer possible to describe the externality with a single parameter, like
in the mean field case. Further studies in cognitive economics are required in
order to explore such situations (see also Phan, and Weisbuch and Stauffer,
in this book for considerations about the dynamic aspects of these systems).
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Fig. 1.2. Fraction of buyers η, optimal price βpM and monopolist profit ηpM , as
a function of the social influence, for βh = −2. The upperscripts − and + refer to
the two solutions of equations (1.34) that are relative maxima

1.4 Market organisation with search and price
dispersion

In this section, we consider the modeling of the buyer’s behaviour when faced
with a multiple choice situation. Here we address the question of the choice
function, quite often assumed to be a logit function . In the context of adap-
tive behaviour, Nadal et al. [60] show that this particular choice function can
be justified as an exploration-exploitation compromise as we explain now.

We consider an agent in a context of an iterated game: at each period the
agent makes use of previous experience to select a seller among N sellers. We
limit the discussion to the case where agents only use past private information
and have no access to public information, concerning for instance the behavior
of other agents. Such a framework was studied in Weisbuch et al. [73] and
Nadal et al. [60] for the modelling of the wholesale fish market in Marseille
(see also [49]).

At each period of time the agent must choose one between N sellers;
strategy j is to decide to visit (and make a transaction with) seller j. The
buyer makes expectations V̂j on the surplus he would get by visiting seller
j (that is, he has an expectation on the result of strategy j). In the context
of the fish market, this surplus is the buyer’s profit (typically an owner of
a restaurant who buys fish to be cooked and served in his restaurant). The
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optimal strategy for getting the best surplus at the next transaction is thus
simply to choose the seller j that corresponds to the largest value V̂j .

In the context of bounded rationality, especially in a random and possibly
non stationary environment, the agent cannot predict exactly the time evo-
lution of Vj ; he has to estimate it from past experience. Indeed the market
can vary in time because of external events or because the sellers’ strategies
move.

In an adaptive rationality framework, each time the agent makes a trans-
action with seller j, he updates his estimate V̂j :

V̂j(t + 1) = Φ(V̂j(t), Vj(t)) (1.37)

where Vj(t) is the actual surplus obtained at time t, and Φ() is some appro-
priate learning rule. A simple and obvious rule is

Φ(v̂, v) = λv̂ + (1 − λ)v (1.38)

where λ is some parameter between 0 and 1: with such a rule V̂j(t) is a moving
average estimate of Vj . Another and possibly more elaborated rule may be
considered, in particular rules taking into account some rational expectation
on the evolution of the sellers’ strategies. Whenever there are no posted prices,
or if the cost for comparing prices is too high (e.g. if the sellers are quite far
apart from each other), the buyer can update his information on a given seller
only by visiting him: the agent must then visit the different sellers and not
only the one for which the expected surplus is maximal.

Hence, the buyer wants to find a compromise between maximizing his
surplus at the next transaction, and keeping the best possible knowledge of
the market in order to be able to make good choices in the future. This
compromise will be sought in the form of a mixed strategy: we denote by qj

the probability of visiting seller j,
∑

j

qj = 1. (1.39)

Exploration requires him to visit every seller as frequently as possible. Opti-
mal exploration would then correspond to the uniform distribution, qj = q0

j ≡
1/N . A proper measure of the similarity between this uniform distribution
{q0

j }N
j=1 and the actual distribution q ≡ {qj}N

j=1 is the entropy S,

S(q) = −
∑

j

qj ln qj . (1.40)

The entropy is a measure of uncertainty in the occurrence of the events
j = 1, ..., N . In the context of information theory[6] (see [52] for a discussion
of the relevance of information theory in theoretical economics), it is the
minimal amount of information (measured in bits if the logarithm in (1.40)
is taken in base 2) required in order to encode the set of events.
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Given a mixed strategy, the mean expected surplus at time t is

E(V̂ (t)|q) =
∑

j

qj V̂j(t) (1.41)

The agent may then choose to maximize his expected utility under the con-
straint that the information on the market remains large enough. This can
be written as

q = argmax[E(V̂ (t)|q) + TS(q) + G(
∑

j

qj − 1)] (1.42)

where S is the entropy (1.40), and T and G are Lagrange multipliers associ-
ated with the information and the normalization constraints, respectively.

This optimization problem is formally equivalent to the standard maxi-
mum entropy principle, or “MaxEnt” principle, well known in statistical infer-
ence (see Jaynes [42]) and at the basis of the formal construction of statistical
mechanics (see e.g. Balian [4], and Chap. ?? by Gordon, this book). To see
that one can first make explicit the correspondence with the physics terminal-
ogy: E(V̂ (t)|q) plays the role of minus the mean energy, E(q) = −E(V̂ (t)|q),
of a system which has energy −V̂j when in state j, and T plays the role of the
temperature (at T = 0, the agent maximizes his surplus, the physical system
minimizes its energy). Then one can write (1.42) as

q = argmin[E(q) − T.S(q) − G.(
∑

j

qj − 1)] (1.43)

The maximum entropy principle is the dual version of the exploration-
exploitation compromise (1.43):

q = argmax[S(q) − βE(q) + γ(
∑

j

qj − 1)] (1.44)

with the correspondence β = 1/T . At the optimum, the right hand side of
(1.44) is the opposite of (T times) the free energy.

It is easy to derive the optimal solution of (1.42) - or equivalently (1.44)
-, which is precisely the logit rule:

qj =
1
Z

exp βV̂j(t) (1.45)

with the normalization constant Z, the ’partition function’, given by Z =∑
j exp βV̂j(t).
The entropy is the only function of the qj satisfying properties that makes

it a reasonable quantitative measure of information [42]. In the present con-
text, it can be seen as an appropriate cost for the search for information itself
- given that the possible monetary costs, such as the cost of driving to the
seller’s location, are already taken into account in V̂j .
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In the case of the wholesale fish market in Marseille, empirical data shows
a bimodal distribution of buyers’ behaviour: some buyers randomly choose
the seller they will visit, and others have strong preferences, almost always
visiting the same seller. Modelling with a logit choice function (or actually
other choice functions with qualitative behaviour similar to the logit func-
tion), one can assume that each buyer has his own logit parameter β. As
we have already seen in previous sections, phase transitions may occur as a
function of β: buyers with β above some critical value βc will almost always
select the same seller, whereas buyers with β below the critical value will
continue to explore all the sellers. Remarkably, this will occur even if all the
profits are identical, Vj(t) = V (see [49,60] for details).

To conclude, we have seen that the logit choice function can be viewed
as resulting from the maximization of a cost function which expresses a com-
promise between exploration - keeping information about the market - and
exploitation - making the largest surplus at the next transaction. This can be
understood either as the result of the search for an optimal mixed strategy
by the agent, or as the statistical description, by a seller, of the buyers’ be-
haviour. Of course other approaches to the exploration-exploitation paradigm
exist. In particular, deterministic strategies can be defined (see Gittins [35],
Bourgine [11]). We note, however, that these approaches have been mainly
studied in the context of a stationary environment. In the mixed strategy
approach, stationarity is assumed only on a time scale on which the past in-
formation is taken into account (that is, for the simple model (1.38), the time
scale defined by the parameter λ). It is thus even possible to adapt this time
scale from the observations of the fluctuations of the observations themselves.

1.5 Conclusion

This Chapter reviews and extends some specific microeconomic models that
take into account social influence in individual decisions, and doing so by
taking advantage of a formalism inspired from statistical mechanics. Starting
with a framework suggested by Durlauf, Blume and Brock (DBB), we in-
troduced three classes of models shifting progressively from rational towards
adaptive expectations. The first two are based on a generalized version of the
standard economic model of discrete choices that include the social influence
as an additive argument. In the DBB framework, the relevant concepts are
those of game theoretic and rational expectations. The second class of models
deals with a discrete choice monopoly market with demand externality. On
the demand side, customers are assumsed to be myopic and non strategic.
On the supply side, the monopolist is the only cognitive agent in this pro-
cess. The last model analyzed is devoted to the market organization resulting
from a search process with adaptive expectations over heterogeneous sellers,
based on the model of the Marseille wholesale fish market. In all these mod-
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els, we mainly considered the simplest case of complete connectivity, which
corresponds to the so-called mean field theory in Physics.

Issues not usually addressed in the literature have also been discussed. In
particular we compared models with deterministic and random idiosyncratic
(heterogeneous) preferences. They correspond, to models with quenched and
annealed disorder in statistical physics respectively. Interestingly, to comply
with the most frequent assumptions in economics, we were led to consider
situations that are unusual in physics, like having a logit distribution of the
quenched variables.

We tried as far as possible to clarifiy the links with statistical mechanical
models, with the aim of opening a discussion about the relevance of the
methods and concepts of statistical mechanics in microeconomics. This is
why we focused on a very restricted class of models. A review of the huge and
ever growing literature of models of social influence in economics is clearly
beyond the scope of this Chapter. A specific monography would certainly
deserve tp be writter. However, we hope that this Chapter will provide useful
insight into models that go beyond the usual rational agent approach, by
taking explicitly into account the social effects and interactions between the
individuals beliefs. This perspective raises numerous questions for cognitive
economics. Some of them are more specifically considered in other Chapters
of this book (Orléan, Baron et al., Galam, Weisbuch et al., etc.).
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