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1. OVERVIEW

Most of what I have to say on geometrical visual illusions is now in a review 
article [1] or in books [2,3]. This chapter of the web site is a biographical account of 
my itinerary in the field. My position in this field is very strange, to say the least. It is a 
domain to which I devoted intense thinking in 1975-1976, and in which I performed 
rather systematic psychophysical work, from 1995 to 2004, a great deal of which is 
still in my drawers. I also designed original stimuli showing counter-intuitive effects 
(for instance, a diamond looking too small compared to a square  – see Fig. 3 in the 
Illustration supplement and [2]). I kicked off a well-known illusion (the so-called 
flattening of short arcs), showing that it is definitely not an illusion (Appendix A in [4] 
or Figures 9a-9c in [1]), I announced a paradoxical result which should have 
interested neuro-philosophers: two trapeziums, one above the other can never be 
made perceptually equal (when the wide bases look equal, the small bases don’t, 
etc.[ 1, 2, 3]). Technically, I  made a number of strong statements, based upon 
psychophysical work, about which  types of deformations account best for the 
illusions: For instance, the Zöllner illusion, considered with all its variants, is best 
described in terms of an expansion at right angles to the oblique segments [5, 6], 
while the Poggendorff and related illusions are best described by misangulation 
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biases [7]. The Müller-Lyer illusion, and a large number of illusions which are not 
usually found in its company are best described with a “convexity rule” (for the 
layman, take it provisionally as a law of contrast: “small looks smaller, large looks 
larger”) [1, 4], which is quite different from the often invoked assimilation effect. I also 
established a number of other points, which are detailed below. All this has been 
largely unnoticed. Perhaps I failed to make my findings intelligible to my colleagues, 
and perhaps putting it all together in this web chapter will make my work more 
obvious. 

It is through visual illusions that I started to work thoroughly on visual 
perception. In 1975, I was a full-time molecular biologist having developed a 
quantitative understanding of how errors could arise in molecular processes [8, 9]. I 
contemplated the possibility of extending such analyses to other domains. I bought 
two books which played an important role: The Intelligent Eye by Richard Gregory 
[10], that shaped my way of thinking about perception and The Psychology of Visual 
illusion by J.O. Robinson [11], that presented the geometrical illusions in an 
exhaustive manner, and provided a critical account of all the scientific literature on 
the subject. It seemed to me, reading the two books, that so far, geometrical visual 
illusions had not been treated in a geometrically insightful way.

Some very elementary geometric truths may be counter-intuitive. A good 
example is the fact that if you take planar sections of a circular cone, you get a circle, 
an ellipse, a parabola or a hyperbola depending upon the orientation of the plane 
with respect  to the axis of the cone. Therefore, any of these curves can be thought 
of as the projection of any other of these curves, and this knowledge has practical 
value, for it allows a geometer to predict some properties of hyperbolas, knowing 
proven properties of ellipses.  

This is not to say that an ellipse or a hyperbola should be perceptually 
equivalent. However, it may be the case that  some strange aspects of 2d shape 
perception, as revealed by geometric visual illusions are just “legal” but counter-
intuitive outcomes of the internal rules used by the brain for performing geometry. I 
spent several months scrutinizing the geometrical illusions in J.O. Robinson’s book, 
trying to extract their gist. In Robinson's book, the illusions were grouped into 
chapters. This amounted to a formal classification of the illusions. What if some 
illusions had been misplaced? I considered that a good “objective” classification of 
the illusions was crucial. The analogy I had in mind was Darwin’s theory of evolution, 
that was greatly facilitated by Linnaeus’ systematic classification work. We learnt 
from Linnaeus that the most obvious characters are not necessarily the most relevant 
ones to understand the relatedness between living organisms. Some  hidden subtle 
characters may turn out to be far more relevant. Thus, a dolphin is much closer to 
land mammals than to fishes, and a bird is closer to a penguin or even a snake than 
to a flying insect. A very common attribution error  in geometric illusions is related to 
the horizontal-vertical illusion, often illustrated with a letter T, having two segments of 
equal lengths, the horizontal one looking shorter than the vertical one. Here, most of 
the illusory effect comes from the fact that the horizontal segment is split in two due 
to its intersection with the vertical segment (bisection illusion – I have some 
psychophysical data showing this).

The more I was looking at illusions, the more they reduced to simple 
inequalities, such as “if there are two segments a and b in a figure with a larger than 
b, then the a/b ratio is perceptually increased”. Psychologists would call this a law of 
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contrast enhancement. Curiously, I had to invoke a law of this kind mostly in the 
situations that were previously explained in terms of assimilation, which is nearly the 
opposite principle. I derived a few principles, that were “pulling in different directions”, 
yet could work together, and could be embodied into a coherent framework. This 
theoretical work was ultimately published in 1979 [4]. There were a number of quite 
good insights in this work, that led me to fruitful developments later, and there were a 
few attribution errors, now corrected in [1].

One published result attracted my attention. Bela Julesz had shown that most 
geometrical illusions are maintained when they are presented as random-dot 
stereograms, the Zöllner illusion being the only notable exception [12]. Seymour 
Papert had shown earlier that the Müller-Lyer illusion was maintained in camouflaged 
stereograms [13].Thus, it seemed, stereoscopic vision provided an objective way to 
classify the illusions into two groups. A first group containing most illusions would 
occur late in visual processing, after the stage in which the streams from the two 
eyes are usually  combined to provide stereoscopic interpretation. The shape giving 
rise to the geometric illusion does not exist prior to this stage, since it is, by design, 
monocularly undetectable. Contradistinctively the Zöllner illusion is destroyed when 
camouflaged in the form of random-dot stereograms. So, it seemed, it arises rather 
early in visual processing, before the stage at which the streams from the two eyes 
are normally combined. (I proved much later that this reasoning was based upon an 
incorrect hidden assumption - [14]). In any event it seemed to me at that time that 
stereoscopic vision provided a criterion for an objective classification of geometric 
illusions, and I thus started to think about the geometric problems of stereoscopic 
vision (see the web chapter on stereo vision).

After moving to Ecole Normale Supérieure, I started doing some 
psychophysical measurements on geometrical illusions. I knew Robinson’s book 
almost by heart, and followed whatever was published in Gregory’s  scientific journal 
“Perception”,  but was quite ignorant of what was published elsewhere on the topic. 
My first work was on Poggendorff illusion. I attempted to measure the effect on 
several variants at several orientations, not knowing that Weintraub had already done 
an excellent job [15]. I found that the misalignment effect was essentially that which 
could be observed in the absence of the parallels. Fortunately, I did not publish this 
result, it was an artefact: I had used rather long collinear segments, and in this case 
they are minimally deviated  when they intersect the parallels of the Poggendorff 
figure, so what remains is the “pure misalignment” Zehender illusion, that is observed 
in the absence of parallels [16]. 

A few years later, I  happened to have frequent discussions with Kevin 
O’Regan, and we decided to do some psychophysical work on the Zöllner illusion. 
We constructed several rather unusual variants (people could have described them 
as “new” illusions) , and studied the strength of the illusion at eight different 
orientations. We concluded, rather firmly [5] that (i) the illusion occurred at the level 
of a single stack of oblique segments  (ii) the distortion was not an apparent rotation 
of the stack, but could be a shear, or an expansion at right angles to the obliques (iii) 
that the way the segments ended was not of primary importance. 

At that time, both Kevin and I were also working on memory, but 
independently. Kevin published his seminal paper on change blindness [17]. I was 
involved in precise determinations of the capacity of visual memory [18, 19]. We 
found nevertheless the time to pursue the work on geometrical illusions. This time we 
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performed extensive work on the Poggendorff illusion and several of its variants, 
including the corner-Poggendorff variant [20]. We did not invent any new pattern, but 
performed rather systematic measurements, that allowed us to separate the 
measured illusory effect into two components [7]: a minor one, the pure misalignment 
illusion, and a major one, that was clearly a misangulation effect (contrary to my 
theory in [4]). We could also make sense of why the illusion was weak in some 
patterns (the corner-Poggendorff), and rather strong in others (a Weintraub variant in 
which a segment is not collinear with another segment, but with a dot).

Kevin then started taking responsibilities as director of the Laboratoire de 
Psychologie Expérimentale, and I continued the work alone. (Why, within the French 
context, I could not have students working with me is another story). I designed and 
carried out to the end several series of psychophysical measurements, along the 
same lines as the Poggendorff work:  many related stimuli, studied at 8 or 16 
different orientations, 10 subjects, each subject going through a whole series ten 
times. I thus obtained results on the horizontal-vertical illusions, the square-diamond 
illusions, the trapezium illusions, the Müller-Lyer illusions. I also studied hybrids 
between Poggendorff and Zöllner.  I did not attempt yet to publish the results (but see 
the “unpublished results” section at the end of this chapter). However, I made some 
salient conclusions leak in various places.

In 2002, I attended the 25th ECVP in Glasgow, organized by Pascal 
Mamassian. I became acquainted there with Baingio Pinna, with whom I immediately 
sympathized. He showed me a collection of perhaps 50 or 100 of his yet unpublished 
illusory patterns, and I went through them one by one, trying to form an opinion on 
what could be reduced to previously known effects, and what  was really puzzling. 
Among the geometrical effects, I was struck by two drawings. One was a marvellous 
variant of the Müller-Lyer illusion, that flatly contradicted all published theories of the 
illusion, except mine: the illusion of the diagonal (Fig. 14-17 in [21] also shown in [1], 
Figure 6a). Another one represented squares, that, in the neighbourhood of oblique 
segments, appeared as trapeziums. I also had, among my unpublished patterns, a 
distorted square illusion. In both cases,  two families of inducing segments or 
inducing lines at nearly orthogonal orientations were simultaneously present, and 
seemed to have additive rather than subtractive effects. We put our distorted square 
patterns in common, and discussed them in the context of the tilt illusions. Looking at 
the whole set, plus some additional variants, designed on this occasion, we proposed 
that there was a common theme to most of these illusions, namely “orthogonal 
expansion” – a tendency for sets of  parallel or nearly parallel lines to expand at a 
right angle to the lines [6]. So, having eliminated in a first work the “rotation” 
description of the Zöllner illusion, I eliminated the “shear” description of the illusion in 
subsequent work, and am now convinced that “orthogonal expansion” is the key to 
these illusions.

In April or May 2007, I listened to a seminar given by Pierre Pica at the 
Laboratoire de Psychologie Expérimentale in Paris. Pierre Pica is a linguist who has 
been spending several months every year with an Indian tribe of Amazonia, the 
Mundurucus. He made many puzzling observations about the structure of their 
language, their counting habits [22], their fascination for symmetry, their spatial 
sense, their understanding of geometry [23]. I designed for him a battery of visual 
tests, which he embarked in his subsequent expedition in the land of the Mundurucus 
(dec. 2007 - July 2008). The tests were designed in such a way as to make sense for 
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the Mundurucus, at least to the best of Pierre Pica’s knowledge. For instance, there 
were tests on the geometrical illusions, that I embodied as tests on the appreciation 
of symmetry with respect to an axis, of the two figures to be compared. It seems that 
the subjects took pleasure in performing these tests. Their responses to the tests 
were in most cases (Zöllner, Poggendorff, trapezium, Müller-Lyer, Helmholtz) very 
similar to those in our contemporary occidental culture. There were however two 
differences. One difference related to the Delboeuf illusions with circles. The two 
stimuli were presented on the two sides of a symmetry axis, and the subjects were 
not sensitive to the traditional effect. This was expected, by analogy with previous 
observations on Titchener's circles in a Himba population [24]. It seems that the 
critical cultural issue is whether the subjects focus on the two parts of the stimuli as a 
single entity, or separate entities. Another result was quite unexpected: The 
Mundurucus were not subject to the square/diamond illusion. Again, the square and 
the diamond were presented on the two sides of a symmetry axis, a feature that 
normally reduces the illusion by one half [25]. This, perhaps can be related to their 
widespread use of diamond motifs on their body ornaments. I hope that Pierre Pica 
will write one day about these experiments. Although the raw data are preserved, the 
notebooks in which Pierre Pica was recording the circumstances of the tests were 
lost, so it would be hard to publish the results in a regular scientific journal. Later, my 
co-worker in stereo vision, Svetlana Rychkova e.g., [26], became interested in testing 
geometrical illusions on people with normal or impaired vision. She used  slightly 
modified variants of the programs I had written for Pierre Pica, and  her work is in 
progress [27].

Another encounter turned out to be quite important. Being an assiduous 
reader of the journal “Perception” I had noticed two very innovative illusions by 
Vicario, the sloping step, and the rarefaction illusions: [28, 29], see also da Pos and 
Zambianchi, 1996 [30] and Vicario [31] for a collection of rarely discussed illusions. A 
very rewarding correspondence was initiated between Vicario and I. I learnt many 
effects from him, thanks to his unique, encyclopaedic knowledge of geometric 
illusions and their history.

So, what is my theory of geometrical illusions, people will ask? Actually, my 
main work is not centred on why there are illusions, its main focus is an attempt to 
determine what is the nature of the distortion in the illusion. Typically, what is the 
correct way to describe the Zöllner illusion: Is it a rotation of the stacks, a relative 
sliding of the parallel segments (shear distorsion), an increased separation between 
the segments (orthogonal expansion)? Once the nature of the distortion is correctly 
described, one can then try to find a rationale for the distortions. The explanation 
may be purely mechanistic, such as: inhibition between neurons having receptive 
fields tuned to similar orientations. I do not have the ambition to defend a particular 
neuronal model. It is enough to know that, in principle, there is at least one neuronal 
model that may account for the observations. Whatever it is, there is then hope that a 
more appropriate one will be found later. The explanation may also be a teleological 
one: there is some purpose for the observed effects. Here, my general idea is that 
the brain constructs some representation of shapes in which it incorporates 
geometrical relationships derived from visual processing, and it has to satisfy a 
number of constraints. The main problem, I propose, which is at the origin of 
geometrical illusions is the conflict between  sizes or orientations, as may be derived 
when observing a scene with a fixed eye (which then obey the laws of linear 
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perspective) and the sizes and orientations which can be acquired as the eyes move 
and explore a scene, in which case apparent (angular) sizes dominate (which then 
follow the laws of curvilinear perspective). How this may lead to Müller-Lyer, and so 
many other effects is a bit technical, but should become clear at the end. Here also, I 
am satisfied with the fact that there is at least one plausible teleological theory for at 
least one large class of illusions. 

2. THEORETICAL WORK ON GEOMETRICAL ILLUSIONS [1, 4]

2.1 The convexity principle
In 1975, I spent months and months scrutinizing the illusions in Robinson’s 

book [11], trying to extract the basic geometrical rules behind these. The book often 
showed several variants of  each illusion, and this protected me from expeditous 
erroneous generalizations. For instance, people who encounter the Müller-Lyer 
illusion for the first time are seized with amazement, then they say “of course, this 
illusion is due to the arrows”. It was very clear, from the examples in Robinson’s 
book, that the arrows in the Müller-Lyer pattern may be replaced by squares, circles, 
or by almost any shape without damage to the illusory effect. 

My main working assumption was that the brain was constructing a 
representation of a scene, in the same spirit with which a geometer constructs a 
geographical map: Measurements are taken from one landmark to another, with 
more or less reliable instruments, according to well-defined procedures, then the 
measurements are combined according to well-defined rules. The resulting 
representation may appear distorted but the distortions are not necessarily due to 
carelessness. These are due to fundamental constraints. In the case of geographical 
maps, there is the constraint of representing a portion of spherical surface on a 
planar one. I considered that the brain also had to construct a kind of map, combining 
distance and orientation measurements taken with its neuronal instruments. One of 
the instruments would provide measurements that were biased in a systematic way, 
the brain would combine the measurements and apply corrective factors. In the end, 
a rather satisfactory representation would be constructed, except in a few cases.

I focused first on extent illusions and found several geometrical themes, which 
turned out to be related. Imagine that the measure of an extent x is a function m(x). 
Many illusions can be accounted for by a rule of contrast: There are two segments of 
lengths a and b, with b larger than a, and the figure is perceptually distorted in such a 
way that the contrast between b and a is increased, which can be spelled out as:
             m(b) / m(a)  is larger than  b / a if  b is larger then a        (1)

An  assimilation effect would be just the opposite, m(b) / m(a) would be closer 
to one than b / a.
   If you add the obvious property that m(0) = 0 (the measure of a null extent is 
zero), then relation (1) is true for any convex function m(x) going through the origin – 
a function which instead of being linear, rises with a curvature of constant sign (See 
Fig. 1 in the illustration supplement, Figure 5a in [1] or Figure 7 in [4]). 

This rule of contrast, or “convexity” applies in an obvious way to patterns such 
as the “contrast illusion” with arcs shown in Fig. 2 of the illustration supplement, 
which is not a  “best-selling” illusions.  As an application of the principle, I designed 
the original pattern with four circles in Fig. 9 of the illustration supplement. Many 
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more illusions, discussed in [4] seem to support the convexity principle.
The convexity principle also applies to an apparently unrelated illusion, the 

bisection illusion (Fig. 12 in the illustration supplement). Here, you can admire the 
power of mathematics, because if Eq. (1) is true and m(0) = 0, then:
              m(a+b) > m(a) + m(b)             (2)
And in particular, m(2a) > 2m(a)  (2a).

Actually, there are two sides to the bisection illusion. The known part of it is 
that the subdivided segment looks smaller than the undivided one. The hidden part of 
the illusion is that, paradoxically,  an isolated half segment looks smaller than half the 
subdivided segment (Fig. 12 in the illustration supplement and Figure 5b in [1]). 
According to my analysis, the real illusion, expressed by Eq. (2a) is the fact that a full 
undivided segment looks more than twice as long as an isolated half. However, this 
is not perceived as an illusion. See again Fig. 12.

I have surreptitiously used here a subsidiary principle – a principle of 
compromise: If  measurements are in conflict, then a compromise is made. The 
Müller-Lyer illusion can be analysed in terms of convexity + compromise principles 
(See Fig. 6 - 8 in the illustration supplement). 

Here is a metaphor for the convexity principle, published in [1]: 
Assume that you are on the sea front, and you wish to represent the layout of  

a number of floating targets. Your only instrument is a chronometer. You measure  
the time it takes to swim from one target to the other. When two targets are close,  
one can swim rapidly from one to the other. When the targets are distant, one swims  
less rapidly, and the swimming speed diminishes as the targets become more and  
more distant. Thus, the measured time to connect two targets grows more than  
proportionately with the distance between targets. This time, provided by the  
chronometer, overestimates large distances with respect to small ones. In  
psychological language, it increases the contrast between large and small. In  
mathematical language, the measure is a convex one. The relationship between an  
extent x and its measured value m(x) can be represented by a parabola, or any curve  
starting at the origin, and rising with a curvature of constant positive sign. 

Recently, Baingio Pinna produced the “illusion of the diagonal”, which I think is 
an excellent illustration of the convexity principle (See Fig. 4 in the illustration 
supplement, and Figure 6 in [1]). By adding an arrowhead to the diagonal, one 
obtains a “reversed Müller-Lyer” effect – a figure in which a shaft with an ingoing finn 
appears larger than expected. The convexity principle accounts in one stroke for the 
standard Müller-Lyer and the reverse Pinna variant, as it explained in one stroke the 
standard and the reverse bisection illusion.  Kennedy, Orbach and Löffler [32] 
recently produced an illusion with triangles (See Fig. 11 in the illustration suplement 
and Figure 5g in [1]) which they christened “isocele/scalene triangle illusion”.  In 
these figures, I explain with a geometrical construction how this effect can be 
deduced from the convexity principle. The “gravity lens illusion” by Naito and Cole 
[33] also seems to me to be predictable by the convexity principle (Fig. 7 in the 
illustration supplement and Figure 5j in [1]).

In order to illustrate the convexity principle, I designed a paradoxical figure 
with squares and diamonds, showing that the convexity effect is stronger than the 
square-diamond illusion. It is reproduced here in Fig. 3 of the illustration supplement. 
A simplified version is shown in Fig. 5 of the supplement. The effect is related to 
Pinna's diagonal illusion (see [1]).
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So, the convexity principle seems to be at work in many apparently unrelated 
illusory patterns. It allows one to construct patterns that seem to contradict well-
known effects, including the bisection illusion, the square-diamond illusion, or the 
Müller-Lyer illusion.

In my early work [4], I used the convexity principle to explain the Poggendorff 
illusion, but I am now convinced that the explanation was incorrect (see section on 
Poggendorff below).

While a large number of illusions were described in terms of a convexity rule, a 
number of other illusions seemed to go in the opposite direction, and these required 
two subsidiary principles: A principle about the effect of subdividing a figure, and a 
principle about the space occupied by the figure. Both acted as corrective terms to 
the convexity principle. I shall examine the two subsidiary principles in turn. 

2.2 The subdivision rule.
If we follow the logic of the convexity principle, and partition a figure in 2, 3, 4 

or more parts, the higher the number of subdivisions, the more it should appear 
contracted. Actually the effect is clearly observed only for n = 2 (bisection illusion). 
Starting with n = 4 we have clearly the opposite trend, an expansion of subdivided 
figure, as observed for instance in Helmholtz squares illusions. So, I introduced a 
“subdivision principle” according to which there is an expansion effect on subdivided 
figures, the magnitude of the effect depending upon the number of subdivisions. 
Combining the convexity with the subdivision principle is mathematically possible. 
One can get both an overall contraction effect for n = 2 and an overall expansion 
effect for n > 3, as I showed in [4]. I was recently led to re-examine this principle, in 
the light of the Zöllner and other tilt illusions [6], as will be explained later. See also 
Fig. 14 in the illustration supplement or Figure 7 in [1].

2.3 The space occupation rule.
A number of geometric illusions(including Titchener’s circles and the Ponzo 

illusion) clearly could not be accounted for by a combination of the convexity and the 
subdivision principles. I needed to add a “space-occupation” rule according to which 
a size normalization factor is applied to all figures. The large ones are perceptually 
reduced, and the small ones are perceptually enlarged. In this way, illusions that are 
classically explained by a contrast effect are reinterpreted in terms of an almost 
opposite principle. Fershad Nemati [34] was aware of that, and proposed a principle 
of expansion when there was empty space around a figure.

Here, my ideas have evolved considerably. For recent, precise formulations, 
see [1].

3. UNPUBLISHED WORK
I have several unpublished results on orientation profiles (Figures 16-23 in the 

illustration supplement). 
In one study, I compared the Zöllner illusion with or without explicit axes along 

the stacks. The measured effect is larger in the case of explicit axes (Figure 16 of the 
illustration supplement). 17 subjects took part in the experiment, and each data point 
represents the average over 170 measurements. In all other studies, reported below, 
there were 10 subjects, and 10 measurements per subject for each data point.
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In another study, I determined orientation profiles in variants of the square-
diamond illusion (Figures 17-19 of the illustration supplement). The square-diamond 
illusion is usually presented with one apex of the diamond pointing towards the 
square. I found that when the figures were displayed more symmetrically the illusion 
was significantly reduced. Furthermore, it is surpassed, for all subjects, by an illusion 
that goes in the opposite direction, in which the diagonal of a small diamond is 
underestimated with respect to the side of a larger square. The results were 
presented in a talk at ECVP 2011 (Toulouse), and reported in the corresponding 
abstract [25].

I also determined orientation profiles for variants of the trapezium illusion 
(Figures 20-22 of the illustration supplement). The trapezium illusion was maximal 
when the bases of the trapeziums were horizontal, and minimal when they were 
vertical. The oblique sides, but not the bases, were essential to the illusion, 
suggesting the existence of a common component between the trapezium and the 
Zöllner illusion. The study is made somewhat difficult by the fact that figures with 
trapeziums often lead to interpretations in perspective that perturb the comparison of 
trapeziums as flat figures. One philosophically important side-result of the study is 
that two trapeziums in the standard configuration can never be altered in such a way 
as to be seen equal! When you try to equalize (by a nulling procedure) the two large 
bases and the orientations of the two sides, the small bases look unequal, and when 
you try equalize the two small bases and the orientations of the sides, then the two 
large bases look unequal! It is thus impossible to draw two trapeziums, one above 
the other, so that they would look identical! The results were presented in a talk at 
ECVP 2011 (Toulouse), and reported in the corresponding abstract [25].

The most important result, in my opinion, is that obtained on hybrid Zoellner-
Poggendorff patterns (Figure 23 of the illustration supplement). It clearly rules out the 
“shear” hypothesis for Zöllner, and it is clearly favourable to the “orthogonal 
expansion” interpretation. 

My experiments on orientation profiles with Müller-Lyer patterns were 
frustrating. I studied stimuli containing Müller-Lyer patterns and visually related 
stimuli, including the receding arrow illusion (Figure 3h in [1]), and Judd's bisected 
arrow illusion (Figure 1c in [1]). Unfortunately, my orientation profile experiments 
failed to show a relationship between the Müller-Lyer, the Judd and the receding 
arrow illusions. The results with Müller-Lyer patterns were erratic. They were strongly 
subject-dependent, there was no simplifying symmetry when the patterns were 
turned upside down, etc. My provisional, not too satisfactory, explanation is that a 
subject may compare the lengths of the segments between the fins according to 
various criteria, (for instance, forming a virtual rectangle with a pair of segments, 
looking at orientations,  etc.) and the criterion he/she chooses depends upon the 
orientation of the stimulus. 

4. ABSTRACTS OF PUBLISHED WORK.
An algorithm that generates a large number of geometric visual illusions.
Ninio, J. (1979) Journal of Theoretical Biology 167-201.
ABSTRACT
An algorithm is described which, starting with any geometrical figure, constructs a  
representation in which the deviations from the model coincide with the known  
perceptual distortions. First, the algorithm specifies a measurement process: drawing  
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a straight line across the figure and measuring the encountered segments, assigning  
to every segment of length x its measure m(x). Next, the measures taken along a line  
D are corrected with a normalizing factor N(D) which is a function of the measures  
made on this line. Finally, a representation of the analysed figure is constructed,  
using for every segment its normalised length n(x)=m(x).N(D), instead of its actual  
length.
  It is first established that within this general framework, a large number of illusions  
can be immediately predicted by specifying a property of the measure or of the norm.  
Only four properties are required to justify most illusions. They are (1) and (2) m(x)  
and n(x) must be convex functions (3) the norm must increase with the number of  
segments measured on a line (4) the norm must decrease when the average  
segment on a line increases in length. It is then shown that the four requirements,  
conflicting as they may be in some circumstances, can nevertheless be condensed  
into one single expression of n(x). This simple formula predicts a large number of  
widely different illusions (Delboeuf, Titchener, Ponzo, trapeze, Müller-Lyer, flattening  
of short arcs, etc). It permits to predict new illusions and new effects in old illusions,  
but fails to predict the Zöllner illusion, and the reversal of the Müller-Lyer illusion  
when the outgoing finns are becoming very large.
--------
The half - Zöllner illusion
Ninio, J. and O’Regan, J.K. (1996)  Perception 25, 77-94.
ABSTRACT
The Zöllner figure contains stacks of short parallel segments oriented obliquely to the  
direction of the stack. Adjacent parallel stacks of opposite polarity seem to diverge  
where their top segments form an arrowhead. To probe whether or not the opposite  
polarities are necessary to the illusion, three ‘half-Zöllner’ configurations were  
designed, containing stacks of a single polarity. The ‘orientation profile’ of these  
configurations was studied, that is, the way the strength of the perceived illusion  
varies with the orientation of the stacks. The subjects had to align two stacks or align  
stacks with target segments situated at a slight distance from them. All three half-
Zöllner configurations produced errors that could be assimilated to global-orientation  
misjudgments. These errors were of opposite sign for the two types of stacks and  
varied with the orientation of the stacks as in the standard Zöllner illusion. 
  A further study was conducted in which the effects of several configurational  
parameters was explored for a single observer. The standard Zöllner illusion  
increases with the separation of the stacks. The illusion is also increased when the  
orientations of the segments in different stacks are orthogonal, independently of the  
particular longitudinal orientations of the stacks. 
  When the ends of the short segments are curved so that at their endpoints they  
become precisely perpendicular to the axes of the stacks, the standard and half-
Zöllner illusions are reduced, but not abolished. Therefore, they cannot be entirely  
accounted for by a mechanism of alignment of illusory contours generated at these  
endpoints.
  The results are consistent with the existence of a single common mechanism at  
work in both the standard and the half-Zöllner illusion. It is suggested that the illusion  
itself is not a rotation of the stacks but either a shear deformation in which the  
segments of the stack slide with respect to one another, or an expansion of the  
stacks orthogonally to the segments.
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----------
Characterization of the misalignment and misangulation components in the 
Poggendorff and corner-Poggendorff illusions.
Ninio, J. and O’Regan, J. K. (1999) Perception 28, 949-964.
ABSTRACT 
In the Poggendorff illusion, two colinear segments abutting obliquely on an  
intervening  configuration (often consisting of two long parallel lines) appear  
misaligned. We report here the results of a component analysis of the illusion and  
several of its variants, including in particular the "corner Poggendorff" illusion, and  
variants with a single arm. Using a nulling method, we determined an "orientation  
profile" of each configuration, that is, how the illusions varied as the configuration  
was rotated in the plane of the display.  We were able to characterize a pure  
misalignment component  (having peaks and dips around the ±22.5 degree and  
±67.5 degree orientations of the arms) and a pure misangulation  component of  
constant sign, having peaks at the ±45 orientations of the arms. Both these  
components were present in both the classic and the corner Poggendorff  
configurations. Thus, the misangulation component appears clearly in the classic  
Poggendorff illusion, once the misalignment component is partitioned out. Similarly,  
the corner Poggendorff configuration, which essentially estimates a misangulation  
component, contains a misalignment component which becomes apparent once the  
misangulation is nulled. While our analysis accounts for much of  the variability in the  
shapes of the profiles, additional assumptions must be made to explain the relatively  
small misangulation measured in the corner-Poggendorff configuration (1.5 degrees,  
on average, at peak value), and the relatively large illusion measured in the  
configurations with a single arm (above 6 degrees, on average, at peak values). We  
invoke the notion that  parallelism and colinearity detectors provide counteracting  
cues, the first class reducing misangulation in the corner-Poggendorff configuration,  
and the second class reducing the illusion in the Poggendorff configurations with two  
arms. 
-----------
Orthogonal expansion: a neglected factor in tilt illusions. 
Ninio, J. and Pinna, B. (2006) Psychologia 49, 23-37.
ABSTRACT
A broad collection of illusions belonging to the Zöllner and the Poggendorff families,  
including new variants - in particular, tilted and tilting squares - are examined in the  
light of two possible formal principles : a principle of regression to right angles (RRA)  
and a principle of "orthogonal expansion", which is a perceptual expansion of the  
extent perpendicularly to the inducing lines. The domains of validity of the two  
principles are compared. We propose that RRA is more pertinent when the target line  
is explicitely present and makes real intersections with the inducing lines. Orthogonal  
expansion can produce RRA as a side-effect. It would be more pertinent when there  
are several parallel or nearly parallel inducing lines, and it does not require the  
presence of a real target. Both principles may be grounded on neurophysiological  
mechanisms. Orientation detectors would influence each other in the orientation  
domain, generating RRA and accounting for the illusions of the Poggendorff family.  
They would also influence each other in the extent domain, generating orthogonal  
expansion, and accounting for the illusions of the Zöllner family. 
-----------
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Orientation profiles of the trapezium and the square-diamond geometrical 
illusions. Ninio, J. (2011) Perception 40 supplement, 45
ABSTRACT of talk presented at ECVP Toulouse, 2011
In previous work, “orientation profiles” (describing how the strength of an illusion  
varies with its orientation in the plane) were determined for several variants of the  
Zöllner and the Poggendorff illusions (e.g., Ninio and O'Regan, 1999, Perception, 
28(8), 949-964).  The study is extended here to two other classical illusions. Illusion  
strengths were determined for 10 subjects at 16 orientations on 4 variants of the  
trapezium illusion and 8 variants of the square-diamond illusion. The trapezium  
illusion was maximal when the bases of the trapeziums were horizontal, and minimal  
when they were vertical. The oblique sides, but not the bases, were essential to the  
illusion, suggesting the existence of a common component between the trapezium  
and the Zöllner illusion. The square-diamond illusion is usually presented with one  
apex of the diamond pointing towards the square. I found that when the figures were  
displayed more symmetrically, the illusion was reduced by one half. Furthermore, it is  
surpassed, for all subjects, by an illusion that goes in the opposite direction, in which  
the diagonal of a small diamond is underestimated with respect to the side of a larger  
square.
---------------
Geometrical illusions are not always where you think they are: a review of 
some classical and less clasical illusions, and ways to describe them. 
Ninio, J. (2014) Frontiers in Human Neurosciences volume 8, article 856, 21 
pages.
Geometrical illusions are known through a small core of classical illusions that were  
discovered in the second half of the 19th century. Most experimental studies and  
most theoretical discussions revolve around this core of illusions, as though all other  
illusions were obvious variants of these. Yet, many illusions, mostly described by  
German authors at the same time or at the beginning of the 20th century have been  
forgotten and are awaiting their rehabilitation. Recently, several new illusions were  
discovered, mainly by Italian authors, and they do not seem to take place into any  
current classification. 

Among the principles that are invoked to explain the illusions, there are  
principles relating to the metric aspects (contrast, assimilation, shrinkage, expansion,  
attraction of parallels) principles relating to orientations (regression to right angles,  
orthogonal expansion) or, more recently, to gestalt effects. 

Here, metric effects are discussed within a measurement framework, in which  
the geometric illusions are the outcome of a measurement process. There would be  
a main “convexity” bias in the measures: the measured value m(x) of an extant x  
would grow more than proportionally with x. This convexity principle, completed by a  
principle of compromise for conflicting measures can replace, for a large number of  
patterns, both the assimilation and the contrast effects. 

We know from evolutionary theory that the most pertinent classification criteria  
may not be the most salient ones (e.g., a dolphin is not a fish). In order to obtain an  
objective classification of illusions, I initiated with Kevin O’Regan systematic work on  
“orientation profiles” (describing how the strength of an illusion varies with its  
orientation in the plane). We showed first that the Zöllner illusion already exists at the  
level of single stacks, and that it does not amount to a rotation of the stacks. Later  
work suggested that it is best described by an ‘orthogonal expansion’ — an  
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expansion of the stacks applied orthogonally to the oblique segments of the stacks,  
generating an apparent rotation effect. We showed that the Poggendorff illusion was  
mainly a misangulation effect. We explained the hierarchy of  the illusion magnitudes  
found among variants of the Poggendorff illusion by the existence of control devices  
that counteract the loss of parallelism or the loss of collinearity produced by the  
biased measurements.  I then studied the trapezium illusion. The oblique sides, but  
not the bases, were essential to the trapezium illusion, suggesting the existence of a  
common component between the trapezium and the Zöllner illusion. Unexpectedly,  
the trapeziums sometimes appeared as twisted surfaces in 3d. It also appeared  
impossible, using a nulling procedure, to make all corresponding sides of two  
trapeziums simultaneously equal. The square-diamond illusion is usually presented  
with one apex of the diamond pointing towards the square. I found that when the  
figures were displayed more symmetrically, the illusion was significantly reduced.  
Furthermore, it is surpassed, for all subjects, by an illusion that goes in the opposite  
direction, in which the diagonal of a small diamond is underestimated with respect to  
the side of a larger square. In general, the experimental work generated many  
unexpected results. Each illusory stimulus was compared to a number of control  
variants, and often, I measured larger distortions in a variant than in the standard  
stimulus.

In the Discussion, I will stress what I think are the main ordering principle in  
the metric and the orientation domains for illusory patterns. The convexity bias  
principle and the orthogonal expansion principles help to establish unsuspected links  
between apparently unrelated stimuli, and reduce their apparently extreme  
heterogeneity. However, a number of illusions (e.g., those of the twisted cord family,  
or the Poggendorff illusions) remain unpredicted by the above principles. Finally, I  
will develop the idea that the brain is constructing several representations, and the  
one that is commonly used for the purpose of shape perception generates distortions  
inasmuch as it must satisfy a number of conflicting constraints, such as the constraint  
of producing a stable shape despite the changing perspectives produced by eye  
movements. 
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Convexity rules:
m(a+b) > m(a) + m(b)
if b > a then m(b)/m(a) > b/a

Fig. 1. Convexity effects. The measure of x
y = m(x) in ordinate, increases more than
linearly with x. Taking two values of x, a
and b such that b > a, the existence of a
convex relationship between m(x) and x
implies that m(b)/m(a) > b/a.

It also implies that m(a+b) > m(b) + m(a).

Fig. 2. Illusions explained by m(b)/m(a) > b/a
Consider the endpoints of the intermediate arcs,
or the endpoints of the small zigzags in the Lipps
figures. According to the explanatory diagram an
endpoint M is perceptually displaced towards the
nearest neighbouring line.

Lipps 1897

b a

A M B

Explanatory diagram

Oyama 1960

Lipps 1897



The square-diamond illusion

Ninio "The science of illusions"
1998-2004

Fig. 3. The side of the big square, bottom right
is equal to the diagonal of the central square
yet it appears larger, in agreement with the
convexity rule m(b)/m(a) > b/a when b>a. The
opposite would have been predicted, on the
basis of the square-diamond illusion (top).

Ninio, Aalen talk 2009

Schumann (1900) 

Fig. 5. Further variations on the theme of sides and diagonals.

Titchener (1901) 

Fig. 4. Pinna’s diagonal illusion (2003) Again, an illustration

 of the convexity rule. When the diagonals are free to expand,

they are perceptually enlarged with respect to the sides.



Fig. 6. Muller-Lyer illusion. According to the
convexity principle, the "real" illusion is
in the perceptual enlargement of x with respect
to y: m(x)/m(y) > x/y. By construction, a = b
but a looks larger than b as a side-effect of
consistency, which works in the direction of
"assimilation".

a

x

b

y

Fig. 7. The gravity lens illusion, by Naito and
Cole, 1994. The 4 small squares form the
the apexes of a parallelogram. It seems to
be a variation on the theme of the Muller-
Lyer illusion: equal segments shink or expand
according to the proximity of smaller or
larger neighbouring segments.

Fig. 8. More variations on the Muller-Lyer theme

a

b

a = b (Wundt)

a

b

a = b

a

b

a = b = c = d

c

d



b a

a b

Explanatory diagram

Ninio, 1979

Fig. 9. Attraction to the borders effect.
The rectangles in the explanatory diagram
represent two adjoining circles. The
perceptual displacements to the left or
to the right are predicted by a convexity
rule, m(b)/m(a) > b/a, if measurements
are made with respect to virtual borders.



Fig. 10. Illusions with triangles.
There are two prototypical cases,
shown on the right.
in both examples b > a
therefore m(b)/m(a) > b/a
then x2 is perceived as < x1
in the first case
and x2 is perceived as < x3
in the second case.
Sander’s parallelogram (below)
can be explained by a triangle
illusion of the first type.
(Follow the sequence A, B, C, D.)
All grey segments are equal.

A
B

D
C

First case (x1 = x2)

Second case (x2 = x3)

x1
x2

a ab b x3 x3

b

The 1st illusion is more

salient when the compared

segments are not parallel
x2



Kennedy, Orbach & Loffler, 2008
The left angle appears larger
than the right one.

A

B

M
N

Explanation of the K-O-L illusion.
If the short side is made shorter
and the long side made longer
M should be replaced by N, and
the angle ANB is smaller than AMB
(classical geometry).

Laska 1890
The sides of the obtuse
angle appear larger
than those of the acute angle.

Simplified pattern, Aalen 2009 talk
The 3 horizontal segments are equal

A B C D E
AB = BC = CD = DE

Dr Fee, 1888, in "The science of illusions"

Fig. 11. Further illusions
with triangles.



cc

Standard bisection illusion.
b = 2c but the divided segment
appears smaller than the undivided one.

b

a

"inverse" bisection illusion
a = c but a appears smaller than c

cc

a

"Real" bisection illusion
b = 2a, but m(b)/m(a) > 2

b

The central subdivided square appears larger
than the square on the right, and each of its
4 components squares appear smaller than the
square on the left (Aalen 2009 talk).

Ninio, "The science of illusions"
(modified)

Fig. 12. Bisection effects. According to the
convexity principle there is a single "real"
 bisection illusion. It is produced by the
perceptual enlargement of the undivided
segment b with respect to a: m(b)/m(a) > b/a.
The standard and the "inverted" variants
would have the status of pedagogical displays.



Baldwin, 1895

Fig. 13. Space occupation rule.
According to this rule, a normalizing factor
is applied to whole figures. The large ones
are perceptually reduced, and the small ones
are perceptually enlarged.
Thus, in the left part of the Ebbinghaus pattern
(top left) ALL the circles would be reduced, and
and in the right part, ALL the circles would be
enlarged. The effect is expected to work in all
directions. It seems that the illusion works in
the bottom right pattern with circles, in which
all the circles have the same size. Furthermore,
it goes against the classical explanation by a
contrast effect.



standard expansion effect
in subdivided figures

"Regression to right angles" effects

Fig. 14. Orthogonal expansion.
Many classes of illusions can be
described by a principle of
expansion at right angles to a
set of parallel or nearly
parallel lines.

Orthogonal expansion
and the Zoellner
illusion

Five patterns from Ninio & Pinna, 2006

"half-Zoellner
illusion, Ninio
& O’Regan, 1996



Figure 15 :  Some illusions that I do not understand

Shepard’s tables

Angularity illusion
Pinna, 1991 Gerbino

Tolanski Botti illusion, 1909
Day and Stecher’s
pattern, 1991

Sloping steps illusion
Vicario, 1978

Rarefaction illusion
Vicario

Displacement illusion
Morinaga, 1954

Bressanelli and
Massironi, 2006



Figure 16 : Orientation profiles in the Zoellner illusion
 with or without axes  (with 5 bars per stack)

17 subjects / weighted average / 170 measures per data point

stack orientation in pi radians
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Figure 17 : Orientation profiles in the square-diamond
illusions , with or without symmetry
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Figure 18 : 
Orientation profiles in the square-diamond illusions

square versus diamond within a larger square
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Figure 19 : 
Orientation profiles in the square-diamond illusions
diagonal of small square versus side of larger square
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Figure 20 : 
Orientation profiles in the trapezium illusions

1-apparent inequality of the large bases
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Figure 21 :
Orientation profiles in the trapezium illusions

2--apparent inequality of sides or heights
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Figure 22 :
Orientation profiles in the trapezium illusions

3-a study of the configuration without sides

equalize small bases

equalize large bases

equalize heights
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Figure 23 Hybrid Zoellner-Poggendorff patterns :
After subtraction of the Zehender component
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