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GENERAL COMMENTS ON MATHEMATICAL BIOLOGY

HOW TO BE USEFUL

I do not belong to the community of mathematical biologists. Often, I meet students or 
researchers trained in mathematics, physics or informatics, who tell me about their 
desire to apply their competence to a pertinent biological problem. Invariably, I tell 
them that the first motivation in a research work should be the interest of the subject 
itself. So, they have to determine first which biological question is of the greatest 
interest to them, then work with humility in a laboratory in which the question is 
addressed. Later, at one time or another, the fact that they have a different background 
from that of the other researchers in the field could inspire to them questions that their 
colleagues did not raise, or let them see features, or implications in the data that the 
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colleagues did not notice, or allow them to devise new tools. But they should not put the 
tool before the subject. 

Mathematicians or physicists often make a deep mistake when they try to "model" 
biological data. Actually, the published data are heavily contaminated by the implicit or 
explicit models of the time. The experimenters design an experiment, selecting what 
they believe are the important questions, and the pertinent procedures and controls. 
They decide to discard incomprehensible results, and they focus on the results that 
make sense, with which they will be able to present a coherent story that will be 
acceptable by the reviewers. Actually, they are constructing a piece of reality that fits 
their prejudices. Therefore, the mathematicians or the physicists do not model the data. 
They make instead a formal model of the experimenters' conceptual world. More on 
this topic in Appendix 1 below.

Some models, it is true, are made in complete ignorance of experimental publications, 
which is worse. As long as their authors stand alone in defending their models, the 
consequences are small. But when an army of modelling specialists comes next, and 
explores all the consequences of the initial model, still without seeking any contact with 
experimental reality, this becomes damaging to science. I have witnessed the 
development of such a situation for the first time in relation to Manfred Eigen's 1971 
initial papers on the origins of life [1]. But now , vacuous "virtual reality" science is 
becoming a common pathology in many disciplines.

THE BIOLOGIST'S UNDERSTANDING OF MATHEMATICS

Of course, much of the biological work performed today is not motivated by scientific 
questions, it is merely technology-driven research. "Using fashionable tools to address 
fashionable questions" could be the generic title for most grant applications. 
Accordingly, this type of work produces results devoid of real conceptual or practical 
interest.

Most biologists have an extremely poor understanding of mathematics, or even logics:

— Confusion between a proposition and the reciprocal proposition. In logical thinking, 
the statement "A implies B" is not equivalent to the reciprocal statement "B implies A". 
In biological writings, if A implies B then when B is observed, "it is likely" that A is 
true. 

— Deductive versus inductive reasoning. Whereas in Latin, Slavic, Arabic or Indian 
cultures, deductive reasoning is valued, it is rejected in the English-speaking biological 
tradition, which puts faith, instead, in inductive reasoning (there are a few fortunate 
exceptions, among which Crick's "wobble hypothesis" article, which uses deductive 
reasoning [2]). Otherwise a perfectly rigorous piece of work, from the point of view of 
deductive reasoning, may appear to a native English-speaking biological reviewer as a 
piece of "complete and utter nonsense which has no place in a supposedly serious 
scientific article" - a kind of comment my articles often receive (See the web chapter on 
contributions to memory). On the other side, many highly valued theoretical papers use 
inductive reasoning, and appear to me like dog's breakfast.

In practice, there is in a theoretical work, a cluster of starting ideas a, b, c, d ... and a 
cluster of relevant experimental facts u, v, w, x .... In a deductive mode, one would 
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work out the theoretical consequences of a, b, c, d ... and reach a theoretical proposal P. 
Then the whole would be confronted with the set of facts u, v, w, ... and the author 
would determine how to modify the theory, or how to re-evaluate the facts to seek a 
better agreement between facts and theory. In inductive reasoning, one takes idea a and 
fact u, and combines them into a hybrid idea i, then one takes ideas i and b, combines 
them with fact v, and derives the half-baked idea j, and so on. This is what most 
reviewers demand.

As a consequence of this state of affairs, I have had, in a number of cases, to hide to the 
readers the true heuristic line of reasoning that led me to a (valid) conclusion, and 
present instead some inductive stinking substitute, more palatable to the reviewer.

Happily, native English-speaking mathematicians and physicists do use deductive 
reasoning. Otherwise, they would not survive in their discipline.

— Failure to see the threads. Mathematicians strive for elegant proofs, that go to the 
heart of things, and can be expressed as concisely as possible. If a mathematician works 
out a proof that takes twenty pages of equations, then finds a way to go straight to the 
conclusion in three sentences without equations, then he is proud of having made this 
big step forward. In physics, there is the art of the "back of the envelope" calculations. 
Top physicists may reach important conclusions by doing mathematically elementary 
order-of-magnitude calculations. The simplicity of these calculations is deceptive. You 
need to really understand what you are doing to succeed. In mathematical and physical 
reasoning, there are threads: you know from where you start, you know where you are 
heading, and the succession of steps that will take you there. All this is foreign to most 
biologists. For most biologists, doing mathematics is writing down lots of equations, 
combining them to derive other equations, and continue the mixing and extraction 
procedures until, at some point, the desired result miraculously emerges. So they are 
impressed by mathematical treatments that cover pages and pages, although the 
treatments may be totally uninspired and if they happen to be correct, could be replaced 
with much shorter derivations.

Bonus. A nice example of mathematical illiteracy : « "The smallest prime number 
greater than one" uniquely identifies "three" (---) ».  The authors of this delightful 
statement are Charles R. Gallistel, member of the National Academy of Sciences of the 
USA and Rochel Gelman. The quotation is from a book chapter in “Numerical 
cognition” (Stanislas Dehaene, editor, Blackwell, 1993, page 45).

CONTRIBUTIONS TO BIOMATHEMATICS

Mathematics is the discipline I liked best in my studies. My favourite branches in 
mathematics were geometry, analytical geometry, algebra and probabilities. I did not 
like integrals and differential equations. Although I do not have the level for doing 
mathematical research, and although my mathematical competence has declined over 
the years, I keep some lucidity in seeing the threads of a reasoning, and am quite 
perspicacious at detecting the mistakes. Whereas I work in a physics laboratory, I feel 
that I am more a mathematician, or an engineer than a physicist. My understanding of 
chemistry is extremely poor, and this restricted my capacity to contribute to the origins 
of life. Occasionally, I use mathematics in my work, or "back of the envelope" 
calculations. But once I get the biologically pertinent results, I stop there and do not try 
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to push the mathematics further.

While doing my thesis work, Piotr Slonimski submitted to me a problem in the 
interpretation of pictures taken by electron microscopy. It was, I think about having 
series of slices taken from yeast cells, and reconstructing the shape, assumed to be 
ellipsoidal, from the slices. I found within a week an elegant solution to the problem, 
equating (if I remember well) two expressions of the volume, one as a Riemann and one 
as a Lebesgue integral. But Slonimski lost interest in the problem, and the calculations 
remained in the drawers. 

In the thesis work, I described a method (using Fourier transform) for calculating the 
theoretical X-ray scattering curve from a molecule in solution [3, 4]. The mathematical 
part is Luzzati's merit (see section on bio-informatics). The method is still considered as 
basically sound, but there has been progress on how to take into account the 
contribution of the hydration shell of the molecule [5, 6].

At the time of the thesis work, I also had the ambition to develop a classification of all 
possible RNA structures, and planned a theoretical work in four parts, entitled: 
"Properties of nucleic acid representations". Part 1 dealt with topological properties, 
and was published in 1971 [7] (see "RNA topology" below). Part 2 was about 
orientational properties (questions such as which side of the nucleotide is "up" in a 
structure, what makes a UA dinucleotide different from AU, what are the different 
kinds of triple-stranded associations). This is partly reflected in my thesis [3], pages 57- 
64, but otherwise unpublished. Having clear notions on these topics was however very 
useful in my subsequent bio-informatics work. Part 3 was supposed to deal with the 
metric properties of nucleic acids, for instance, in what environment a G.U pair coud be 
present without introducing too much distortion?. Part 4 was supposed to deal with the 
influence of local sequence on the structure (e.g., what are the preferred sequences in 
stems or loops). In practice, the work on the energy models for predicting RNA 
secondary structures [8, 9] fulfils part of the goal of part 4. 

When I started working on the kinetic theory of accuracy, I developed probabilistic 
methods to understand the outcome of the competitions between cognate and non-
cognate substrates [10, 11] (see "probabilistic tools in enzyme kinetics" below). Later, I 
succeeded in calculating "absolute" rates in enzyme kinetics, from first passage times 
and pathway probabilities [12]. I consider [12] as my best contribution to mathematical 
biology.

I used my skills in analytical geometry to produce original stereoscopic images (see 
web chapter on stereoscopic vision) and my understanding of projective geometry to 
deal with the correspondence problem in stereoscopic vision (see web chapter on 
stereoscopic vision). Having good geometrical intuition allowed me to produce several 
interesting pieces of work in visual perception, but since most workers in this domain 
do not understand geometry, this work has had little impact.The level of geometric 
illiteracy in the field is, in fact, amazing. People are not even conscious of their 
limitations. It is just that geometry is not part of their intellectual world. This and other 
pathologies that are damaging to the field of visual perception will be described 
elsewhere.

Last, there are curious bits of mathematical insights which allowed me to solve 
simultaneously problems in quite different domains (see " a link between vision and 
molecular biology" below).
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PROBABILISTIC TOOLS IN ENZYME KINETICS

 

PROBABILISTIC DERIVATIONS

When I started thinking seriously about the accuracy of molecular processes, the 
conceptual tools were not yet available. The enzymologists were describing the 
mechanics of enzyme activity using a steady-state treatment, in which they lined up 
equations saying that the concentrations of all the intermediates in an enzyme reaction 
did not vary with time. The set of simultaneous equations was solved and led to the 
expression of the concentration of the products of the reaction as ratios between two 
rather complicated expressions.  A highly praised method was that of King and Altman 
[13], but it was just spelling out a type of calculation that was trivial for 
mathematicians. Nothing could be grasped intuitively in this approach.

So, I started thinking in terms of probabilities. I imagined a molecule of enzyme, its 
random encounters with molecules of substrate, the variable time during which the 
enzyme and the substrate remained bound, the random occurrence of an action that 
pushed the initial enzyme-substrate complex into another state, etc. All this was strictly 
equivalent, mathematically, to the steady-state picture, but I was not aware of that. In 
fact, chemical kinetics are intrinsically probabilistic. Macroscopic descriptions, such as 
those embodied in the steady-state treatments have their justification in the underlying 
probabilistic understanding of molecular processes.

Reasoning with probabilities (instead of applying the steady-state treatments) was very 
productive, and allowed me to derive all my important results on the accuracy of 
molecular processes [10, 11, 14-17]. The mathematics were simple and intuitive. One 
reason that made the mathematics simple is that, in accuracy problems, one deals with 
the competition between two or several substrates, and what matters is the ratio of the 
compounds of each kind which are formed. Using probabilities, most of the 
complexities are removed when taking the ratios. On the other hand, with the steady-
state treatments, there is a whole set of additional equations for each competing 
substrate, and all equations must be solved simultaneously. Despite the elegant 
simplicity of the probabilistic approach, most people in enzyme kinetics remained glued 
to the steady-state treatments, to KM's and Kcat's and other horrors. And since they 
were not able, with their tools, to see the implications of the schemes they were 
studying, they used so-so semi-empirical arguments and often reached erroneous 
conclusions. The situation, over the last forty years has not improved. On the question 
of erroneous treatments, see the web chapters on the kinetic theory of accuracy, and on 
statistical illusionism.

The biologists with whom I discuss often consider probabilistic treatments as 
speculative, and do not try to invest time to understand them. They think it is a romantic 
view of enzyme mechanisms, yet it is chiefly a return to first principles. The 
mathematics of probabilities are subtle, not complex. One has to accept paradoxes such 
as the infinite sum "p = 1/2 + 1/4 + 1/8 + 1/16 ... = 1". More strikingly, one has to 
accept that p can be computed, very easily, from "p = 1/2 + p/2". Do you see why ?. All 
the power of the probabilistic treatment comes from the capacity to write such simple 
equations in which p is on both sides, because one explores a tree of events, and there 
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are, on some branches, a return to earlier conditions.

I gave most of the (probabilistic) recipes to calculate error-rates for various enzyme 
mechanisms in my review article in the book on accuracy by Kirkwood, Rosenberger 
and Galas [11]. Simple, general expressions are given there for several classes of 
mechanisms. 

THE PEELBACK PROBLEM

The most advanced calculations were about the "peelback problem". Early in 1974, I 
had in my hands an issue of the Journal of Molecular Biology, containing an article by 
Goodman et al. [18], which contained a theoretical treatment of the interplay between 
the polymerization and excision functions of the DNA polymerases. At that time I was 
well-advanced in the mathematics of accuracy, and felt immediately that something was 
wrong with their treatment. They had completely overlooked the "next nucleotide 
effect" (which I knew, but had not yet published) according to which, when a 
polymerase has a proofreading function, the errors made at one position increase with 
the concentration of the nucleotide to be incorporated next (see web chapters on the 
kinetic theory of accuracy, and on DNA and RNA polymerase kinetics). Furthermore, 
they had derived their theoretical equation by combining several equations which were 
mere definitions that did not involve any physical insight. 

I found rapidly that their equation was in fact a concealed identity — something having 
the same status as (a+b)(a-b) = (a)(a) - (b)(b). So this "theoretical treatment" was a 
fantastic mathematical blunder. And the error had escaped the attention of four authors, 
two reviewers and an editor! Although the equation was an identity (therefore satisfied 
by any set of results, real or imaginary), the authors managed to plot experimental 
points that were not exactly on the curve representing their equation, some of the points 
being above, and others below the curve. They achieved this trick by plotting, not the 
individual results, but averages of the results. An identity which is verified by any 
arbitrary set of values, need not be verified by separate averages on the values. This 
article was, therefore, a piece of anthology in bio-mathematical blunders. Yet, the 
authors never retracted it. 

I solved the problem they had addressed - deriving the error-rate for a DNA polymerase 
having a proofreading activity, taking into account all the forward and backward steps 
that the polymerase could make on the template. The calculations were performed 
under the simplifying condition that the incorporation and excision kinetic constants at 
one position were independent of the nature of the nucleotide at the preceding position. 
The resulting equation was given, without proof, in the 1975 Biochimie paper [10], and 
with the derivations in [15]. In 1975 I had a correspondence with David Galas on this 
topic (see web chapter on the kinetic theory of accuracy). He and Elbert Branscomb had 
detected the mistake in [18] and they ultimately published their (correct) equation in 
[19]. Later, I made a simpler treatment and extended the work to study the effect of 
pyrophosphorolysis [20]. The peelback problem was solved under increasingly general 
conditions by Malygin and Yashina [21] then by Jean Durup [22]. These treatments 
have remained mathematical curiosities. Recently, Cady and Qian proposed a “ new 
stochastic thermodynamic analysis of DNA replication” [23]. I have not been able to 
determine whether their results agree with the previous results or not.
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THE RUSSIAN SCHOOL

In my search for the most elegant expressions, I was inspired by work from the Russian 
school of chemical kinetics. I had access to this work, owing to a visit Ernst Malygin 
made in Chapeville's laboratory in Paris. I saw that the Russians had developed a 
powerful tool to write down at once the equations corresponding to a kinetic scheme. 
So they published papers in Russian with ten different equations for ten different 
schemes, each equation being given without comment, as though it was obvious. At the 
same time, authors from the Western block were publishing papers in The Biochemical 
Journal or The Journal of Theoretical Biology, with pages of derivations, merely to deal 
with a single scheme. Knowing the elegant forms of the expressions helped me to 
derive my own expressions in [11]. On the other hand, I did not really understand the 
Russian method. It was introduced by M. I. Temkin in [24]. In this paper, the 
reasonings appear to be elementary ones, and it seems that there is mainly a great talent 
for rearranging algebraic expressions, making them beautifully simple. In 2004, I was 
discussing with my colleague Bernard Derrida of the Statistical Physics Laboratory at 
Ecole Normale Supérieure (he was awarded the Boltzman medal in 2010). Having 
shown to him a "Russian" formula (Equation 2-59 in "Non-formal enzyme kinetics" by 
Schmid and Sapunov [25] Derrida saw at once how it could have been obtained, and 
derived the formula on the spot, before my eyes. The trick was to use a Laplace 
transform of the steady-state equations. I do not know whether or not Derrida's shortcut 
had been used by the Russian school. The answer, perhaps, is in the book “Chemical 
kinetics” (which I have not seen) by Emanuel' and Knorre [26].

FIRST PASSAGE TIMES IN ENZYMOLOGY

Having developed the probabilistic tool for calculating error-rates (which are ratios of 
rates) I attempted to see, to make the story complete, whether or not this type of 
thinking could be extended to have a direct access to "absolute" rates of reactions. 
Ultimately, I succeeded, and managed to derive reaction rates for enzyme mechanisms, 
using first passage times and pathway probabilities [12]. Among other advantages, this 
treatment allows one to make general statements about classes of kinetic mechanisms. 
While the steady-state treatment is "unstable" (one needs to compute everything from 
scratch when one changes a detail in a reaction mechanism) my method allows one to 
leave many details, including topological ones, unspecified. Furthermore, my treatment 
allows one to incorporate, in a reaction scheme, diffusive steps that cannot be simulated 
with any small-sized classical sub-scheme. I showed that enzymes for which there was 
a single state allowing the entry of the substrate followed Michaelis kinetics whatever 
the intricacies of the subsequent steps.

Here is the abstract of this paper :

An alternative method for deriving rate equations in enzyme kinetics is presented. An 
enzyme is followed as it moves along the various pathways allowed by the reaction 
scheme. The times spent in various sections of the scheme and the pathway 
probabilities are computed, using simple rules. The rate equation obtains as a function  
of times and probabilities. The results are equivalent to those provided by the steady-
state formalism. While the latter applies uniformly to all schemes, the formalism 
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presented here requires adaptation to each additional class of schemes. However, it  
has the merit of allowing one to leave unspecified many details of the scheme, including  
topological ones. Furthermore, it allows one to decompose a scheme into subschemes,  
analyze the parts separately, and use the intermediate results to derive the rate  
equation of the complete scheme. The method is applied here to derive general  
equations for one- and two-entry sites enzymes.

This paper should have been taken as a very significant progress in enzymology. 
Alexey Mazur discussed the foundations of this method [27], and  Janos Südi used it in 
a work on control coefficients in enzymatic networks [28], but on the whole, it has not 
yet set (formal) enzymology in motion. The paper was channelled to PNAS by John 
Hopfield, and the reviewers made valid constructive suggestions. In particular, one 
reviewer drew my attention to an earlier paper by José Manuel Olavarriá [29] on a 
stochastic model of the enzyme-substrate reaction, in which he had derived the correct 
probabilistic equation for the Michaelis-Menten scheme. However, his article  was 
more concerned with computer simulations than with analytical expressions. The 
reviewer who was so well informed about work from Latin America must have been 
Athel Cornish-Bowden, whose Chilean wife, Maria Luz Cardenas co-signed papers 
with J.-M. Olavarriá. 

While the article was under review, I sent a copy to Leslie Orgel, and he sent me 
immediately a draft of a paper he had in his drawers, expounding the same philosophy 
(how a rate could be computed from times and probabilities) and applying it to a 
famous issue [30] in enzyme mechanism optimization. The title of the manuscript was 
"Albery and Knowles made easy". However, it was not as advanced, mathematically, as 
mine, and Orgel declined the invitation to co-sign my article.

In 2005, Ernst Malygin wrote to me, and we initiated a substantial correspondence on 
how to make enzymological calculations easier. This was an occasion for me to attack 
rather complex schemes with loops. Our results agreed, and in some cases, Malygin's 
derivations were very elegant. However, his approach had two limitations compared to 
mine : (i) the schemes needed to satisfy the constraints of detailed balance [31] thus 
excluding cases with energetic couplings – such as, e.g., kinetic proofreading 
mechanisms (ii) the derivations could not be made on classes of reactions, for which 
some details were not specified. Malygin applied his method to experimental results on 
a bacteriophage T4 DNA methyltransferase [32], and he expounded his calculation 
methods in [33].

It is perhaps during the period of training with Malygin on complex schemes that I 
noticed that my treatment in the PNAS 1987 article [12] could be considerably 
simplified. On several occasions, I had replaced in this article infinite series such as  p = 
1 / 2 + 1 / 4 + 1/8 + …. by the compact expression p = 1 / 2 + p/2. Actually, the same 
simplification applies to time series. Perhaps writing equations in which a time on the 
left side equals something plus a function of the time on the right side was too 
iconoclastic for me. Anyway, it works, and makes the calculations simpler. Whenever 
there is an equation with the p's, there is in parallel a very similar equation with the 
times. I used this simplification in [34].

Finally, it is a pleasure to note that with the current developments in single molecule 
enzymology, my calculation method in which I follow a single molecule of enzyme 
over successive cycles of reactions is becoming quite natural, conceptually. On the 
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other hand, numerical simulations with interactive graphics are becoming very easy, 
and analytical results are less needed. 

RNA TOPOLOGY 

My article on RNA topology [7] was part of an ambitious program, in Bourbaki's 
axiomatic style, to describe the space of possible nucleic acid structures. It did not have 
any impact on the field, and I do not take it as major work. It could be fun, for people 
who would like to write about the early papers on nucleic acid topology, to look at this 
one. One reason, perhaps, for the low impact of this article, was that very soon much 
work was to be invested in the topology of DNA, not RNA molecules, and in particular, 
in the problems raised by the action of DNA topoisomerases. Its is only much more 
recently, with the determinations of the structures of complex RNA molecules, that this 
article might take value. One thing I discuss, in this article, is what I called "the 
principle of contiguity" which would, in current, looser terminology, be restated as a 
principle of prevalence of "unknotted" secondary structures. I pointed out that structures 
which obey this principle do not need to be formed sequentially, while the structures 
which do not obey the principle may fold according to different 3d configurations, 
depending upon the sequence of formation of the secondary structure segments. This is 
a valid point, and I do not know whether or not it has been brought to the surface again, 
now that it is really useful.

I give now the abstract of the article:

"Our general purpose in undertaking this study was to develop a conceptual tool which 
might be convenient to understand the structures of nucleic acids presenting much 
lower regularity than DNA fibres, and might be of some help for the conception and the  
construction of molecular models.

"The matter dealt with is that of topological properties, that is, the properties for which  
the nucleic acid is considered as a thread, regardless of the sequence of the bases, their  
orientation or the configuration of the sugarphosphate backbone. The thread can be 
closed or open and the associations of the various regions of the molecule can result in  
various patterns. After study of these patterns, the two concepts of parallelism and 
contiguity in the association are defined with precision, and the problems entailed by 
circularity are briefly reviewed. Under the chapter of knots, some topological  
singularities peculiar to tRNA models or other nucleic acids are discussed. The  
distinction is made between true topological knots, and slip knots. The physical  
presence of such situations is discussed in relation to the properties of contiguity in the  
associations of the molecule." 

A LINK BETWEEN VISION AND MOLECULAR BIOLOGY

In 1975-76, I was deeply thinking about the geometry underlying visual illusions, and 
saw that much of the phenomenology could be expressed in terms of relationships 
between the lengths of two segments a and b, of the form:

perceived length of (a+b) > perceived length of (a) + perceived length of (b),

or, when b > a,
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perceived length of (b) / perceived length of (a) > length of (b) / length of (a)

or the reverse. Such relationships are typical of convex functions that take the value 
zero at the origin.

I was simultaneously working on kinetic amplification mechanisms, and it is apparent 
that the second condition expresses some amplification of the b/a ratio. Understanding 
that "concavity" was the most general mathematical formulation of "amplification" 
allowed me to produce a subtle proof of (quasi) impossibility of amplification 
mechanisms that would operate on a forward step in a reaction scheme. For a more 
precise statement, see [8]. 

It was fun to put the same figure on convex functions in my Journal of Theoretical 
Biology article on illusions ([35], Figure 7, see also [36], Figure 5a) and in the 
Biochimie 1977 article on kinetic amplification on forward steps ([8], Fig. 1). In the 
Biochimie 1977 article, I wrote cautiously that in order to have amplification on a 
forward rate “one would need a mechanism in which the substrate has to go more than 
once through the same step, and it would go more often through that step when it is the 
correct one”. Actually, a scheme fulfilling these constraints was proposed in 1999 for 
DNA topoisomerases by Yan, Magnasco and Marko [37].  Going “more than once 
through the same step”  implied that the enzyme is doing something, then undoing it, 
then doing it again.

APPENDIX : ON MODELS IN TIMES OF CONSENSUS

What follows is a summary of a talk at a meeting on "Biologie théorique, modélisation 
et enseignement de la biologie", organized by Anne-Marie Leseney, Université Paris 
VI, November 10th, 1998. This summary is preceded by its English translation.

ON MODELS IN TIMES OF CONSENSUS. Often, scientific progress is brought by the  
discovery of an anomaly: a very slight deviation in a phenomenon that is expected to be 
fully mastered. The difficulty, for the theoretician, is to recognise the essential  
anomalies, and distinguish them from deviations due to secondary effects. More to the  
point: a good theoretician is capable to perceive, behind the structure of classical  
results that are well explained by classical models, the possibility of alternative models  
that would equally well account for known results, but would also predict undetected  
anomalies.

Too often, modelling is considered as an outfit to give lustre to a body of results that  
everyone accepts. I will provide a few examples, taken from my own experience in  
biology to show that modelling can also be used to reveal phenomena that are well  
hidden behind the appearances.

Science administrators encourage work around a common theme by laboratories  
belonging to remote fields. This bureaucratically programmed interdisciplinarity  
produces perverse effects. An artificial consensus is created by researchers from 
different disciplines, around an oversimplified body of knowledge that impoverishes the  
phenomena, and by its normative effects, eliminates the anomalies that would have 
been the source of future progress.
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LA MODELISATION A L'HEURE DE LA PENSEE UNIQUE. Souvent, le progrès  
scientifique est amené par la découverte d'une anomalie: une très légère déviation dans  
un phénomène qu'on croyait parfaitement maîtrisé. La difficulté, pour le théoricien, est  
de savoir reconnaître ces anomalies essentielles, et les distinguer des écarts dûs à des  
effets secondaires. Mieux encore, un bon théoricien est capable de percevoir, derrière  
la structure des résultats classiques, bien expliqués par des modèles classiques, la  
possibilité de modèles alternatifs rendant également compte des résultats connus, mais  
prédisant aussi des anomalies non encore recensées.

Trop souvent, la modélisation est conçue comme une parure construite pour valoriser  
après coup un corps de résultats admis par tous. Je donnerai quelques exemples, tirés  
de ma propre expérience en biologie, pour montrer qu'elle peut être également utilisée  
pour dévoiler des phénomènes bien dissimulés derrière les apparences.

Les administrateurs de la science encouragent les relations de travail autour d'un sujet  
commun, entre laboratoires de disciplines éloignées. Cette interdisciplinarité,  
bureaucratiquement programmée, produit des effets pervers: un consensus factice se  
crée entre chercheurs de différentes disciplines, autour d'un corps de savoir minimal  
qui appauvrit les phénomènes et, par ses effets normalisateurs, fait disparaître les  
anomalies sources des progrès futurs.
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