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 Abstract
 Recognition between molecules in molecular biology can be explained in terms of the 
structures of the interacting molecules, but also in terms of the relative durations of 
various steps in the representative reaction schemes. In this case, the calculations make 
use of the chemical kinetic formalism, according to which any reaction is represented by a 
concatenation of elementary steps, each step being an exponential decay. From there, one 
predicts an efficiency/accuracy tradeoff and may construct kinetic proofreading schemes. 
The knowledge of the reaction time  (RT) distributions is essential to derive the correct 
results.

I review here my published work on RTs and RT distributions in “mental 
recognition” - more precisely, on the time to memorize an image and recognize it later.  
Past results are refined here by increasing the size of the data sets in order to obtain more 
precise RT histograms. Several clearcut results are presented, that deserve becoming 
central to an understanding of memory. They raise challenging issues for theoreticians, for 
instance why the time to memorize an image varies like the square of its number of 
elements, why recognizing symmetry between two images is faster than recognizing 
identity,  how the brain decides, during a search in memory, that some hidden information 
is still there, or how the brain computes 3d interpretations from visual streams received at 
different times. 

In an ambitious work on working memory retrieval, involving over 300,000 RT 
measurements, a striking dissociation between error rates and RT patterns was found. The 
RTs could be ordered on a map. This map, I conjectured, reflected the path for moving 
from slot to slot in a visual working memory store. RT patterns would thus reveal the 
organization of slots in a working memory store, in the same way that diffraction bands 
tell us something about the structure of a crystal. 

Whenever possible, histograms showing the experimental RT distributions in 
visual memory tests are shown. They were modeled with a modification of the chemical 
kinetic formalism. Depending upon the complexity of the task, schemes with one, two or 
a few steps were adequate. The RT distributions derived from the kinetic schemes needed 
though to be complemented with a Gaussian widening, and a horizontal shift. This kinetic 
modeling will be illustrated with examples from visual patterns memory, symmetry 
perception, and shape recognition after inverting black and white.

1. Introduction: links between molecular biology and cognitive sciences

In molecular biology, it is said that an enzyme recognizes its legitimate substrate among 
competing analogs, that a ribosome selects a cognate transfer RNA molecule among the 
non-cognate or  near-cognate analogous transfer RNAs, that  an antibody  discriminates 
between  self  and  non-self  antigens.  The  dominant  explanations  are  based  upon 
crystallographic  data,  from  which  rather  static  models  of  interactions  are  derived, 
involving “lock-and-key”  complementarity between enzyme and substrate, or antibody 
and antigen  (Fischer,  1894).  Alternatively,  one  examines  the  detailed  process  through 
which,  after  an  initial  association  with  a  substrate,  an  enzyme  decides,  so  to  speak, 
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Reaction times in molecular and mental processes

whether or not it will transform it into product. In this case, structural descriptions are de-
emphasized, and the kinetic details of the process are given a prominent role.

In cognitive sciences, there are a plethora of problems involving discrimination, 
recognition  and  decisions.  I  will  expound  and  explore  here  some  correspondences 
between the two bodies of knowledge. Actually, several inspirations taken from one field 
helped me progress in the other field. 

We know from Köhlers’ work that if  a hen is trained to select food on a dark gray 
plate, and avoid a medium gray plate, then is tested on a pair of plates, a light gray and a 
medium gray one, it  chooses the medium gray plate (Köhler, 1918)! In other words it 
selected the darker of the two plates. Its discrimination criterion was a relative one, not an 
absolute “lock-and-key” match with a particular shade of gray. There is no such relative 
choice in enzyme kinetics. Each encounter of an enzyme is with a single substrate, and 
results in a decision : “accept” or “reject”. On the other hand, since the decision is the 
outcome of a probabilistic process, a correct substrate may be rejected, and an anlog may 
be  accepted,  as  we  shall  see  in  Section  2.  Moreover,  there  is  room for  a  notion  of 
competition  inasmuch  as  the  enzyme  is  confronted  with  substrate  molecules  that  are 
outnumbered by analogs. This is the case of transfer RNA selection by ribosomes, and 
antigen presentation to T cell receptors in immunology. 

Another connection between molecular biology (more precisely, the subfield of 
molecular accuracy) and cognitive sciences is in the status of errors. In molecular biology, 
people  viewed errors  as  the  outcome of  aberrant  processes,  coexisting  in  the  cell  in 
parallel  with the normal process (Gorini,  1971).  In  contradistinction,  it  has been very 
common in cognitive sciences, since Mach’s profound analysis of the Mach band illusion 
(Mach, 1865) to view errors as resulting from the application of standard procedures. 
Errors  (illusions)  would  thus  reveal  something  about  the  mechanism of  the  standard 
processes. Errors also arise in a different way, and reflect uncertainty: This has practical 
importance in psychophysical experimentation. There is indeed an experimental tradition 
of setting up conditions in which a subject must choose between two stimuli,  and the 
experimentalist makes the two stimuli more and more similar to each other so as to reach 
a stage of  just noticeable difference.  The just noticeable difference criterion is usually 
coupled  with  an  alternative  forced  choice  procedure  (AFC).  The  subject  is  forced  to 
choose one stimulus or the other, he/she is not allowed to (admit) his/her ignorance. When 
the  just  noticeable  difference stage is  reached,  the subject  answers almost  at  random, 
he/she  makes  nearly  50%  errors.  Incidentally,  this  method  may  generate  illusions, 
especially  in the  tactile  domain.  If  you are  tested  on your  sensitivity  to  pricks  under 
conditions of frequent stimulations, you may occasionally feel that you are being pricked, 
but nothing happened. This is the theme of ‘false positive’ responses.

My main contribution to molecular accuracy was inspired by Köhler’s problem on 
training in hen – is recognition absolute or relative? Later, I applied to one field ways of 
thinking borrowed from the other. One anecdotical example is in a work on geometrical 
visual illusions. I needed to explain a result by the Swiss evolutionist and cognitivist Jean 
Piaget (see Piaget, 1974 for the two facets of his talent), and I found that a property of 
convex functions might underlie his results (Ninio, 1979). This property was just what I 
needed to prove a result in the kinetic theory of accuracy (Ninio, 1977) so there was a 
same explanatory figure in the two articles.

In addition to the common set of problems of choice and decision, the main bridge 
between the two domains, in my case, was a technical one, in the attention given to timing 

72
73

74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118

3



aspects. This article is mainly a review of my contributions in which conclusions were 
drawn from reaction times and reaction times distributions, either in molecular biology, or 
in visual perception and memory. In the first case the work was theoretical, and in the 
second case, I produced the data myself.

2. Recognition and reaction time distributions in molecular biology

A key concept in molecular biology is that of “specificity“. There are thousands or even 
tens of thousands of different species of molecular components within a cell, all of them 
moving more or less randomly within the confined cellular volume, bouncing against each 
other, sometimes sticking together for a certain amount of time, then falling apart or 
undergoing a chemical transformation through their interaction. Yet, the cell behaves in an 
extremely precise way. During the replication of DNA, its genetic material, there are 
merely six errors per 1010 replication steps in a bacterium (Drake et al., 1998; Elez et al., 
2010), or one error per 108 replication steps in man (e.g., Kong et al., 2012). In the most 
frequent situation, there is a molecular encounter between two partners: an enzyme – a 
large molecule that will perform a catalytic act, and a substrate that the enzyme will  
transform into a different product. Enzyme specificity must be rather high. This means 
that when an enzyme encounters a chemical compound upon which it is supposed to act 
(its “substrate”), they stick together, and the catalytic act succeeds with a reasonably high 
probability, but when the enzyme encounters a related chemical compound (an “analog”), 
either they do not stick at all, or they stick, and the catalytic act aborts with a high 
probability. 

This probabilistic description does not follow the dominating “lock-and-key” 
concept. According to this concept, an enzyme binds to its natural substrate, when they fit 
like a lock with its key, in which case the catalytic act is performed with a near to one 
probability. The enzyme does not bind to the analogs, and there is no chance that the 
enzyme will modify the analog; the enzyme-substrate interactions would be essentially 
error-free. The lock-and-key concept was introduced in the 1890’s (Fischer, 1894) to 
explain immunological specificity. It was thought that the specificity of the immune 
system relied upon exclusive interactions between invading molecules (the “antigens”) 
and defender molecules (the “antibodies”) produced by B cells. The antibodies that were 
manufactured to get rid of the invaders were thought to be extremely specific. This turned 
out to be false and instead there is a growing body of data on antibody multispecificity. 
Here also we can speak of a cognitive act, and of the problem of how to make a correct 
decision when there are so many cross-interactions between antibodies and antigens. A 
good deal of the problem is in distinguishing external invaders from internally produced 
compounds that can be targets to the antibodies, thus generating autoimmune diseases. 
This is also debated as the “self” versus “nonself” discrimination issue. Part of the 
solution came when it was realized that another class of cells of the immune system — 
the T cells — played a crucial role in the decision process. Now, the antibodies could be 
viewed as not too specific weapons, and the decision to shoot at a target was under the 
control of a different class of molecules — the T cell receptors. There was however a 
serious problem on how to couple the decision (to shoot or not to shoot) with the most 
adapted cellular weapon producers. Part of the solution came when the role of still another 
class of cells of the immune system — the dendritic cells — started to be clarified, but 
this will take us too far. I just point out here that there is another theoretical problem with 
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Reaction times in molecular and mental processes

dendritic cells. Since they work, in part, as nonspecific antigen collectors, there is the 
question of whether or not they can segregate different antigen species in separate clusters 
at their surface (Ninio and Amigorena, 2004). I have insisted on immunological 
specificity, because it may provide rich metaphors for cognitive problems.

I now deal with enzyme specificity, a field that will allow me to develop practical 
connections with the reaction time distributions in my visual memory experiments. A 
series of observations on enzyme specificity, in the 1970's, required serious amendments 
to the classical lock-and-key explanations. These were made in both the fields of protein 
synthesis with which I deal here, and DNA replication. 

In protein synthesis, an extremely complex molecular machine, the ribosome, 
reads a sequence of instructions on a messenger RNA and performs the synthesis of a 
protein according to the sequence of small units A, U, C, G on the messenger RNA. This 
process is less accurate than DNA replication (about one error per ten thousand amino 
acid incorporated into the nascent protein). By mutations, ribosomes were generated, that 
were either more error-prone or more accurate than the standard ones. It is not surprising 
that a very simple mutation may make the ribosomal machinery less accurate. On the 
other hand, the fact that this machinery that had been optimized during about three billion 
years of molecular evolution could be readily improved by simple mutations was baffling. 
It would seem that evolution did find the way to boost accuracy beyond its present level, 
but settled to the present level for energetic or other optimization reasons,  while 
maintaining an “accuracy reserve” within reach. An analogy coming to mind is that of 
human memory. It is a major evolutionary achievement, you would not anticipate that 
some minor genetic modification might boost memory by an enormous factor, yet people 
with exceptional memories do exist (e.g., Wilding and Valentine, 1997), and this does not 
even seem to be attributable to a mutation. Attempts to explain the origin of the hyper-
accuracy of the hyper-accurate mutated ribosomes (Gorini, 1971) were ad hoc and 
unsatisfactory, until it was realized that there could be an underlying efficiency/accuracy 
tradeoff (Ninio, 1974). 

More precisely, I introduced the notion that once a ribosome and a substrate made 
their encounter, they would stick together for a certain amount of time theta, during which 
the ribosome had a chance to accomplish its catalytic act. The theta’s would be large for 
the correct substrates, and small for their undesirable analogs. The catalytic act was 
postulated to occur with a certain probability per unit time, so there would be a 
characteristic decision time tau. The analysis showed that in a general way, accuracy was 
governed by the ratio between the theta’s (how much time is given to make a decision) to 
the tau’s (how fast one takes a decision within the available time). In the limiting case in 
which the responses are very fast with respect to the stimuli durations (the tau’s are small 
with respect to the theta’s) there will be a response with a close to one probability, 
whether the substrate is the cognate one or not ; accuracy is then rather low. At the other 
extreme, when the responses are very slow (large decision times tau’s compared to the 
theta’s), many encounters between the protein synthesis apparatus and a substrate will be 
unproductive. The partners will fall apart unproductively. There will be a small proportion 
of successful catalytic acts, and the probability of success will increase as the sticking 
times increase, so accuracy will be higher, but at the cost of having an important 
proportion of abortive interactions. So, it is a case of efficiency/accuracy tradeoff. The 
overall speed of the process is mostly a side-effect of the abortion rate.

The mathematics were rather simple to work out, they relied on the classical 
understanding of reaction rates in enzyme kinetics. A reaction scheme is described by a 
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more or less complex “wiring diagram” (see for instance Fig. 1). It is postulated that the 
enzyme may be in a number of different states : free in solution, or bound to a substrate, 
or bound to the product of the catalytic act, prior to the departure of the product. 
Furthermore, there may be several different states of the free enzyme, and several 
intermediate states along the reaction pathways. The schemes indicate the possible 
transitions between states. Kinetic constants (the k’s in Fig. 1) are assigned to each 
transition, and they have a precise implication according to chemical kinetic theory : 
every transition is assumed to occur with a constant probability per unit time (like 
radioactive decay). It is independent of the past, history does not count. The scheme may 
include reversibilities — there would be transitions from a state A to a state B, and from 
the state B to the state A, it may include branchings, or even loops. With just a few sates, a 
very rich phenomenology can be generated, and it has been worked out in enzymology, 
under the names of allostery, kinetic cooperativity, half of the sites reactivity, etc.(e.g.,  
Cornish-Bowden, 2012). Explicit expressions for average reaction rates are often easy to 
derive. For a long time, enzymological discussions of reaction rates were made in terms 
of large population of enzymes, so reaction rates were considered to be averages over 
large populations. However, these instantaneous averages on enzyme populations are the 
same as the averages for a single enzyme molecule that would be followed during a very 
large number of cycles of substrate binding and product release (in practice, see Ninio, 
1987).  

    ------------------------------

   Insert Figure 1 about here

   -------------------------------

Given a reaction scheme, and the kinetic constants for the cognate enzyme-
substrate interactions, and the non-cognate interactions as well, it is easy to compute the 
error-rate. Mathematically, this is straightforward, yet there is a conceptual subtlety : 
reaction time distributions are essential to understand the results. This is due to the fact 
that all kinetic constants are characteristic parameters of probabilistic processes that 
extend from time zero to infinity. A sticking time theta = 1/k-1 corresponds to a situation in 
which the enzyme and the substrate have a probability of falling apart = k -1 dt per 
elementary time dt. A processing characteristic time tau  = 1/k2 corresponds to a situation 
in which the enzyme has a probability of success of performing the catalytic act = k2 dt 
per elementary time dt. Therefore, a situation described by two kinetic parameters theta 
and tau includes events in which a sticking time is rather large and a processing time very 
short, and inversely events in which dissociation is rapid and occurs before processing has 
a chance to occur. Taking into account the probabilistic distributions of the theta's and the 
tau's one gets, for most simple reaction schemes (the Michaelis scheme (c)  in Fig. 1) a 
remarkably simple formula: the probability of a productive interaction is p = theta/(theta 
+ tau). Then the error-rate follows an efficiency/accuracy tradeoff. A speed/accuracy 
tradeoff is often observed and discussed in psychophysical experiments, and a wealth of 
models were devised to account for the experimental observations (for instance, 
Wickelgren, 1977; Luce, 1986; Bogacz et al., 2009). 

Ways to construct reaction schemes to boost accuracy beyond what was 
anticipated from standard kinetic schemes were proposed, under the names of “kinetic 
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Reaction times in molecular and mental processes

proofreading“ or “kinetic amplification“ (Hopfield, 1974, 1980 ; Ninio, 1975, 2006). The 
essential trick is to introduce a time-delay before initiating the processing stage. Imagine 
for instance a substrate with a sticking time theta = 100 ms, and an analog with a smaller 
sticking time theta = 10 ms. If the enzyme is prevented from accomplishing the catalytic 
act during the first 20 ms after binding, then the probability of accomplishing  the 
catalytic act is slightly diminished for the correct substrate, and very substantially reduced 
for the analog. The main difficulty was to construct a scheme that would involve a 
(probabilistic) time-delay, and satisfy the thermodynamic constraints of chemical kinetic 
theory. The kinetic proofreading ideas are well accepted in the protein synthesis field, and 
they have been adapted to several other fields, including immunology (McKeithan, 1995). 
They should not be confused with more classical ideas on accuracy, such as the use of 
redundancy for reliable computation (e.g., Winograd and Cowan, 1963).

There is a different, dominating tradition in mathematical enzymology, in which 
rates rather than times are considered, and one analyzes the fluxes between states in large 
populations of molecules, instead of transition probabilities. In cognitive sciences, one is 
more inclined to discuss decision times, but some authors are attempting to introduce rate 
distributions as an alternative to time distributions (e.g.,  Harris et al., 2014). 

3. Time to compare two images side by side

This work was inspired from a well-known visual game in which two drawings of a 
complex scene differ at seven positions, and the task is to locate the differences, which 
can take a surprisingly long time. In searching for the differences the eyes try to capture 
part of one image, then move to the corresponding part of the other image, and although 
the two images may differ in this region, the person may not detect the difference. The 
explanation is that when the person looks at the first image, he/she extracts partial 
information, which is held in short-term visual memory (STVM) while he/she performs a 
visual saccade to the other image. Upon visual landing on the appropriate portion of the 
second image, the person compares the available detailed visual input from the second 
image with the representation of the first image in STVM. Failure to detect the difference 
is an indication that the STVM representation was not detailed enough to include 
pertinent information about the locus of the difference between the two images. 

    ------------------------------

   Insert Figure 2 about here

   -------------------------------

Nicolas Brunel and I attempted to determine the capacity limit of STVM by 
measuring the time to locate a difference between two artificial images presented side by 
side on a computer monitor as a function of their complexity. Our hope was to detect a 
sudden rise of reaction times above a certain level of image complexities. The images 
were abstract patterns — square lattices filled at random with black or white quadrangles 
(examples in Fig. 2, top row). Two images were presented side by side, and the right 
image differed mainly from the left one by a white/black inversion in one of the 
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quadrangles. The task of the subject was to compare the two images, until he/she spotted 
the difference between the two images.

For images of size NxN, the median reaction time for locating the difference 
varied as cN2, from N = 3 to N = 15, with c being around 50 ms in the absence of grid. 
(i.e., when the quadrangles were associated into continuous shapes). The relationship was 
clearcut but disappointing –  there was no discontinuity that might have suggested the 
existence of capacity limit in STVM. Errors and RTs followed similar courses over the 
range of  experimental conditions. There were though some interesting side results  — see 
the legend to Fig. 2. The results taken together indicate that the detection of differences 
does not proceed on a pixel by pixel representation, and must be mediated by an abstract 
shape analysis.

    ------------------------------

   Insert Figure 3 about here

   -------------------------------

         Brunel and I then implemented another protocol. The images to be compared were 
similar in 50% of the cases, and differed at a single position in 50% of the cases. The 
subjects had to judge whether two images presented side by side were the same or 
different, with N varying from 1 to 5 (Fig. 2, bottom rows). When images are different, 
and the subject moves his/her eyes from one image to the other, the search terminates as 
soon as the difference is located. When the images are the same, the similarity may be 
obvious at a low level of image complexity, but at a higher level of complexity, the 
subject must move his/her eyes from one image to the other and in this case he may need 
to make a complete back and forth exploration to be sure that there is no difference 
between the two images. For N ≤  3, the same and the different responses were similar in 
all their statistical aspects. For N  ≥ 4, the “same” responses took a significantly larger 
time than the “different” responses and were accompanied by a significant increase in 
false negative errors — a subject may judge two different  4x4 images as being identical. 
This is a form of  “change blindness”, as pointed out by Scott-Brown et al., 2000. The 
qualitative change from N = 3 to N = 4 is interpreted as a shift from a “single acquisition” 
analysis to a scanning procedure. On the whole, we suggested that visual information in 
our simultaneous comparison task is extracted by chunks of about 12 ±  3 bits (counting 
one black or white quadrangle as a bit), and that the visual processing and matching tasks 
take about 50 ms per couple of quadrangles (Brunel and Ninio, 1997). Data for 
comparisons of blocks of colored patterns, or blocks of letters are presented in Ninio, 
2011. Here, I complete the 1997 Brunel and Ninio experiments on several subjects by 
testing myself on 2x2, 4x4, 6x6 and 8x8 pairs of same or different images. The RTs are 
shown in Fig. 3. 

In Fig. 4, I show the RT distributions for 2x2, 4x4 and 6x6 images separately for 
the “same” and the “different” pairs of images. All RT distributions have the shape that is 
classically found in psychophysical experiments: there is a dissymmetrical bell-shaped 
curve that rises steeply after a lag, then declines slowly. This lag must reflect, in part, the 
time elapsed between the decision reached by the brain and the recording of the motor 
response, – a key press on the mouse of the computer. But it must also reflect other 
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contributions, since the RTs for motor responses were found, in several studies, to be 
often < 0.3 s. As the complexity of the images increase, from 2x2 to 6x6, the distributions 
become wider and wider. The increase in variance is easily justified, because the number 
of possible stimuli increases from 16 “same” and 64  “different” pairs of images in the 
2x2 case, to 236  “same” and 36x236  “different” pairs of images in the the 6x6 case. In 
order to simulate these RT distributions, I use a model that was introduced previously in 
an earlier work on symmetry perception (Ninio, 2011). It is explained again in the 
Appendix.

    ------------------------------

   Insert Figure 4 about here

   -------------------------------

The model involves three components : First, a “kinetic core”, as simple as 
possible, taken from the almost infinite possibilities offered by the chemical kinetic 
formalism, for example, any of the schemes shown in Fig. 1. Next, the RTs computed 
from the kinetic core are shifted by a lag, typically around 0.8 s. Last, the RT distributions 
are convoluted with a Gaussian of variance sigma square – sigma being expressed in 
seconds – that takes care of the many sources of variability not included in the kinetic 
model. Typically, the sigma's were in the 0.05 s to the 0.1 s range. 

As I show in Fig. 4, the kinetic core reduces to a single step (scheme (a) in Fig. 1) 
for both 2x2 similar and different images. It reduces to a Michaelis scheme (scheme (c) in 
Fig. 1) for both 4x4 similar and different images. It can be seen that the RT distribution is 
wider when the images are similar, which is logical. This flattening of the distribution is 
accounted for by a decrease of all 3 kinetic constants of the kinetic model. With 6x6 
images, the kinetic core grows in complexity. We can model the RT distributions for the 
different images with a linear scheme involving two reversible steps, followed by a 
terminal irreversible step (scheme (d) in Fig. 1). A still more complex kinetic core was 
needed to account for the RT distribution for 6x6 same images – model (f) with three 
reversible steps and a branchpoint. For more details, see the legend to Fig. 4. The 
increasing complexity of the models is justified, taking into account the increased 
complexity of the task : construct a representation of the images, capture a part of one 
image, move the eyes to the corresponding location in the other image, move the eyes to 
another position in this image, move the eyes to the other image, and so on.

For a given class size (for instance 6x6), the stimuli can present widely different 
difficulties in the comparison tasks. This contributes to the breadth of the RT distributions. 
We do not have yet theoretical models of  the factors that make pairs of images more or 
less easy to compare, although we can discern a number of criteria. In particular, an image 
can be decomposed into a number of all-black or all-white blocks. The simplicity of this 
decomposition plays a role in constructing a representation of the image, and the 
preservation or non-preservation of this decomposition in a pair of images, is an important 
factor in the detection of their difference, when there is one.

In most psychophysical studies, the stimuli are rather less complex than those used 
here, and the 'same' responses are usually faster than the 'different' responses (see van 
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Zandt et al., 2000). Here there is a hint for this trend at the smallest complexities (see the 
results in Fig. 3). The most gratifying aspect of our results here is the agreement between 
the complexity of the tasks, and the complexity of the kinetic schemes required to model 
the results.

4. RT distributions in symmetry perception

There is an abundant literature on symmetry detection – mainly vertical symmetry 
detection (e.g., Tyler, 1996). When two identical images are presented side by side, it may 
take you some time to realize that they are identical. However, if one of the images is 
juxtaposed, along one of its vertical sides, to its symmetrical image, the symmetry jumps 
to the eyes. The fact that vertical symmetry is far more salient than identity is rather well  
established (Bruce and Morgan, 1975).

    ------------------------------

   Insert Figure 5 about here

   -------------------------------

 I extended my previous work on comparing images side by side to pairs of images 
that were related by a vertical symmetry axis, and in which one of the elementary squares 
could be different (see examples in Fig. 5). So, at a rough level of description, the pairs 
were always symmetric, and the question became how good we are at detecting a small 
dissymmetry between the patterns – a symmetry violation.  In the field of symmetry 
perception, the side by side presentation of similar images is called “repetition”. In this 
respect the work described in the previous section was about the detection of repetition 
violations. I performed, as a subject, extensive experiments on repetition violations and 
symmetry violations and in this case, both with separate and non separate images. Some 
reaction time distributions from Ninio, 2011, are shown here in Fig. 6.

    ------------------------------

   Insert Figure 6 about here

   -------------------------------

The reaction time distributions are much narrower in the case of the symmetry 
condition. The distribution for 3x3 patterns can be modelled, in the case of symmetry with 
a model involving a single step (Fig. 1a), and in the 4x4 and 5x5 symmetry condition, 
with a two-step model (Fig. 1b). A two step model was also sufficient to account for the 
4x4 repetition case and, to a rough approximation, for the 5x5 repetition cases (Ninio, 
2011). However, the 5x5 RT distribution for repetitions appears to be bimodal, and a finer 
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Reaction times in molecular and mental processes

analysis is now proposed in this review by separating the “same” from the “different” 
responses, see Fig. 4. The kinetic models for the nine histograms were remarkably 
consistent – see Table 1 in Ninio, 2011. All lags were between 0.8 and 1.0 second; all 
Gaussian sigma's were between 0.04 and 0.07 second. They increased with the complexity 
of the stimuli. The kinetic constants k2 for the 3x3 repetition, and the 4x4 and 5x5 
symmetry conditions were around 20/s. This “fast” constant probably reflects the terminal 
(decision) step in the process. It falls to 5/s and 3/s in the 4x4 and 5x5 repetition 
experiments. However, in the refined, more complex models of Fig. 4 in the preceding 
section, all the terminal (decision) kinetic constants are in the 10/s to 15/s range. In the 
case of 3x3 symmetry violations, the model involves a single step, and k2 fuses with k1. 
Otherwise, the k1’s decrease regularly with the complexity of the stimuli, from 8/s to 2/s 
in the symmetry experiments, and from 19/s to 3/s in the repetition experiments. The k1’s 
probably reflect, in large measure, the time to construct a representation of the stimuli to 
be compared.

A most striking aspect of this kinetic modelling is the absence of a feature that 
might have been present: There is absolutely no room for an additional “mental flipping” 
step in the symmetry data. If such a step existed, it could have been reflected in an 
increased lag, an increased Gaussian widening, or the need for an additional kinetic 
constant k3. Quite to the contrary, none of the 4 parameters gives an advantage to 
repetition comparisons. This raises the possibility that the representations of a pair of 
mirror-images are constructed faster than the representation of a pair of same images. 

A possible explanation is that there is a potential artefact in the repetition 
experiments.  A shape is, so to speak, contaminated by the neighbouring shapes. The 
perception of the left column in the right image is influenced by the patterns (and 
especially the black/white balance) of the neighbouring right column of the left image.  
Using another terminology, I would say that the perceptual groupings in one image are 
influenced by the features that are present on the closest border of the other image. 
Therefore, when two identical images are presented in the repetition mode, several 
groupings may be tried. They would compete, as in a Stroop effect, thus lengthening the 
reaction times. In contradistinction, the equivalence between the two sides of the 
symmetry axis in the symmetric presentations could force the spread of the same 
perceptual groupings in the two images of a symmetric pair. This conjecture might be 
tested in the future by exploring situations in which complementary information are sent 
simultaneously (Nimi et al., 2005) or asynchronously (van der Vloed et al., 2005)  to the 
two eyes, and studying the reaction time distributions as a function of the presentation 
delays.

However, there may be a more profound cause for the superiority of symmetry 
over repetition judgements. Humans' general difficulty in distinguishing a shape from its 
mirror image led to the proposal (see, e.g. Corballis and Beale, 1971) that when the brain 
represents a shape, it constructs automatically the mirror-image representation of that 
shape. This is what I call a “folded sheet” model because it is reminding of Rorschach 
method for producing symmetrical shapes from inkblots squeezed between the two halves 
of a folded sheet. In a remarkable case study, Pflugshaupt et al. (2007) described a patient 
who, after a cerebral damage produced by hypoxia could not read normal text or write in 
the standard way, but could read text reflected in a mirror, and write in mirror-inverted 
way. The authors interpreted their data in terms of a folded sheet model: the brain, under 
normal conditions would construct both the normal representation of a visual stimulus, 
and its mirror-inverted form. Following a brain damage in some specific site, the standard 
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representation would be unavailable, and the brain would use the mirror-image 
representation.

I thought of an alternative possibility. I conjectured that somewhere in the brain, 
patterns would be represented like images printed on a transparent sheet: depending on 
the side of the sheet you are looking at, you see this pattern in its standard form, or in its 
mirror-inverted form (Ninio, 2011).  Assume that two bundles of neurons have access to 
this representation from two sides, one bundle connecting the representation, say, to the 
left  hemisphere,  and  the  other  connecting  it  to  the  right  hemisphere.  Then,  through 
learning, a child would acquire a mechanism that inhibits the functioning of one of the 
two bundles, at least during reading and writing. If, due to brain damage, the main bundle 
cannot operate, inhibition can be removed, and the person would become able to read and 
write in mirror-inverted way. 

5. Acquisition of information in visual memory, as a function of presentation 
time and number of images to recall

5.1 The time course of information acquisition

Having determined the amount of visual information that is extracted in a single shot and 
maintained in short term memory, I then explored the properties of visual information 
storage in a longer time range. I first studied visual memory of single images. An image 
similar in design to the images that were used in the previous section (slightly distorted 
square lattices of black or white quadrangles) was memorized for a certain amount of 
time, then it disappeared from the screen. Then a pair of images were presented side by 
side. One of the images was the memorized image, and the other one differed from this 
one at one or more positions, in which the quadrangles’ colors were changed from black 
to white, or vice-versa. The task was to determine which of the two images corresponded 
to the memorized image. The amount of memorized information, expressed in bits, was 
deduced from the error-rate, as explained in Ninio, 1998.

I tested myself to determine how much I memorized of an image as a function of 
the presentation time, and the result was clearcut. The number n of memorized bits varied 
roughly as the square root of the presentation time. (More precisely, the exponent x of the 
power law n = tx could be 0.56 rather than 0.5). The power law applied from a few 
seconds presentation time to at least 100 seconds (Fig. 7, right panel). To turn it 
differently, in order to double the number of memorized bits, I needed a presentation 
duration multiplied by four. Such a power law had in fact been described a century ago by 
Binet, 1894, in his observations on mnemonists who memorized large lists of numbers 
(Fig. 7, left panel). I also determined the amount of memorized bits as a function of 
presentation time when 2, 3 or 4 images were memorized consecutively, the images being 
tested in their presentation order. The number of memorized bits per image was smaller 
than in the case of single images, but the power law applied, with the same exponent. So, 
I confirmed with myself (a non-exceptional subject) and in the visual domain what had 
been observed with mnemonists in the 19th century. This power law should stand as one 
of the basic experimental laws of memory. Yet, it is largely ignored by memory specialists 
(but see Wilding and Valentine, 1997).

    ------------------------------
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Reaction times in molecular and mental processes

   Insert Figure 7 about here

   -------------------------------

I then ran a series of experiments to determine what happened in a shorter time 
range, actually from 1 second to 8 seconds. This time, 30 naive subjects took part in the 
experiments. I determined the average number of bits memorized per image, for 
presentation times of 1, 2, 3, 5 and 8 seconds. I obtained a sigmoid dependency (Fig. 8). 
For one second presentations, about 12 bits were memorized - just the amount that had 
been found for short term visual memory and, presumably, acquisition times in the range 
of 300 ms. So, one could say that there is an initial capture of about 12 bits of information 
in about 300 ms, and no clear gain up to one second. Then, at 2 s presentation time, there 
is a small gain. The number of memorized bits rises to about 15. I interpret this increment 
as follows: With a 2 s presentation time, the subject can make a rapid exploration of the 
image, and choose a part which looks simple to memorize, on which he may fix his/her 
attention. So the gain would have little to do with the workings of memory. From 2 to 6 
seconds, the curve is nearly horizontal, there is very little gain, but after six seconds, the 
curve starts ascending clearly. The stability in performance of the naive subjects between 
2 and 6 seconds memorization is amazing. Furthermore, it contradicts the subjective 
feeling of acquiring information all along the presentation duration. In my opinion, what 
happens is that there is a first acquisition of visual information at the 12-15 bits level, up 
to two seconds presentation time. Beyond this first seizure of information, during which a 
few salient shapes within the image (for instance, a cross, a square, the letter T) were 
perhaps noticed, one needs to establish a dialog with long term memory to be able to 
construct a more detailed representation of the image. This is where an experienced 
subject can do better, because he/she has a larger store of readily accessible patterns in 
memory, that can match the patterns in the image, and a large store of criteria (are there 
alignments ? is there symmetry ? do the elementary patterns touch a border of the image ? 
and so on). A similar time-course was observed in parallel experiments in which two 
images had to be memorized, instead of one. In any event, the results are there (Fig. 8) 
and, to my knowledge, they are absolutely original in the field of memory.

    ------------------------------

   Insert Figure 8 about here

   -------------------------------

5.2 How the retrievable information varies with the number of items

Having cleared the ground, I then proceeded to the more ambitious task of determining 
how the amount of memorized information varied with the number of memorized images. 
Would we, at last, find some evidence in favor of the mythical “magical number” ? I 
performed comparative experiments with several subjects attending to 1, 2, 3, 6, 12 
images, up to 100 images.
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 I found, with three subjects, that when viewing m consecutive images, the average 
amount of information captured per image varies with m in a stepwise fashion. The first 
two step boundaries were around m = 3 and m = 9-12 (Ninio, 1998). Thus, instead of the 
expected magical number limit of 5-9 items beyond which nothing could be retained, we 
had a continuous stepwise curve. The data were interpreted, at that time, with a model of 
organization of working memory in successive layers containing increasing numbers of 
units, the more remote a unit, the lower the rate at which it may acquire encoded 
information. In later experiments with two additional subjects, I found a first boundary in 
the 4-6 range.

The differences between the subjects could be rationalized in terms of a filling 
strategy : subjects differed by their way of placing the images in different layers of a 
memory store. One subject would place them at random, another one would place the first 
images in the closest layers, in which storage accuracy was high, and another one would 
place the first images in the remote layers, where storage accuracy was low, then fill the 
memory store from the back. In this case, there is the paradoxical possibility that 9 images 
may be better memorized, on average, than 4 images, because the 4 images would be 
memorized at the lowest accuracy level !

I then tried to obtain detailed information on the quality of memorization of each 
of the images memorized within a set of 4 images in block-trial experiments. 

There  were  incomprehensible  discrepancies  between  error-rates  and  reaction 
times. Furthermore, when the testing order was reversed (from 1, 2, 3, 4 to 4, 3, 2, 1) the 
error-rates and the RT’s for each image in a set of 4 could not be anticipated from the 
error-rates and RT’s in the standard order. Furthermore, I did test myself systematically, 
using various testing order (e.g., 3-1-4-2, 2-3-4-1, etc). The results seemed erratic. It was 
not possible to characterize a “memorization quality” for each of the 4 images memorized 
in succession. It was not possible to predict the results obtained with one testing order 
from the results obtained with other testing orders. There were also discrepancies between 
the error-rates and the RT variations. Conceivably, when the experiments made use of a 
particular testing order, memory was adapting to this order and somewhat optimizing the 
placement and retrieval strategy of the items to this order. So I decided to run experiments 
in which the testing orders were randomized.

6. Visual memory experiments with random testing orders

If a subject views N images numbered 1, 2, …., according to their presentation order, 
there are 2 possible testing orders for two images, 6 possible testing orders for 3 images, 
24 testing orders for 4 images, N! possible testing orders for N images (see the protocol in 
Fig. 9). Memory experiments were performed with a few subjects on blocks of N = 2 to N 
= 5 images, with random testing orders. Over 300,000 RTs were collected (Ninio, 2004). I 
focus here on the results for N = 3, because they display all the essential elements found 
in the other series.

    ------------------------------

   Insert Figure 9 about here
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Reaction times in molecular and mental processes

   -------------------------------

Recognition errors are a function of the presentation order and the testing order. 
However, the 9 expected error-levels reduce to 4 (Fig. 10, left panel). One is applicable to 
images 1 and 2 at all testing orders, the other is applicable to image 3 – the last 
memorized  image in a block of 3. It is very low when image 3 is tested first. The 
privilege of the last viewed, first tested image, over all other images, is extremely strong, 
in agreement with Phillips' picture of STVM (Phillips, 1974). On the other hand, the 
persistence of this privilege beyond the first testing stage was quite unexpected. Should 
we not expect each couple of images used in the tests, to occupy STVM one after the 
other? If this happened, the last memorized image should have lost its privilege 
immediately after the first test.

The results on reaction times contained even more exciting structural details which 
were not present in the error-rates results (Fig. 10, right panel). The RT for responding to 
a test on a given image at testing stage 2 or 3 depended significantly on which image was 
tested just before. For instance, the RT for a test on image 3 at testing stage 2 was shorter 
when image 2 was tested at stage 1 than when image 1 was tested at stage 1. The 
difference in RTs was observed despite the equality in error-rates for the two conditions. 
So, it is as though image 3 was maintained at a certain quality level at stage 2, but was 
more accessible to a memory search after a test on image 2 than after a test on image 1. 

    ------------------------------

   Insert Figure 10 about here

   -------------------------------

You can think of many models to account for such an observation. For instance, 
imagine that images 1, 2 and 3 are like aligned cars in a parking space. If you walk from 
one car to the other, it may be easier to reach car 3 from the location of car 2, than from 
the location of car 1. This is just one crude model to account for a single observation. 
However, the 6 testing permutations generate 12 different RTs on successive tests (6 for 
each stage 1- stage 2 succession, 6 for each stage 2 – stage 3 succession). The set of the 
12 RTs was not as simply structured as the example chosen above suggests. Actually, the 
dominant pattern can be conceptualized by putting two images on one line, and the third 
image on another line, thus :

---- 1 --------- 2 ----

----------- 3 ---------

Imagine that downward motion is easier than upward motion, and that lateral motion is 
even more difficult than upward motion. Then you would have fast transitions from 2 to 3 
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or from 1 to 3, slow transitions from 1 to 2 and from 2 to 1, and intermediate transition 
times from 3 to 1 and from  3 to 2 .

From the set of inequalities between RTs on successive tests in both the 3 and the 4 
images results, I derived a hypothetical geometrical model for a short term visual memory 
store (Ninio, 2004, and here, Fig. 11). 

    ------------------------------

   Insert Figure 11 about here

   -------------------------------

There are four rows of slots in the model of Fig. 11. The storage accuracy is 
assumed to decrease from row 1 which contains STVM to row 4. At the end of the active 
memorization phase, the last image is in the first row, and all previous images occupy the 
fourth row, if space permits. Metaphorically, you may imagine a parking space with one 
entrance. When cars are coming in, you accommodate them by lining them at the back. 
Late comers are parked closer to the entrance. As testings proceed, the last image moves 
up along the midline A-C-F. This description accounts well for the observations, in the 3 
and 4 images experiments, of a nearly constant error-rate on all but the last image, and for 
a gradual increase of the error-rate on the last image. The situation is somewhat 
paradoxical, because if we reason in terms of a steady-state, we expect the fourth image to 
take the place of the third, the third to take the place of the second, and the second to take 
the place of the first. The results go clearly against such a steady-state view of memory, at 
least in the block-trial experiments. In experiments on monkey's working memory, the 
animals had to attend a continuous stream stream of images, and react when they 
recognized an image that had been presented previously N steps back (Yakovlev et al., 
2005). Memory might well work under steady-state conditions in these experiments.

If my structural interpretations are taken literally, the memory traces must migrate 
from one location to another. It is common to speak, in the multi-store memory models, of 
information being transferred from one store to another. In a depiction of such statements, 
one imagines some neuronal module, in a store, encoding some information through the 
state of activation of its synapses, and some other neuronal module, copying or translating 
this information, through modifications of its own synapses. Then, we are led to think 
about neuronal mechanisms for copying or translating information and ask whether or not 
there may be smart neuronal chips for performing such tasks. Actually, the concept of 
“neuronal copying" is found, in disguise, in the field of stereoscopic vision. The task there 
is to compare two nearly identical images, and one way to do so, in theory, is to translate 
one image over the other in search of the best  local matches.  Indirect  psychophysical 
results  have  been  interpreted  in  terms  of  a  neuronal  superimposition  mechanism 
(Anderson and van Essen, 1987). Perhaps then, the major implication of our results is that 
memory – as distinguished from learning – might well make use of a neuronal copying 
mechanism.

7. The decision curve
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Reaction times in molecular and mental processes

When an enzyme deals with a correct substrate, in molecular biology, it spends a certain 
average processing time with it, the interaction being productive or not. When it interacts 
with an analog,  there is  also a  processing time, and there is  absolutely no theoretical 
relationship between the two processing times. The situation has been extensively studied 
in the case of messenger RNA translation on the ribosome. In early studies, it was found, 
based upon very crude analyses of the data, that processing times were extremely large in 
the case of incorrect associations of a ribosome with a non-cognate tRNA (Rodnina et al., 
1996), and from there it was deduced that such non-cognate interactions were the limiting 
factor, in the rate of protein synthesis. This belief was incorporated into a logistic model 
of  protein  synthesis  (Zouridis  and  Hatzimanikatis,  2008).  More  refined  experiments 
eliminated  the  hypothesis  of  a  bottleneck  due  to  the  non-cognate  interactions,  and 
proposed instead that there was a bottleneck due to the “near-cognate” interactions, those 
in  which  the  ribosome interacted  with a  transfer  RNA molecule  having an  anticodon 
rather similar to the anticodon of the cognate transfer RNA. The resulting kinetic model 
of  protein  synthesis  (Gromadski  and  Rodnina,  2004)  has  been  widely  accepted  until 
recently,  and was incorporated into  logistic  models  of  protein  synthesis  (Fluitt  et  al., 
2007).  However,  recent  data  suggest  that  the  ribosome  spends  most  of  its  time  in 
processing correct interactions (Spencer et al., 2012).

In many psychophysical experiments, when there is a speed/accuracy tradeoff,  it 
is reported that RT's for errors are usually smaller than RT's for correct responses (e.g., 
Ratcliff and Smith, 2004). This can be rationalized by the notion that hasty judgments are 
less reliable than mature ones.

    ------------------------------

   Insert Figure 12 about here

   -------------------------------

On the other hand, RT's are substantially higher for the erroneous responses in my 
working memory experiments . When the subject has well memorized the image, he/she 
makes a rapid and correct response. Otherwise, he/she keeps searching for faint clues in 
memory. If the subject cannot decide, he/she makes a key press at random, in agreement 
with an alternative forced choice (AFC) procedure. Errors are mostly of this type. Large 
RTs should reflect the subject’s uncertainty. So one expects that the less certain the subject 
is, the higher the error-rate. Actually, I expected the error-rate to increase steadily with 
RTs, and reach asymptotically the 50% level. The histograms in  Fig. 12 show that RT 
distribution for errors are shifted to the right with respect to those for correct responses. 
This makes sense. The subjects are behaving responsibly. They respond rapidly when they 
know the answer, otherwise they make an effort to get more information from memory. 
What is quite unexpected, on the other hand, is the relationship between the tails of the 
distributions. As a matter of fact, the erroneous/total responses ratio is around 25 to 30% 
at the largest RTs, thus substantially lower than the expected 50% (Fig. 12). This finding 
must have profound implications. I found similarly an  < 50% ceiling in data on learning 
visual patterns in baboons from Fagot and Cook, 2006. and similar work on a human 
being in Voss, 2009. 

8. Recognizing a memorized image after black/white reversals
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    ------------------------------

   Insert Figure 13 about here

   -------------------------------

When an image is very simple (for instance, it is just showing the letter A), it will be 
recognized easily even after reversing the black and white values. On the other hand, 
complex images are less easy to recognize after reversing the black and white, values, as 
one  can realize  when trying to  interpret  landscapes  or  faces  on film negatives.  Jean-
François Patri and I performed experiments on 5x5 images memorized then tested either 
in their  original black and white version, or after  an inversion of black and white,  as 
illustrated  in  Fig.  13 (Patri  and  Ninio,  2009).  The  analysis  of  the  RT  distributions 
suggested that a simple two-steps scheme accounted for the RT distributions when tests 
used  the  normal  contrast.   When  the  tests  involved  the  opposite  contrast,  the  RT 
distributions could be interpreted as due to the superimposition of two pathways :  the 
previous pathway in 25% of the cases, and a pathway involving one more step in 75% of 
the cases.  The natural interpretation is that in 25% of the cases,  a mental inversion of 
contrast is not needed to recognize the correct image in the test while in 75% of the cases, 
a mental  inversion is needed, and it consumes just one elementary step. Here,  I have 
completed the work by testing myself on 4x4 and 6x6 images. The results are shown in 
Fig. 14. In both cases, when the test images are shown with the normal contrast, the RT 
distributions are compatible with a two-step model, but in the case of presentations  with 
black and white reversals, the RT distributions are modeled with the branched scheme of 
Fig. 1 e.

    ------------------------------

   Insert Figure 14 about here

   -------------------------------

9. Recognizing a memorized image alone, or side by side with a distractor

  In almost all my visual memory experiments, there were two images in the recognition 
tests  (see  Fig.  9).  It  was  thought  that  showing the correct  image side by side with a 
distractor would make recognition easier. An alternative procedure is to present a single 
image, and let the subject decide wether it is the correct one or not. In the first situation, 
the distractor may interfere with the stored items in memory and cause recognition errors, 
or  it  may  be  easily  rejected  if  it  contains  an  obvious  feature  that  cannot  be  in  the 
memorized image ; in the second situation one may feel uneasy, being unable to decide 
whether the image shown in the recognition test is exactly the memorized image, or some 
similar one. A comparison of the two procedures was undertaken in collaboration with 
Jean-François Patri, involving 10,000 tests on 5x5 images. In the presence of a distractor, 
errors were slightly lower, RTs were higher and the RT distributions were much flatter. 
The widening of the RT distributions, in the presence of the distractor can be explained by 
the need to represent two images instead of one, and the time spent in comparing the two 
images. I have repeated here the experiments using 4x4 images. All three RT distributions 
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Reaction times in molecular and mental processes

can  be  simulated  with  a  2-steps  model  (Fig.  15).  Errors  are  mostly  observed  in  the 
absence of a distractor, when the incorrect image is presented in the test (i.e., errors are 
false positives). 

    ------------------------------

   Insert Figure 15 about here

   -------------------------------

10. Alternation frequencies in stereo vision

Most studies in stereo vision make use of error-rate arguments and rarely of RT 
arguments. However, in one case at least there was a study on RT distributions, supporting 
a fusion theory against a suppression theory of binocular vision (O'Shea, 1987). I deal 
here with a promising line of chronometric research, in which the two members of a 
stereoscopic pair are presented in alternation to the two eyes.

In normal early vision, the brain receives at least four streams of visual inputs. 
From each eye, the optic nerve splits at the level of the lateral geniculate nucleus and 
travels toward the primary visual cortex. A single conscious representation is constructed 
from the four data flows, and this raises problems of synchronization that have been 
addressed in a large number of chonometric experiments. Thus, in the well-known 
Pulfrich phenomenon, an attenuating filter positioned in front of one eye creates a very 
slight delay in the processing of the visual streams from that eye. When a moving target is 
attended, the information provided by the left eye on the target’s current position is 
combined with the information provided by the right eye on the target's position slightly 
earlier. There is thus an apparent disparity that creates a stereoscopic depth effect. This 
phenomenon has been used as a tool to dissect in a refined way some temporal aspects of 
early visual processing (Read and Cummings, 2007).

Several chronometric problems arise when we try to understand how a 3d 
interpretation is constructed from the visual information sent by the two eyes, and in 
particular,  how long the brain needs to carry out the stereoscopic calculations. 
Experimentally, the protocols of cyclic alternating presentations are promising. The left  
and right images of a stereoscopic pair are sent in alternation to the left and the right eye, 
and the cycles are repeated until a 3d interpretation eventually emerges. In some studies 
(e.g., Ogle, 1963), the left and right components are separated by a void interval. In other 
studies (e.g., Efron, 1957; Engel, 1970), the durations of the left and right presentation 
phases are varied independently. All authors agree with the fact that stereopsis needs 
several cycles to develop whenever  an alternation protocol is used. Thus, stereopsis is not 
completed in one cycle. This suggests that partial computations may be accomplished 
during one cycle, and their result be somewhat kept in memory and used during the next 
cycle, at which further computations would be carried out. Typically, if we send 
stereoscopic images alternately to the two eyes, in a cyclic manner, stereopsis occurs at or 
above 1 Hz full-cycle frequencies for very simple stimuli. In this case the inputs to each 
eye may last 500 ms. With more complex stimuli, such as random-dot stereograms, higher 
alternation frequencies are required (Ludwig, Pieper and Lachnit, 2007).  
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The current explanation for stereopsis from temporally separated images is that (i) 
each stimulus leaves a trace during its presentation time plus a persistence time and that 
(ii) if the presentation plus persistence times of the two images presented in alternation 
overlap, stereoscopic calculations may be performed during this overlap period (e.g., 
Ogle, 1963; Engel, 1970).  Rychkova and I determined, for 20 stereoscopic pairs that 
involved various  types of computational difficulties (slant, curvature, camouflage, depth 
segregation, shape complexity, absence of shear disparities) the threshold alternation 
frequency at which stereopsis became possible. We thus established a hierarchy of the 
computational difficulties that could arise with various types of images. The threshold 
frequencies varied from 2.5 Hz, on average, for the simplest stimuli, composed of a few 
separate elements without slant or curvature, to 12.4 Hz for the most complex ones, 
random dot stereograms (Rychkova and Ninio, 2011). Difficult stereograms require high 
alternation frequencies. In this case, the left and right visual streams have short durations, 
but they have, apparently, a better opportunity to cooperate in the construction of the 3d 
representation. I am not aware of a quantitative or semi-quantitative model that would 
capture this phenomenology. Possibly, during the construction of the 3d percept, the loss 
of information due to natural decay of the stimuli traces is strongly dependent upon the 
nature of the stimulus. So, the more complex a stimulus, the more the decay must be 
compensated by refreshes of visual input.

    ------------------------------

   Insert Figure 16 about here

   -------------------------------

In order to obtain more detailed information on the temporal aspects of 
stereoscopic interpretation with various stimuli, we extended our previous work by 
intercalating either (i) variable void intervals between the monocular presentation times or  
(ii) variable binocular intervals .  In this way, a presentation cycle involved the 
presentation of one image to the left eye, then an interval in which both images were 
presented (or none), then the presentation of the other image to the right  eye, then again a 
binocular or void interval. The use of intercalated binocular intervals produced important,  
unexpected results. We found that increasing the binocular interval by a certain amount 
made it possible to increase the monocular intervals by a much larger amount, without 
disrupting 3d perception (Rychkova, Rabitchev and Ninio, 2010). This suggests that the 
information that is acquired during truly binocular presentations might be more reliable 
and less subject to decay than the information acquired during the persistence overlap 
period (Fig. 16). There is however a complication. Assume that a binocular interval is 
sufficiently long to allow by itself the  emergence of a 3d interpretation. It is then 
followed by  a monocular presentation to the left or the right eye. If the monocular 
interval is short enough, the 3d percept persists, as in the case of strictly alternating 
monocular inputs. On the other hand, If the monocular interval is too long, it becomes 
obvious to the brain that there is no longer evidence for binocular information, so the 3d 
interpretation collapses. This is observed for large enough monocular intervals, and the 
subject experiences a regime of “pulsating stereopsis”, an alternation between 3d and 2d 
interpretations, as shown by the crosses in Fig. 16. S. Rychkova and I speculate that there 
is also an intermediate range of binocular intervals in which the subject should experience 
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Reaction times in molecular and mental processes

pulsating stereopsis, yet reports stable stereopsis, suggesting that he/she is “blind” to the 
discontinuous character of 3d perception in this range. This would happen in the 
triangular domain above the dotted line in Fig. 16. 

In the case of these experiments, one may speak of “inverse” chronometry, as for 
the experiments described in Fig. 7. The presentation times are predetermined, and we 
determine the subject’s response as a function of the presentation times. What we hope, in 
the long term, is to derive a model of the time-course of the construction of a 3d 
interpretation by the brain. At present, there are too many parameters to feed the models, 
and not enough details in the experimental results. To elaborate such a model, we would 
like to have experimental results indicating how many alternating presentations are 
needed for the emergence of a 3d interpretation. 

11. Discussion

In molecular biology, there is an abundance of kinetic models such as those of Fig. 1, and 
even more complex ones, but the data describing the whole distribution of processing 
times, from enzyme substrate docking to product release cannot match the fine details of 
the models. Prior to the era of single molecule studies, the fast kinetic experiments were 
performed on large ensembles of molecules, there were problems of synchronization, and 
problems of heterogeneities in the time scales of the different steps in the reactions. With 
the  advent  of  optical  tweezers and FRET techniques,  it  became possible  to  study the 
details of molecular events on large macromolecules, for instance the progression of RNA 
polymerases on DNA molecules being transcribed (e.g., Eid et al., 2009, Fig. S1 of their 
Supporting  Material)  or  the  processing  of  transfer  RNA molecules  on  the  ribosome 
(Geggier et al. 2010). Still there are problems of multiplicity of conformational states at 
each stage, and multiplicity of reaction pathways (review in Zhuang, 2005). Furthermore, 
it is difficult to obtain data in the short time range (milliseconds) where they might best 
discriminate between models.                                                       

In several domains of visual  psychophysics in which I invested myself (visual 
illusions, stereo vision, visual memory) the general trend was to determine error levels, 
and pay little attention to reaction times, but there were exceptions, such as the famous 
studies of Sternberg,  1966 on “high-speed scanning in memory”  and of Shepard and 
Metzler, 1971 on “mental rotations”. In my own work, I focused initially on error levels, 
but measured reaction times routinely, as  supplementary information. Contrary to many 
colleagues who liked to perform experiments at high error-levels – as a matter of fact, 
under the conditions of “just noticeable differences”, I preferred to work under low error-
level conditions, in which the subject feels at ease with the tests. Typically, in the visual 
memory work, I try not to exceed the 15% error levels. It turns out that RTs provide more 
precise information than error levels.  Let us assume that in a certain type of test there are 
100 errors for 1000 measurements. This value of 100 is then determined with a ± 10 % 
uncertainty. Let us assume that the mean RT is one second, and the standard deviation is 
typically 0.3 sec. Then, the mean is reliable ±  0.3/(square root of 1000)  = 9.5 ms! 
 Having very large data sets (over 300,000 RTs in Ninio, 2004) it was tempting to 
look into RT distributions. At the beginning, I was satisfied with the fact that histograms 
from pooled data (Fig. 2 in Ninio, 2004, reproduced here in Fig. 12) were well-modeled 
with lognormal distributions. It was also clear that in easy situations (when a recognition 
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test followed immediately the presentation of an image) the RT distributions could be 
very sharp, and that they became progressively wider as the complexity of the task 
increased.

Most RT distributions in our visual memory studies, and also in other tasks 
relevant to neurophysiology  (for instance visuomotor tasks) share common features : 
there is a dissymmetrical bell-shaped curve that rises steeply after a lag, then declines 
slowly. Numerous models to predict such a shape, were shown to make a good fit to the 
experimental data, within the limited accuracy and caveats of psychophysical 
experiments, including the ex-Gaussian, the gamma, the lognormal, or the Weibull 
distributions (e.g., Matzke and Wagenmakers, 2009; Ulrich and Miller, 1993; McGill and 
Gibbon, 1965; Colonius, 1995). 

The kinetic modeling inspired by molecular biology invited itself naturally in a 
work with a limited ambition, carried out in collaboration with Jean-François Patri. We 
wondered how easy it would be to recognize a memorized image, when the test involved 
the “negatives” of the image and its distractor (i.e., the images after an inversion of the 
black and white values).  In a recognition test, the brain may recognize at once some 
memorized shapes, whether they are presented with their original or their inverted black 
and white values. In other cases, the brain may need to perform a “mental inversion of 
contrast” to recognize the memorized image. Therefore, there would be two recognition 
pathways, the direct one, and an indirect one involving mental inversion of contrast. There 
would be a wiring diagram such as that of the (e) model “with a branchpoint” of Fig. 1. 
We determined that under the conditions of our experiments, 25% of the decisions could 
follow the standard simple path, and 75% of the decisions could require an additional step 
of mental inversion of contrast (Patri and Ninio, 2009). 

The simplicity and reasonable character of this  result encouraged me to pay even 
more attention to RT distributions. In a study on symmetry perception, I compared the RT 
distributions for comparing images side by side to the RT distributions for comparing 
images related by a symmetry axis, more precisely, I compared RTs for symmetry 
violations to RTs for repetition violations. At the lowest studied complexities (3x3 
images), the RT distribution for symmetry violation was well modeled by an ex-Gaussian 
+ a shift. 

 The ex-Gaussian is well known and frequently found in mental chronometry 
studies. It is the result of the convolution of an exponential decay – the “one step” kinetic 
model of Fig. 1 – with a Gaussian that widens the RT distribution and replaces the vertical 
initial rise by a steep but smooth initial rise. Here, it applies well to the 3 RT distributions 
shown in Fig. 4 (top and bottom left) and 6 (top left). In 12 other cases, the RT 
distributions were wider and could be modeled with a “two-step” kinetic model + shift, 
convoluted with a Gaussian. Therefore, we had a natural extension of the ex-Gaussian 
distribution : the exponential decay that formed the kinetic core of this distribution was 
replaced by a slightly more complex kinetic core formed of two successive exponential 
decays. This review shows that many RT distributions in visual memory studies can be 
modeled with the combination of a kinetic core, a Gaussian widening factor, and a shift.

General models for RT distributions in mental processes have been proposed 
earlier, based upon theories on how decisions are taken, the most famous ones being the 
random walk models (e.g., Pike, 1973 ; Ratcliff, 1978) and the accumulator model 
(Vickers, 1970), and there are also models rooted on neurophysiological processes (e.g., 
Norwich and Wong, 1995 ; Medina, 2012). The failures and successes of a number of 
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models have been discussed in Luce's classical book (Luce, 1986) as well as in a number 
of more recent articles (e.g., Van Zandt et al., 2000; Miller and Ulrich, 2003; Ratcliff and 
Smith, 2004; Schmiedek et al., 2007). Medina (2012) made a connection between a class 
of psychophysical models, embodied in Piéron's law, and Michaelis kinetics in 
enzymology. According to Ratcliff and Smith, 2004 “Although none of the models we 
evaluate mimics another exactly, we show that some can mimic each other sufficiently to 
render them, for all practical purposes, empirically indistinguishable”. They also state, in 
the same article, that RTs on errors are generally lower than RTs on correct responses. 
Quoting earlier work, Van Zandt et al., (2000) state that in general, but not always, the 
RTs are smaller for the “same” than for the “different” responses. 

I used kinetic modeling because I had already an interactive computer graphics 
program suited for it (I used it to check enzymological results), but do not claim that it is 
more realistic than alternative models. On the other hand, I am struck by several facts. 
The data bases upon which other models were devised differ substantially from my data 
base on visual memory. In my case, the “same” judgments take more time, in general, 
than the “different“ judgments, and RTs on errors are larger than RTs on correct responses. 
These two differences are probably related to the fact that most publications on RT 
distributions deal with situations in which the subject responds to rather simple stimuli, 
but presented at near threshold detectability, whereas in my case, I deal with complex but 
highly visible stimuli. 

The fact that the predictions of one model may be mimicked by the predictions of 
another model is a general feature in scientific work. As Koenderink (2002) puts it very 
elegantly, “there exist many trivial tricks to make a theory fit the facts that are a little  
better than cosmetics”. So, is my kinetic modeling better than cosmetics?

 The kinetic modeling has at least the merit of being very flexible. With a starting 
state S, a resulting final state R and zero to three intermediates, I was able to model the 21 
histograms shown in this review. When a reversibility is introduced between two states, 
time is spent going back and forth between the two states, and this widens and flattens the 
RT distributions. (as in the side by side comparisons of  Fig. 4, right panels). When a 
branchpoint is introduced, we have a superimposition of two pathways, that may account 
for bimodality in the histograms (see for instance Fig. 6, bottom right panel  and Fig. 14. 
right panels). Nonetheless, there are also limitations in kinetic modeling. Here, all models 
in Fig. 1 have a unique starting point S. Introducing a branchpoint as in (e) or (f) of Fig. 1 
is not as radical as accepting the existence of two or several starting points. This situation 
arises in classical enzymology, when the starting preparation is a heterogeneous mixture 
of non-interconvertible enzymes. But what can the brain's analog of non-interconvertible 
states be?  

The core elementary step – the exponential decay – cannot be entirely correct, 
when one considers enzymatic steps that require large relative movements of the substrate 
and the enzyme. Diffusive steps should then be taken into account, and these are not 
reducible to finite successions of exponential decays. So, there is room for a refinement of 
the elementary step in the context of mental chronometric studies.  Here, we played with 
the “wiring diagram” of the core kinetic scheme. Other authors, dealing with complex 
situations, may use wiring diagrams similar to ours, but replace one or more kinetic steps 
by what they believe to be more pertinent modules (e.g., accumulators, random-walks, 
etc.).
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Are the kinetic models physiologically pertinent ? I have no reason to trust or not 
to trust exponential decays as basic modules in the neural network activities subtending 
perceptual decisions. I am struck by the fact that some RT distributions may be very sharp 
(for instance, the distribution for symmetry violations in 3x3 image comparisons). I am 
also  conscious of the fact that some experimental distributions owe their wideness to 
many sources of heterogeneity. Many subjects may have contributed to the data (here, this 
source of heterogeneity was limited by taking myself as unique subject in most reported 
experiments – however, my level of arousal could not be kept constant during the 
experiments). The stimuli can be extremely heterogeneous. Clearly, images with very 
fragmented shapes are more difficult to deal with than images that contain a few blocks of 
black or white shapes. An image  may be very fragmented in one version, and look very 
simple upon a black/white inversion. This aspect of shape perception deserves being 
investigated.  Also, in many cases, there is no positive recognition of the test image, and 
the decision is based upon a rejection of a distractor that looks clearly unfamiliar. There 
are also some (almost hidden) sources of heterogeneity. For instance, I have some 
systematic inequalities in RTs and errors-rates in recognition tests, depending on whether 
the distractor is on the left or on the right. Therefore, in my opinion, kinetic models 
cannot be taken too literally. They are mainly a way to explore the relationships within a 
series of experimental RT distributions, by putting the finger on hypothetical changes in 
the wiring diagrams.

In this work, reasonably smooth and detailed histograms required around 7,000 
data points. Roughly, two hours of testing in front of a monitor are needed to acquire 1000 
RTs in visual memory tests, so the data partially reported in Fig. 4 required > 100 hours of 
testing – and those in Ninio, 2004, about 600 hours of testing. This is a small amount of 
work, in relation to the enormous theoretical implications, and compared to the amount of 
work required in other domains (for instance, the years of tedious work by whole teams to 
establish crystallographic structures of proteins even in the 1980's). However, it seems 
that in the domain of psychophysics, the standard experiment makes use of about 40 hours 
of testing in front of a computer screen, and there is no tradition of high precision results.

Last, I am aware of the fact that a technological breakthrough may be the best 
complement or substitute to the modeling work. Eye movements studies are sorely needed 
in the side by side visual comparison work (but none of my colleagues in France having 
access  to   eye  movements  measurements  found  the  topic  interesting  enough  for  a 
collaboration). Brain imaging studies might help to detect intermediate states preceding 
the  final  responses,  thus  would  help  to  clarify  the  wiring  diagrams postulated  in  the 
kinetic models.
 

Appendix: kinetic modeling of RT distributions

The kinetic formalism (Fig. 1) is extremely classical, it has been expounded in numerous 
textbooks (e.g., Cornish-Bowden, 2012). Here, it is adapted with some modifications to 
the visual memory experiments. Following a first discussion, with appropriate references, 
in the appendix to Ninio (2011), I give here, more explicitly, the modeling algorithm I 
use . The time-course of a reaction, in a kinetic scheme involving N states is obtained by 
writing, for each state, the losses and the gains during an infinitesimal slice of time dt. For 
a given compound or state A, the losses are those represented by the arrows from state A 
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to its immediate neighbors, and the gains are those represented by the arrows to A from its 
immediate neighbors. For instance, in the case of scheme f of Fig. 1, involving 5 states, 
including the starting state S and the terminal state R, we write – the concentration of a 
compound being designated by the name of the compound within square brackets : 

       d[S]/dt = -k1 [S] + k-1 [I1]

       d[I1]/dt = k1 [S] - [k-1 + k2 + k3 ][I1] + k-2 [I2] + k-3 [I3]

       d[I2]/dt = k2 [I1] - (k-2 + k4 )[I2]

       d[I3/dt] = k3 [I1] - (k-3 + k5)[I3]

       d[R]/dt = k4 [I2] + k5 [I3]

First step : The evolutions of the concentrations of all the compounds are followed, 
in  my  simulations,  by  using  time  slices  dt  =  5  milliseconds  in  the  case  of  narrow 
histograms,  or  dt  =  10  milliseconds  in  the  case  of  wider  ones,  and  updating  all  the 
concentrations according to the above equations. Initially, [S] = 1, and all other states are 
set to 0. The process terminates when the terminal states are completely filled (here, there 
is a single terminal state R). So, we follow R1(t), the accumulation of R over time.

Second step : we add to each value R1(t) the chosen value for the lag, giving a 
function R2(t) = R1(t -lag), for t > lag, and 0 otherwise.

Third step : we convolute the function R2(t) with a Gaussian of unit surface, and 
of variance sigma square. In practice, we take a centered Gaussian G(T) of unit surface, 
defined as above in steps of 5 or 10 milliseconds, and move it along the abscissa axis to 
form the convolution product with R2(t) = integral over all values of T, of G(T)R2(t + T). 

Here,  there is  a single  terminal state  R. There is  no leakage,  while  in enzyme 
kinetics, the reaction may terminate with an abortion : so, the arrows with kinetic constant 
k-1 usually mean there « release of the substrate ». I also stress here that when the scheme 
starts with a reversible step (as in models c, d, and f of Fig. 1) the back-reaction with the 
associated  kinetic  constant  k-1  counts  as  a  terminal  dissociation  in  enzyme  kinetics, 
whereas it counts here as a recycling step, followed by a reinitiation. 

The fit between the experimental histograms and kinetic models is quite easy. I 
have written an interactive computer graphics program that can be fed with histograms 
and  any  general  kinetic  model.  The  values  of  the  kinetic  parameters,  the  gaussian 
widening and the shift can be changed interactively, until the predicted RT distribution 
matches the histogram. This program written in C++ and OpenGL computer graphics runs 
well on the Linux operating system, and can be sent upon request.
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Fig. legends

Fig. 1. Examples of simple reaction schemes used here, and in enzyme kinetics. (a) the 
exponential decay, the most elementary scheme. The transition between the starting and 
final states occurs with a constant probability per unit time. The more complex reaction 
schemes (b) to (f) are all composed of such elementary steps. After convolution with a 
Gaussian, we get an ex-Gaussian RT distribution, and after the inclusion of a lag, we 
obtain a nice fit with the most narrow experimental distributions shown in Figs. 4 and 5.
(b) scheme with two consecutive (irreversible) elementary steps. After inclusion of a lag 
and convolution with a Gaussian, we obtain a good fit with some of the experimental 
distributions shown in Figs 6, 12, 14, 15. (c) Classical Michaelis-Menten kinetics. Most 
experimental studies on enzyme kinetics are interpreted in terms of this scheme.  More 
precisely, one assumes that a substrate binds to the enzyme, to form an intermediate 
complex I. This complex may either lead to the formation of the product, with the 
attached kinetic constant k2, or dissociate abortively, with the kinetic constant k-1. The 
sticking time of the enzyme-substrate complex is the reciprocal of k -1, and the 
characteristic rate of transformation of the intermediate complex into the product is k 2. 
This scheme is all that is needed to establish an efficiency-accuracy tradeoff in enzyme-
substrate interactions. Here, the scheme is used to model the RT distributions in Fig. 4, 
central panels.  Introducing a reversible step widens the RT distribution, because it creates 
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many opportunities for back and forth motions between I ans S before the final transition 
to R. (d) A linear scheme with 4 compounds and 2 intermediate states that starts with two 
reversible steps. In this way, a still more important widening of the RT distributions is 
obtained. This scheme was used to model one of the RT distributions in Fig. 4. (e) A 
scheme with one branchpoint. This scheme was elaborated to model the results of the 
experiments in which, after memorizing an image, the subject is confronted with a 
recognition test in which the images are presented either in their normal contrast, or after 
an inversion between black and white (Fig. 13). So, there is a short pathway  S → I1 → R 
for the presentations with normal contrast, and a longer pathway involving a “mental flip” 
I1 → I3 for the presentation with contrast inversion. This scheme was used to model the 
RT distributions of Fig. 14, right panels. (f) A still more complex scheme, with a 
branchpoint and three reversible steps. The scheme was used to model an RT distribution 
in Fig. 4.

Fig. 2. Stimuli used in image comparison studies. All the stimuli are generated over 
slightly distorted square grids. Black or white values are assigned at random to the 
quadrangles delimited by the grid. In most experiments, the grid is not drawn explicitly, 
allowing the black or white quadrangles to associate into continuous shapes of a single 
color. Images can be perceived as formed of black shapes over a white background, or as 
white shapes over a black background. First row: the task was to move a cursor on the 
screen, driven with a mouse, to the position of the difference, when it was located. In the 
left, I show a 10x10 pair of stimuli with a grid, and on the right, I show a pair of stimuli 
with the same pattern of black or white elements, but without grid. In the presence of a 
grid, the reaction times were on average higher by 20%. For N ≤ 9, when the lattice was 
made irregular, performance did not deteriorate, up to a high level of irregularity. 
Furthermore the presence of uncorrelated distortions in the left and right images did not 
affect performance for N ≤ 6 (Brunel and Ninio, 1997). In the central and bottom rows, I 
show stimuli that were used in experiments that involved a different paradigm: the left 
and right images of a pair, were either identical, or differed at a single position. The task 
was to indicate, with a left or right mouse button press whether the images were judged to 
be identical or to differ at a single position. The subject was not asked to locate the 
position of the difference. Reaction times and reaction time distributions are shown in 
Figs. 3 and 4.

Fig. 3. Mean reaction times in comparing images side by side. As the complexity of the 
images increase, from 2x2 to 8x8, the decision  becomes comparatively longer when the 
images are the same. This is due to the fact that, in this case, the subject needs to perform 
a complete scanning of the two images before being convinced that there is no difference. 
With 2x2 images, the decision is  faster (by 112 msec.) for the “same” comparison. For an 
explanation. see the legend to Fig. 4. The experiment was performed by the author. In this 
study, the tests were separated by a 1.0 s blank interval. Each data point represents the 
average RT over > 7,000 measurements. Similar results involving  8 subjects are shown in 
Brunel and Ninio, 1997, Fig. 5 or 18 other subjects in Ninio, 2011, Fig. 2, top right panel. 

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325

1326

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

1346

1347

1348
1349
1350
1351
1352
1353
1354
1355
1356

1357

31



Fig.  4. Reaction time distributions in comparing 2x2, 4x4 or 6x6 images side by side. The 
mean reaction times are represented in Fig. 3. Each histogram represents at least 7,000 
results. The bin width is 25 ms, except in the histograms for 6x6 images, where it is 50 
ms. However, to harmonize the ordinate scales, each bin was treated as a pair of bins of 
25 ms width. The histograms for the total RTs (correct + incorrect responses) are shown in 
gray, and the histograms for the erroneous responses are shown in black. The continuous 
curves represent simulations with models involving a kinetic core from Fig. 1, plus a lag 
and a Gaussian widening factor. Lag values from  left to right, and top to bottom : 0.615 s, 
0.8 s, 0.904 s, 0.535 s, 0.746 s, 0.95 s. Gaussian sigma : 0.7 s, 1.15 s, 0.75 s, 0.7 s, 1.2 s, 
1.0 s. Kinetic cores : k1 = 6.64/s and 6.32/s for the 2x2 different and same images 
respectively, k1 = 3.06/s and 2.29/s for the 4x4 different and same images respectively, 
and k-1 = 5.26/s and 1.22, k2 = 15.5/s and 12.7/s. Kinetic core for the 6x6 different 
images : k1 = 2.0/s, k-1= 1.19/s, k2 = 7.14/s, k-2 = 12.2/s, k3 = 13.4/s. Kinetic core for the 
6x6 similar images : k1 = 2.0/s, k-1 = 0.70/s, k2 and k3 = 2.6/s, k-2 and k-3 = 10.0/s, k4 and k5 

= 10.0/s. The slightly more rapid responses for the same versus the different responses in 
the case of 2x2 images (112 ms, on average) can be related to two factors : (i) the fact that 
the ”same” answer is made with a key press on the left of the mouse, while the different 
response involves a key press on the right of the mouse. This factor may account for an 80 
ms difference in the lags. (ii) the k1 in the kinetic core is also faster in the case of similar 
images. This might be a cognitive effect.

Fig.  5. Stimuli for the detection of symmetry violations. Here, pairs of 3x3, 4x4 or 5x5 
symmetrical or nearly symmetrical images are juxtaposed along a vertical symmetry axis.  
The subject has to judge whether there is perfect symmetry or symmetry violation. The 
reaction times are significantly shorter and the RT distributions significantly narrower 
than in the case of repetition judgements (Ninio, 2011, and Fig. 6).

Fig.  6. The advantage of symmetry. (From Fig. 4 in Ninio, 2011). The experiments were 
performed by the author. 13,000 RTs were collected for the symmetry histograms, and 
16,000 RTs were collected for the repetition histograms. The RT distributions are very 
significantly narrower, and the average RTs smaller in the case of symmetry judgments. 
The values for the lags, the Gaussian widenings, and the kinetic parameters of the kinetic 
cores are given in Ninio, 2011. Note that the histograms for the 5x5 repetition 
experiments seem to be made up of two components. This is indeed the case, and is seen 
when one separates the “same” from the “different” responses, as done here in Fig. 4.

Fig. 7. Time to memorize images of increasing complexities. (From Ninio, 1998). Left 
panel : data from Binet (1894) showing the time, given in abscissa to memorize the 
number of digits given in ordinate. Unfilled circles, performances by the prodigy 
calculator Diamandi who memorized the digits visually ; triangles, performances by the 
prodigy calculator Inaudi who had acoustic memory ; squares, performances by a 
mnemonist, Mr Arnould who recoded the lists of digits as letter strings. The straight lines, 
in this log-log plot correspond to a trend in t0.58. Right panel : Memorizing images at long 
exposure times, given on a square-root scale. The experiments were performed by the 
author at an interval of 11 months. In the first experiment, the images were viewed for as 
long as seemed useful. The viewing time given in abscissa is the average for a series of 
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100 images of size 6x6 (black disks), 7x7 (unfilled circles), 8x8 (triangles), 10x10 (black 
square) or 12x12 (unfilled squares). There were 1400 images and 82 errors in all. The 
second experiment (unfilled diamonds) was performed after 11 months of intensive 
practice. Image sizes ranged from 6x6 to 12x12 and the viewing time was constant within 
each block of 100 images. In this experiment, 2400 images were viewed, and 590 errors 
were recorded. For both panels, the  postulated 4 to 7 chunks limit of human short term 
memory is reflected by the rather small deviation close to the origin, with respect to the 
power law. 

Fig.  8. Number of memorized bits on 8x8 images as a function of presentation times. 
(Data taken from Ninio, 1998). Here, the short presentation time domain (as compared to 
the range in Fig. 6) is explored. Left panel : results of two independent experiments. The 
first one involved 15 subjects, single images, and viewing times from 1 to 5 s (unfilled 
circles). The second experiment involved 14 subjects, and either single images (black 
disks) or two consecutive images tested in the same order (squares).  Right panel : 
experiment performed by the author under similar conditions. The remarkable feature in 
the left panel is the absence of a noticeable increase in memorization, from 2 to 8 seconds 
presentation. In the right panel, the effect of training is not an improvement of purely 
visual memory, but an enhanced ability to detect pertinent patterns in the image (for  
instance, are there blocks of a same color, and do they touch each other?)  

Fig.  9. The random testing protocol. Three images numbered 1, 2, 3 are presented 
successively for a constant duration, then followed by three recognition tests in any of the 
six possible orders. From Ninio, 2004, and here, Section 6 and Fig. 10.

Fig. 10. Dissociations between error-rates and RT patterns in memorizing three images, 
and testing them in random order. (Data taken from Ninio, 2004). Left panel: error-rate 
patterns. Results for a given image, tested at a given testing stage (indicated in abscissa) 
but belonging to different permutations (for instance, image 2 in testing permutations 123 
and 321) were pooled. The horizontal segments indicate the total number of errors 
recorded for the image that labels the segment, at the given testing stage. The presentation 
times ranged from 1.65 to 1.9 sec, and the image sizes were, depending on the subject 6x5 
or 5x5. The error-rate on the third image is very low when it is tested first. It increases at 
testing stages 2 and 3. On the other hand, the error-rates on the first and second images 
seem to be equal, and independent of the testing stage. It is conceivable that there are only 
4 levels of storage accuracy detected in these experiments. Right panel : The reaction 
times for image i tested at rank t > 1 are split, in this representation, according to the 
image j tested at rank t-1. The horizontal bars indicate the values of the RTs, and the labels 
connected obliquely to the bars indicate the couple ji, j being in smaller type. The 
standard deviations indicated by the icon apply to t > 1. The RTs for image 3 at stage 1 is 
0.508 s.  The RTs were normalized in such a way that the average RT, in an experimental 
block of 90 images, excluding the “last in first out” cases, would be equal to one second.

Fig. 11. Model for visual working memory. (From Ninio, 2004). This minimal structure 
with seven slots A-G plus the STVM slot is proposed to account for the patterns of 
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reaction times inequalities observed in the 3 and 4 images experiments. After residing in 
STVM, the memory traces would move to A, then move upwards along the midline ACF 
and fill the rows by moving sideways. During recognition tests, the traces would move, if 
space permits, downwards from the EFG to the BCD row. One or two more rows would 
be required to account for the 5 images results. In this model, there are slots providing 
good quality of storage, located near the entrance (at the bottom), and slots providing less 
detailed storage, located at the back (on the top). An item, after being stored in STVM 
moves upwards to a lower quality store, then sideways to leave the passage free for the 
next memorized items. Now, and this is a crucial hypothesis, the item may also move 
downwards, if space permits, in which case, there is no further loss of information. So an 
item may migrate from slot to slot, following a complex path, loosing information when 
going upwards, and maintaining the information constant when going sideways or 
downwards.

Fig. 12. The decision curves. The two histograms represent data on RT distributions for 
recognition tests when 4 images are memorized then tested in random order (Fig. 2 in 
Ninio, 2004). The question addressed in Ninio, 2007 is that of the relation between the 
histograms for errors (in black) and the histograms for total RTs (in gray). The RTs were 
normalized in such a way that the average RT, in an experimental block of 90 images, 
excluding the “last in first out” cases, would be equal to one second. The left histogram 
was constructed from 35996 RT’s and 3745 errors, the right histogram was constructed 
from 69390 RT’s and 8892 errors. In the right panel, the error-rates are represented as a 
function of the progress in the histograms, for instance : first the time slice encompassing 
0 to 6% of the total responses, then the time slice encompassing the 6% to 12% of the 
total RTs, then the time slice encompassing the 12% to 18% of the total RTs, etc.  As 
expected, the response uncertainty, as measured by the error-level, increases when 
reaction times increase. On the other hand, even at the largest reaction times (the last time 
slice, up to 100% progression) the error-rate is clearly inferior to 50%, implying that there 
is still some valuable retrievable information in memory.

Fig. 13. Normal or inverted polarity of contrast? In this protocol, after memorizing an 
image, the subject is asked to identify it, either among a pair comprising this image and a 
distractor (second row) or a similar pair, but in which the black and white values were 
inverted (third row).

Fig. 14. Recognizing an image after an inversion of the polarity of contrast. Each 
histogram represents 7,500 to 7,600 RTs. As expected, the RTs  are larger for the tests 
made in the inverted contrast mode. In this case, the models involve, logically, a 
branchpoint, expressing the choice made by the brain between looking at the images 
normally, or making a mental inversion between black and white. The parameters of the 
models, from left to right, and top to bottom were : lag; 0.56 s, 0.66 s, 0.63 s, 0.81 ; 
Gaussian sigma: 0.4 s, 1.05 s, 0.4 s, 1.3 s ; kinetic cores :  k1 = 3.1/s, 4.3/s, 2.2/s, 2.5/s ; 
k2 : 22.6/s, 11.5/s, 11.6/s, 6.1/s and additionally, for the inverted contrast histograms, k3 = 
2.29/s, 1.0/s, k4 and k5, 16.0/s in both cases.
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Fig. 15. Recognizing an image, in the absence or the presence of a distractor. After 
memorizing a 4x4 image, a test is made, either in the standard way (in the presence of a 
distractor) or with a single image, which can be the correct one (left histogram) or the 
incorrect one (central histogram). The parameters of the models, from left to right are : lag 
= 0.54 s, 0.59 s, 0.56 s ; Gaussian sigma : 0.5 s, 0.7 s, 0.4 s. Kinetic cores : k1 = 3.8/s, 4.0/
s, 3.0/s ; k2 = 35.1/s, 27.5/s, 20.5/s.

Fig. 16. Stereo vision, with alternating presentations to the two eyes : A phase diagram.  A 
complete presentation cycle involves the ”monocular” presentation of the left image of a 
stereo pair to the left eye, for a duration indicated in ordinate, then a void interval or a 
”binocular” presentation of the two images, for a duration indicated in abscissa, then the 
monocular presentation of the right image to the right eye, then again a void or binocular 
presentation interval. Selecting a fixed, particular void or binocular interval, shown in 
abscissa, one determines the longest monocular duration that allows the occurrence of a 
correct 3d perception, shown in ordinate. An essential result of this study is that the 
intercalation of a  moderate binocular interval between the left and right monocular  
presentation intervals (Phase 2) allows a much larger increase of their durations. At large 
binocular intervals (Phase 4), there is a first transition from stable stereopsis to pulsating 
stereopsis (lower curve) and a second transition from pulsating stereopsis to no stereopsis 
at all (upper curve). In Phase 3, the first transition is not observed experimentally, it is 
conjectured to occur in hidden form, as represented by the triangular blue domain. In this 
domain, the subjects actually report a single transition, from stable stereopsis to no 
stereopsis (upper curve).   The continuity between the Phase 3 and Phase 4 upper curves 
suggests that stereopsis also has an interrupted character in the blue domain but the 
subjects are not conscious of the situation.  The dashed segment is speculative, it makes 
the interpretations more coherent.
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