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The immune system is a complex system of cells and molecules that can provide us with a basic
defense against pathogenic organisms. Like the nervous system, the immune system performs pattern
recognition tasks, learns, and retains a memory of the antigens that it has fought. The immune system
contains more than 107 different clones of cells that communicate via cell-cell contact and the
secretion of molecules. Performing complex tasks such as learning and memory involves cooperation
among large numbers of components of the immune system and hence there is interest in using
methods and concepts from statistical physics. Furthermore, the immune response develops in time
and the description of its time evolution is an interesting problem in dynamical systems. In this paper,
the authors provide a brief introduction to the biology of the immune system and discuss a number of
immunological problems in which the use of physical concepts and mathematical methods has
increased our understanding. [S0034-6861(97)00404-2]
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I. INTRODUCTION

A. The physicist’s approach: Generic properties

The immune system is our primary defense against
pathogenic organisms and cells that have become malig-
nantly transformed. The last decade has seen an explo-
sion in detailed experimental findings about the cells,
molecules, and genes that make up the immune system.
Although our knowledge is far from complete, as the
Human Genome Project progresses we shall almost cer-
tainly uncover the remaining genes and molecules that
influence the behavior of single lymphocytes. After the
genes are sequenced, what will remain is the task of un-
derstanding in a quantitative way how the cells of the
immune system behave and how they interact with each
other to generate the coordinated activity seen during
an immune response.

One goal of modeling in immunology, which we shall
focus on here, is to deduce macroscopic properties of
the system from the properties and interactions among
the elementary components. This goal is similar to the
purposes of statistical mechanics. The interactions
among the components of the immune system are ex-
tremely intricate and they are not fully understood. Fur-
ther, in contrast to the field of neurophysiology, immu-
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nology has not described the behavior of single cells
quantitatively. There are no equivalents in immunology
of the Hodgkin-Huxley (1952) equations, which describe
how a nerve impulse travels down an axon (see Cronin,
1987). Yet the ‘‘macroscopic behavior’’ of the immune
system, as probed in a specific experiment, can be well
characterized. The problem then arises of selecting a
simple representation for the elementary interactions
that would give rise to the organized behavior observed
in the immune system. The adventure of statistical phys-
ics is full of equivalent endeavors, starting from the de-
scription of thermal properties of gases and solids based,
respectively, on the assumption of independent particles
composing a perfect gas and the coupling of harmonic
oscillators, to the more recent description of neural nets.
This kind of approach is especially suited to theoretical
immunology because of our ignorance about the de-
tailed mechanisms responsible for the observed behav-
iors of the immune system. To be more specific, we shall
look for generic properties among models of the im-
mune system. As in the case of phase transitions in
condensed-matter physics, we are interested in semi-
quantitative laws, such as scaling laws, which depend
only on the general features of the model, and not on its
details.

In Sec. II, we shall describe the theory of clonal selec-
tion and provide quantitative estimates of how the abil-
ity of the immune system to recognize foreign cells and
molecules scales with the size of the system. We shall
show, with parameters estimated for the mammalian im-
mune system, that an immune system needs at least 105

different elements to function. The basic elements of the
immune system are a class of white blood cells known as
lymphocytes. The size of an organism determines the
maximum number of its lymphocytes. Thus mice have of
the order of 108 lymphocytes, while humans have of the
order of 1012. Thus system sizes are large but not as
large as Avogadro’s number.

Cells are already macroscopic systems far from equi-
librium from the point of view of thermodynamics, and
there is little hope of starting from a simple Hamiltonian
as is often done in statistical mechanics. But basically,
the simple system of differential equations described in
Sec. IV plays the role of the dynamics of an Ising Hamil-
tonian with respect to diluted magnetic systems or of the
discrete time logistic equation for chaos and turbulence.
Although it represents a strong simplification of the in-
teractions present in the system, it is expected to belong
to the same class of universality as a ‘‘true’’ model of the
immune system and to exhibit the same generic proper-
ties. In the case of a dynamic system, the generic prop-
erties concern the attractors of the dynamics. Some of
the questions that we shall address are: Are the attrac-
tors limit points, limit cycles, or chaotic? What is their
number? What are their basins of attraction? How do
these properties relate to the parameters of the differen-
tial system? How can one force transitions among the
different dynamical regimes? If our hypotheses about
the universality of a model are true, the generic proper-
ties, qualitative classification of the attractors, and scal-

ing laws should be evident in the phenomenology of the
mammalian immune system.

Besides issues of dynamics, we shall address questions
of a probabilistic nature. For example, in Sec. II, we ask
how well the immune system performs the task of dis-
tinguishing self components from foreign or nonself
components. We also address a design question: in order
to perform efficient self-nonself discrimination, how
large a region on a molecule should the immune system
examine? If the immune system looks at very small re-
gions, say one or two amino acids, then with a rather
limited set of receptors all foreign molecules could be
recognized. However, since self molecules are made
from the same building blocks, such a recognition sys-
tem would also recognize all self molecules. If the im-
mune system looks at a very large region of molecules,
then a receptor may need to be so specific that it might
be able to recognize only one particular molecule, and
with finite resources many foreign molecules may escape
detection.

Section III begins our foray into dynamics. We first
discuss models based on the physical chemistry of
receptor-ligand interactions, which underlie the ability
of lymphocytes to detect antigen. We then abstract from
the chemistry more phenomenological laws that govern
the growth and differentiation (or maturation) of lym-
phocytes into cells with specialized functions, such as
plasma cells that secrete antibody at very high rates. We
also look at a phenomenon, known as affinity matura-
tion, by which the immune system can improve the av-
erage equilibrium binding constant of antibody for anti-
gen.

The immune system is more than a collection of inde-
pendently operating lymphocytes. While many chemical
signals are involved in setting up communication be-
tween these cells, here we focus on one class of models,
called idiotypic network models, in which signals are
propagated via specific interactions between cell surface
receptors and antibody molecules. Thus a lymphocyte
that detects a foreign antigen can begin secreting anti-
body A1 , which is a molecule that has a very specific
structure and that can bind the antigen. Molecules A1
are proteins, and their novel or ‘‘idiosyncratic’’ parts
may be detected by other lymphocytes in the immune
system. These ‘‘second-level lymphocytes’’ may respond
to seeing A1 by secreting a complementary or ‘‘anti-
idiotypic’’ antibody A2 . Some molecules in class A2 may
resemble the antigen and hence help encode memory of
the encounter, while others may be distinct and excite a
third level of response. Section IV deals with different
approaches to modeling idiotypic networks and under-
standing their dynamics.

Quantitative information that can be used to evaluate
differential equation models is often lacking in immu-
nology. Given this state of affairs, it is frequently desir-
able to formulate models in which the variables have a
limited number of states, e.g., 1 and 0, cells are activated
or not. Automata models of this type are summarized in
Sec. V.
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We conclude, in Sec. VI, with a general discussion of
modeling in immunology.

The field of theoretical immunology has been growing
rapidly and we have not attempted to review all the
work that has been done. This article is primarily a per-
sonal perspective centered on our own contributions to
the field with briefer descriptions and references given
to the work of others. In immunology, as in other fields,
certain approaches dominate thinking. In the 1970s and
1980s explaining immunological phenomena in terms of
idiotypic networks was extremely popular. Current
thinking has shifted, and detailed molecular explana-
tions now dominate the experimental literature. Model-
ing the biochemical intricacies involved in the interac-
tions between the cells of the immune system has not
kept pace with the rapid rate of discovery of new mol-
ecules and genes involved in immune regulation. Thus
this review focuses more on the network viewpoint, in
which concepts from physics have helped make ad-
vances, and less on the newly evolving molecular view-
point. Previous reviews of ours, which deal with both
network and non-network aspects of immunology, in-
clude Bell, Perelson, and Pimbley (1978), Perelson
(1988, 1989b, 1990, 1992), Perelson and Kauffman
(1991), Perelson and Weisbuch (1992b), and De Boer
et al. (1993a). Other reviews include those of Bruni et al.
(1979), DeLisi and Hiernaux (1982), Marchuk (1983),
Atlan and Cohen (1985), Hoffman, Levy, and Nepom
(1986), and Přikrylová, Jı́lek, and Waniewski (1992).

B. Basic facts of immunology

The immune system is a complex system of cells and
molecules distributed throughout our bodies that pro-
vides us with a basic defense against bacteria, viruses,
fungi, and other pathogenic agents (referred to as for-
eign antigens). Analogies have been drawn between the
immune system and the nervous system. Like the ner-
vous system, the immune system performs pattern rec-
ognition tasks, learns, and retains a memory of the anti-
gens that it has fought. The nervous system is commonly
decomposed into sensory and motor parts. An analo-
gous separation into recognition and ‘‘effector’’ func-
tions is made in immunology.

The human immune system is controlled by the action
of tens or possibly hundreds of types of regulatory and
effector molecules. All the molecules that are important
in the immune response have not yet been identified,
but they include various cell surface receptors and
soluble molecules such as interleukins that can transmit
signals between cells. A variety of cell types compose
the immune system, the most important being a class of
white blood cells known as lymphocytes. These cells are
created in the bone marrow, along with all of the other
blood cells, and are transported throughout the body via
the blood stream. They can leave the blood through cap-
illaries, explore tissues for foreign molecules or cells (an-
tigens), and then return to the blood through the lymph,
the fluid bathing the cells of the body. Lymphocytes

spend considerable time resident in lymphoid organs,
such as the bone marrow, the thymus, the spleen, and
lymph nodes.

Lymphocytes are subdivided into two major classes: B
cells and T cells. B lymphocytes secrete antibodies, one
of the major protective molecules in our bodies. T cells
function mainly by interacting with other cells and have
been subdivided into helper T cells and cytotoxic T cells.
Helper T cells, which generally express a cell surface
marker called CD4, act through the secretion of lym-
phokines that promote the growth and differentiation of
B cells into an antibody-secreting state. Helper T cells
are the cells that are predominantly infected by the hu-
man immunodeficiency virus, and their depletion plays a
major role in AIDS. Cytotoxic T cells, which generally
express a cell surface marker called CD8 (and a related
cell, the NK or natural killer cell), are responsible for
killing virally infected cells and cells that appear abnor-
mal, such as some tumor cells. Models of the kinetics of
T-cell and NK-cell killing have been developed by a
number of workers including Chu (1978), Merrill (1982),
Perelson and Bell (1982), Macken and Perelson (1984;
1985b), Perelson and Macken (1984), Perelson, Macken,
et al. (1984), and Merrill and Sathananthan (1986). Such
models may have relevance to interaction of the im-
mune system with growing tumors (see Kuznetsov et al.,
1994). Sometimes T cells can suppress immune re-
sponses, and in some literature the term suppressor T
cell is used. The existence of antigen-specific T suppres-
sor cells has been questioned (Möller, 1988; Schwartz,
1989), and such cells and models that incorporate them
will not be dealt with here.

The interaction of HIV, the virus that causes AIDS,
with T cells is of great current interest. Here we shall not
discuss AIDS and only remark that models for the inter-
action of HIV with T cells have been developed by
Hraba and Dolezal (1989, 1994), Merrill (1989), Perel-
son (1989c, 1994), Hraba, Dolezal, and Celikovsky
(1990), McLean and Kirkwood (1990), Nowak and May
(1991, 1992, 1993), Nelson and Perelson (1992, 1995),
Perelson, Kirschner, and De Boer (1993), Dolezal and
Hraba (1994), Essunger and Perelson (1994), and Kir-
schner and Perelson (1995). Other papers related to
modeling HIV infection and the immune system include
those of Nowak, May, and Anderson (1990), Nowak and
McLean (1991), Nowak et al. (1991), McLean and
Nowak (1992), Nowak (1992), McLean (1992), De Boer
and Boerlijst (1994), Frost and McLean (1994a, 1994b),
Ho et al. (1995), Wei et al. (1995), and Perelson et al.
(1996). Modeling in this area is occurring at a rapid
pace. This list of references is not complete, but should
provide an entry into the literature.

From the point of view of pattern recognition in the
immune system, the most important feature of both B
cells and T cells is that they have receptor molecules on
their surfaces that can recognize antigen. In the case of
B cells, the receptor is an immunoglobulin (antibody)
molecule (Fig. 1) embedded in the membrane of the cell,
while in the case of T cells the receptor is simply called
the T-cell receptor (TCR). Recognition in the immune

1221A. S. Perelson and G. Weisbuch: Immunology for physicists

Rev. Mod. Phys., Vol. 69, No. 4, October 1997



system occurs at the molecular level and is based on the
complementarity in shape between the binding site of
the receptor and a portion of the antigen called an
epitope (see Fig. 2). The interaction between the recep-

tor and the epitope is noncovalent and usually involves
van der Waals forces, interactions among charged
groups, and hydrogen bonds. These weak interactions
are nevertheless strong enough to keep the macromol-
ecules bound when the area of interaction is sufficiently
large. Typical areas of interaction are 600 Å2 (Amit
et al., 1986; Ajitkumar et al., 1988).

B and T cell receptors see different features of an
antigen. The B-cell receptor interacts with epitopes
present on intact antigen molecules. Antigen molecules
may be soluble or bound to a surface. The T-cell recep-
tor interacts only with cell surface molecules. T cells se-
crete molecules that can kill other cells or promote their
growth. Thus it is clearly important for a T cell to
‘‘know’’ that it is interacting with another cell rather
than with a soluble molecule. One way of solving this
identification process is to have the T cell recognize a
cell surface molecule. Once it was thought that T cells
used two receptors, one to recognize a cell surface mol-
ecule called a major histocompatibility complex (MHC)
molecule and another receptor to recognize antigen. It
turns out that the T-cell receptor plays the role of both
of these receptors and recognizes antigen bound to an
MHC molecule (Fig. 3).

There are two major classes of MHC molecules, called
MHC class I and MHC class II. Class-I molecules are
found on every cell, while class-II molecules are found
only on a subset of cells called antigen-presenting cells.
CD8+ T cells, which generally are killer cells, interact
with MHC class I. Since any cell can become virally in-
fected it makes some sense that cytotoxic T cells see
antigen bound to MHC class-I molecules. CD4+ T cells,
which are generally helper cells, interact with antigen
bound to MHC II molecules.

The cells that express MHC class II, predominantly B
cells, macrophages, and dendritic cells, are called
antigen-presenting cells. Antigen-presenting cells take

FIG. 1. Diagrammatic structure of a surface immunoglobulin
(antibody) molecule. The molecule is composed of four
polypeptide chains, two identical light chains, and two identical
heavy chains. Each chain has a variable region (VH and VL)
and a constant region (CH and CL). The VH and VL regions
combine to form the two antigen binding sites on this mol-
ecule. When the molecule is on the surface of a cell, the CH

region is embedded in the cell membrane. The molecule can
be enzymatically cleaved into fragments; the arms of the
Y-shaped molecule, each containing one binding site, are
known as Fab fragments; the tail of the Y-shaped molecule is
known as the Fc fragment.

FIG. 2. The portion of an antigen that is recognized by an
antibody is called an epitope. An antigen may have multiple
epitopes.

FIG. 3. T cells, via their T-cell receptor, recognize MHC-
peptide complexes on the surface of antigen-presenting cells.
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up protein antigens from their environment and partially
digest them, i.e., cut them into smaller parts called pep-
tides. Some of these peptides are then bound to an
MHC class-II molecule and transported to the surface of
the antigen-presenting cell, where they can then interact
with, or as immunologists say, be presented to the CD4+

T cell. It turns out that all cells cut up a portion of the
proteins that they synthesize. These self-generated pep-
tides are in a cellular compartment in which they can
interact with MHC class-I molecules. Thus both classes
of MHC molecules bind peptides and ‘‘present’’ them to
T cells. The class-I system specializes in presenting pro-
teins synthesized within the cell, such as viral proteins
made by an infected cell, while the class-II system spe-
cializes in presenting fragments of molecules picked up
from the environment. Both systems present peptides
from self molecules as well as from foreign molecules. T
cells therefore need to discriminate between self and
nonself. The self-nonself discrimination problem is dis-
cussed in Sec. I.B.3.

Each lymphocyte has on its surface 104 to 105 receptor
molecules, all of the same shape, that can detect antigen.
On B cells these receptors are immunoglobulin and on T
cells they are simply called the T-cell receptor. A rather
elaborate genetic machine underlies the construction of
these receptors and to a first approximation ensures that
the receptors expressed on different lymphocytes have a
different randomly chosen shape. Current estimates of
the potential repertoire, i.e., the number of possible
receptors that can be constructed given the genetic
mechanisms involved, are of the order of 1011 for B cells
(Berek and Milstein, 1988) and 1016 for T cells (Davis
and Bjorkman, 1988). A mouse contains of the order of
108 B lymphocytes and 108 T lymphocytes, and thus can-
not contain all possible receptors. The number of differ-
ent receptors that are expressed at any time, the ex-
pressed repertoire, is estimated to be 107.

When B cells become stimulated they secrete a
soluble form of their receptor molecule, which is called
antibody. Antibodies are highly specific and can distin-
guish fine differences in the molecular structure of
epitopes, such as the change of a single amino acid in a
protein, the change of a single atom, such as a chloride,
from an ortho to a para position along a substituted ben-
zene ring, or even optical isomers such as d- and
l-tartrate (Eisen, 1980).

The immune system with an expressed repertoire of
107 is capable of making of the order of 107 different
antibodies at any one time. Due to their exquisite speci-
ficity the immune system uses antibodies as tags with
which to label cells and molecules as foreign. Various
effector mechanisms then lead to the elimination of the
antigen. For example, antigen and antibody can form
large complexes that are taken up and eliminated by
various cells. A foreign cell with antibody attached to it
is quickly eaten by large phagocytic cells such as mac-
rophages. These phagocytic cells lack specificity and eat
anything that has antibody attached. For example, they
will phagocytose latex beads if they are antibody coated.
Antibody bound to the surface of a cell can also initiate

a cascade of reactions among a set of high-molecular-
weight serum proteins known as the complement sys-
tem. This cascade of reactions causes the complement
components to assemble a cylinder that penetrates the
cell membrane and leads to the death of the cell by dis-
rupting its osmotic balance. Models dealing with the
complement system have been developed by Perelson
and Wiegel (1979), Perelson, Goldstein, and Rocklin
(1980), DeLisi and Wiegel (1983), and Dower et al.
(1984).

1. Clonal selection

The most basic task of the immune system is pattern
recognition. It must recognize (and then respond to) all
foreign cells (e.g., viruses and bacteria) and molecules
(e.g., bacterial toxins). The diversity of receptor types
used by the immune system is the basis for pattern rec-
ognition. The algorithm that the immune systems uses,
called clonal selection, was elucidated by MacFarlane
Burnett (1959). Clonal selection is the idea that only
those cells that recognize the antigen proliferate, thus
being selected against those which do not. Clonal selec-
tion operates on both B cells and T cells. To keep mat-
ters simple, we do not distinguish between B and T cells
in the discussion given below, although some of the de-
tails regarding cell stimulation do depend on the lym-
phocyte type.

Consider the events that follow the injection of an
antigen into a mouse (Fig. 4). Given the large diversity
of receptors in the expressed repertoire, whether the re-
ceptor on any particular lymphocyte detects the antigen
can be viewed as a random event. The interaction of
antigen with the receptors on a lymphocyte can lead to
activation of the cell. Upon activation, lymphocytes pro-
liferate and grow into a clone. A clone is a set of cells
that are the progeny of a single cell and it might com-
prise anywhere from tens to thousands of cells. Cells in
an activated clone respond by secreting antibody if they
are B cells or by secreting growth factors if they are
helper T cells. Because antigen selects which lympho-
cytes develop into clones, the theory is called clonal se-
lection. The analogy with natural selection should be ob-
vious, the fittest clones being the ones that recognize
antigen best or, more precisely, the ones that are trig-
gered best. For this algorithm to work, the receptor
population or repertoire has to be diverse enough to
recognize any foreign shape. The repertoire is believed
to be complete, which means that it can recognize any
shape. We shall evaluate this statement with a quantita-
tive model in Sec. II.

2. Learning and memory

For protection, it is not enough only to recognize an-
tigen. The immune system must also have sufficient re-
sources to mount an effective response against patho-
gens. As in a typical predator-prey situation the size of
the lymphocyte subpopulation specific for the pathogen
relative to the size of the pathogen population is crucial
in determining the outcome of infection. To be more
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precise, a mouse has approximately 108 lymphocytes. If
it has a repertoire of 107, then on average there are only
10 lymphocytes of any particular specificity. Learning in
the immune system involves raising the population size
of lymphocytes that have proven themselves to be valu-
able by having recognized antigen. If the immune system
can learn from experience the shapes of antigenic deter-
minants, then the immune system can maintain more
lymphocytes bearing receptors of the appropriate
complementary shape and be better prepared to fight an
antigen if it is seen again. Thus learning in the immune
system involves biasing the repertoire from random to-
wards a repertoire that more clearly reflects the actual
antigenic environment.

During the life of any individual the detailed dynam-
ics of lymphocyte growth, differentiation, and competi-
tion between clones ultimately reflects the system’s in-
teraction with its environment. After an antigen has
been seen once, the immune system responds to subse-
quent encounters with the same antigen with faster and
larger-amplitude responses. Such responses are called
secondary immune responses, and they can be attributed
to having larger initial clone sizes. Thus, say, rather than
starting the response with a clone of 10 cells, the system
might start with 104 cells specific for the antigen. When

these cells secrete antibody they have a large impact. In
a primary response, there is a delay due to the fact that
the cell population needs to enlarge before it can secrete
substantial amounts of antibody. (The more rapid and
vigorous secondary response may also be due to differ-
ences between naive cells and cells that have seen anti-
gen. For example, secondary response or memory cells
may be easier to trigger than naive cells. Cells that have
never been triggered are small and contain little cyto-
plasm. When triggered they make at least 50 new pro-
teins. One would expect many of these molecules to re-
main in the cell, thus making subsequent triggering
events easier and faster. Also, the affinity of antibodies
for antigen may increase due to somatic mutations that
occur during the growth of lymphocyte clones. This
topic will be dealt with extensively in Sec. III.C.) Be-
cause the total number of lymphocytes in the immune
system is regulated, increases in the sizes of some clones
means other clones may have to decrease in size. The
total number of lymphocytes is not kept absolutely con-
stant. Swelling of lymph nodes, for example, allows
some increase in lymphocyte populations during an im-
mune response, but the immune system is a few percent
of the total cells in the body, and that percentage cannot
increase very much before affecting other bodily func-
tions. Thus, if the immune system learns only by increas-
ing the population sizes of specific lymphocytes, it must
either forget previously learned antigens, increase in
size, or constantly decrease the portion of its repertoire
that is generated at random and responsible for re-
sponding to novel antigens. Because of the experimental
difficulties inherent in studying individual clones in vivo
it is not yet possible to decide to what degree each of
these alternatives is followed. To gain insights into these
and related questions a number of workers have devel-
oped quantitative models of cell growth and differentia-
tion in the immune system under various scenarios of
immune regulation. We discuss some of these models
below.

3. The self-nonself discrimination problem

The completeness of the repertoire presents a funda-
mental paradox for the immune system. Because all
shapes can be recognized, the immune system can rec-
ognize molecules and cells of our body as well as foreign
ones. For the immune system to function properly it
needs to be able to distinguish between these two classes
of molecules and cells, which are a priori indistinguish-
able, so as to avoid triggering an immune response
against self antigens, i.e., the components of our body.
Not responding against self antigen is a phenomenon
called self-tolerance. Understanding how this is accom-
plished by the immune system is called the self-nonself
discrimination problem.

The solution to the self-nonself discrimination prob-
lem is not yet fully at hand but an enormous amount of
progress has been made in recent years. von Boehmer
(1991) and others have discovered that, as T cells differ-
entiate in the thymus, those T cells that react with self

FIG. 4. Clonal selection. Small resting B cells created in the
bone marrow each carry a different receptor type defined by
their VH and VL regions (see Fig. 1). Here B cells are labeled
by their receptor type. B cells of type 23 recognize the antigen
and become large lymphocytes, which proliferate and differen-
tiate into antibody-secreting cells and memory cells. The most
differentiated antibody-secreting cell is a plasma cell.
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antigens have a high probability of being eliminated.
The process is, however, incomplete, and some self-
reactive T cells are encountered outside the thymus.
This can be understood since clonal elimination in the
thymus is based on encounters between immature T
cells and self antigens in the thymus, and presumably
not all self antigens are present inside the thymus. As is
often the case in biology, several mechanisms contribute
to the same function, and self-nonself discrimination in-
volves mechanisms other than thymic elimination. Much
of the recent effort in theoretical immunology, as well as
in experimental immunology, is devoted to the solution
of the self-nonself discrimination problem (see Stewart
and Varela, 1991; Varela and Coutinho, 1991; Neumann
and Weisbuch, 1992a; De Boer and Perelson, 1993; Per-
cus, Percus, and Perelson, 1993; Detours et al., 1994;
Sulzer, van Hemmen, and Behn, 1994). One approach
used in this effort is the development of a theory of
immune networks, to be discussed in Sec. IV.

II. MODELING THE IMMUNE REPERTOIRE

A first example of the use of mathematics in immu-
nology is the evaluation of the completeness of the rep-
ertoire. The arguments that we give below apply to both
the B-cell and T-cell repertoires, i.e., to antibodies, to
immunoglobulin receptors on the surface of B cells
binding to antigens, and to the receptors on T cells bind-
ing to MHC-peptide complexes. For simplicity we state
the argument in terms of receptors binding to ligands.

A. How large does the repertoire need to be in order to
be complete?

Perelson and Oster (1979) developed a simple quanti-
tative model with which they could ask: Given a set of n
distinct, randomly made receptors, what is the probabil-
ity that a randomly encountered antigen is recognized
by at least one of the receptors? The model is based on
the notion of shape space. The idea is that the degree of
binding between a receptor and a molecule that it binds,
a ligand, generally involves short-range noncovalent in-
teractions based on electrostatic charge, hydrogen bind-
ing, van der Waals interactions, etc. In order for the
receptor and ligand to approach each other over an ap-
preciable portion of their surfaces, there must be exten-
sive regions of complementarity. Oster and Perelson
called the constellation of features important in deter-
mining binding among molecules the generalized shape
of a molecule. Suppose that one can adequately describe
the generalized shape of a receptor combining site by h
parameters: the length, width, and height or the radius
of curvature of any bump or groove in the combining
site, its charge, etc. Then a point in an h-dimensional
space, ‘‘shape space’’ S , specifies the generalized shape
of a receptor binding region (Fig. 5). If an animal has a
repertoire of size n , then the shape space for that animal
would contain n different points. We shall assume that
shape space is a bounded region of Rh with volume V ,
since there is only a restricted range of widths, lengths,

charges, etc. that a receptor combining site can assume.
For example, one would never find a receptor with a
combining site dimension of one meter.

Antigens are not recognized as whole objects but
rather are parsed into small regions known as antigenic
determinants or epitopes. Epitopes are also character-
ized by generalized shapes, which should lie within V .
For example, a receptor combining site with a length of
1 nm cannot be expected to recognize an epitope 10 nm
long. In order to estimate how well an animal with a
receptor repertoire of size n can recognize molecular
determinants, let us assume that a receptor i and anti-
genic determinant ı̄ fit together perfectly. If the receptor
and epitope shapes are not quite complementary then
the two molecules may still bind but with lower equilib-
rium binding constant or ‘‘affinity.’’ At some low level of
affinity, e.g., 104M21(M [ moles/liter), immunologists
say that the interaction is not specific and that the mol-
ecules are not complementary. To describe this we as-
sume that each receptor interacts strongly enough to
generate an immune response with all epitopes that are
within a small region in shape space surrounding its ex-
act complement. Although the region need not be
spherical it is easiest to think of it this way and call the
region a ‘‘recognition ball.’’ Let Ve i(K) be the volume in
S of the recognition ball of radius e i for receptor i . The
radius e i is a function of the threshold affinity K for
specific recognition. If the recognition region is not
spherical, then e is chosen so that the recognition ball
has the same volume as the nonspherical recognition re-
gion. Let Ve(K) be the average volume of a recognition
ball in S . [If one wanted to be more precise and not use

FIG. 5. Diagrammatic representation of shape space. Anti-
body of shape xi recognizes those epitopes whose shapes lie
within a region of shape space, of volume Vei , called a ‘‘rec-
ognition ball’’ or ‘‘recognition region.’’ The entire shape space
is assumed to be a bounded region of Rh with volume V .
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thresholds one could assign an explicit affinity to each
pair of shapes depending upon their location in shape
space. This approach was taken by Segel and Perelson
(1988)].

Because each receptor can recognize all antigenic de-
terminants within a recognition ball, a finite number of
antibodies can recognize an infinite number of antigens.
The ability of the immune system to recognize essen-
tially any antigen had been puzzling to immunologists
who assumed each antibody was complementary to only
one antigen as in the classical lock and key analogy.

To complete the model, let us assume that receptors
are made with random shapes. Thus the n receptors lie
scattered at random in the shape space. If each receptor
has roughly the same recognition volume Ve , then the
total volume covered by all of the receptors in the rep-
ertoire is nVe . If this volume is large compared with the
total volume of shape space V , then one would expect
that the various antibodies would have recognition re-
gions that overlap and completely cover shape space. In
fact, each epitope would on average be recognized by
nVe /V different receptors, and the probability P that an
epitope would not be recognized by some receptor is
(Perelson and Oster, 1979)

P5~12Ve /V !n.e2nVe /V. (2.1a)

The expression on the right is the one that would result
from assuming a Poisson distribution of antibodies in
shape space, i.e., it is the probability of finding a point
(i.e., an epitope) lying in no antibody recognition ball.

We can use Eq. (2.1a) to quantify the completeness of
the repertoire. Typically, of order 1025 of the B cells or
T cells in an animal respond to any epitope (see Klin-
man and Press, 1975). This value is an estimate of p , the
probability that a receptor recognizes a random anti-
genic determinant with an affinity above the threshold
value K required to stimulate a lymphocyte. To inter-
pret p within the context of shape-space theory, notice
that if one randomly places an epitope in shape space,
the probability that it lands in the volume Ve surround-
ing any given receptor is Ve /V , the fraction of the
shape-space volume covered by a single receptor. Thus,
if the readout of immune recognition is lymphocyte
stimulation, p5Ve /V.1025, and

P5~12p !n.e2pn. (2.1b)

With this rough estimate, Eq. (2.1b) predicts that ani-
mals with a repertoire of n5105 will have immune sys-
tems with only marginally proficient abilities to recog-
nize foreign antigens, i.e., e21 or 37% of epitopes will
escape detection. However, if n553105 then P falls to
731023 and less than 1% of epitopes escape detection.
If n5106, then P5431025 and essentially all epitopes
will be recognized. Thus a repertoire of order 106, com-
posed of receptors with random shapes, will be com-
plete. This is interesting because the smallest known im-
mune system is that of a young tadpole, which is
estimated to have 106 lymphocytes and thus a repertoire
of order 105 to 106 (Du Pasquier, 1973; Du Pasquier and
Haimovitch, 1976). As far as we know, smaller immune

systems do not exist, and the calculation given above
suggests that this is the case because such immune sys-
tems would recognize antigen so infrequently that they
would provide little, if any, protective advantage.

To summarize, assuming p is of the order of 1025, the
receptor repertoire will be complete if three hypotheses
are satisfied: (i) Each receptor can recognize a set of
related epitopes, each of which differs slightly in shape.
(ii) The repertoire size is of the order 106 or greater. (iii)
The receptors in the repertoire have shapes that are ran-
domly distributed throughout shape space.

Experiment has shown that hypothesis (i) is satisfied.
Although binding is highly specific, antibodies can bind
more than one epitope. If the epitopes have related
chemical structures the antibody is called cross-reactive.
If the epitopes have very different chemical structures,
the antibody is called multireactive. The strength of
binding may differ for different epitopes and is reflected
in differences in affinity. The situation with helper T
cells is similar. Helper T cells recognize peptides bound
to MHC class-II molecules on the surfaces of antigen-
presenting cells. By mutating the peptide, one has been
able to show that a set of related peptides all bind the
same T-cell receptor and are capable of leading to T-cell
activation.

Although exact repertoire sizes are not known, the
best current estimates for mice (the best-studied model
system) place the expressed repertoire size at approxi-
mately 107 for both B cells and T cells. Thus we are
reasonably confident that hypothesis (ii) is also satisfied.

Hypothesis (iii) is almost certainly not strictly satis-
fied. Receptors are not made by a totally random pro-
cess but are constructed from genes. The genetic ma-
chinery involved in generating antibody and T-cell
receptors is very diverse and error prone, so that most
immunologists believe that to a good approximation
shape space is covered. However, it is clear that one can
breed mice to have ‘‘holes’’ in their repertoire. The basic
genetic building blocks out of which B- and T-cell recep-
tors are made biases the ultimate repertoire. This bias
may be towards antigenic determinants that are found
on common pathogens. Thus during evolutionary time
the immune system may have learned that there are re-
gions of shape space that are more important to cover
than others. The repertoire may thus be biased towards
this type of coverage. Work by Forrest et al. (1993), us-
ing simulations based on genetic algorithms, has shown
how biased repertoires can develop. Also, it is now clear
that elements in the repertoire that recognize self are
deleted from the T-cell repertoire, further introducing
holes.

A weaker form of hypothesis (iii) will suffice. Not all
receptor shapes need be made at random. It will suffice
if a subset of the repertoire of size 53105 to 106 is dis-
tributed randomly throughout V ; other receptors could
be distributed nonrandomly and the repertoire would
still be complete.

B. Self-nonself discrimination and the probability of
recognition

It is interesting to ask why evolution selected a value
of p of order 1025. If p51, then receptors would be
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perfectly efficient and recognize everything, and a rep-
ertoire of size n=1 would suffice for perfect recognition
of all antigens. The answer, of course, is that the perfect
antibody would stick to everything including all self
molecules.1 Thus, while not obvious at first, consider-
ations of self-nonself discrimination may have played a
role in selecting a reduced size for p . Percus, Percus, and
Perelson (1992, 1993) have posed the problem in the
following way.

Consider a repertoire of size n in an animal with N8
self epitopes in an environment with N foreign epitopes.
Let P(N ,N8;n) be the probability that a receptor rep-
ertoire of size n has the property that all of N foreign
epitopes are recognized by at least one receptor in the
repertoire, but that none of N8 self epitopes are recog-
nized. Let p be the probability that a random receptor
recognizes a random epitope, and the corresponding
complementary probability, q512p . Then

P~N ,N8;n !5~12qn!NqnN8. (2.2)

The maximum of Eq. (2.2) is achieved when

q5S 11
N

N8D
21/n

;12
1
n

lnS 11
N

N8D . (2.3)

If the present-day immune system has optimized
P(N ,N8;n), then we would expect the probability of
successfully recognizing a random epitope, p512q , to
be computable from Eq. (2.3). Hence

p;
1
n

lnS 11
N

N8D . (2.4)

Although the number of foreign and self epitopes that
the immune system deals with is unknown, let us assume
N51016, which is the lower limit proposed by Inman
(1978). Now if the number of self epitopes N85106, i.e.,
10 epitopes in each of the 105 or so self proteins coded
for in the human genome, then by Eq. (2.4), with n
5107, p5231026. This is somewhat smaller than em-
pirical estimates. For example, Cancro et al. (1978) esti-
mate that 1.3 B cells per hundred thousand recognizes
the hemagglutinin protein on influenza. Assuming that
this measured frequency is an estimate of the probability
that a randomly chosen B cell recognizes hemagglutinin,
for this antigen p'1.331025. Since hemagglutinin is a
protein found on the surface of a naturally occurring
virus it is a good choice for comparison with our theory.
However, as a protein it may have multiple epitopes,
which may explain the fivefold higher measured fre-
quency than our theory predicts. One might question the
assumption of 10 epitopes per self protein or 1016 for-
eign epitopes. However, due to the logarithmic nature of
Eq. (2.4) our estimate of p is not very sensitive to
changes in N and N8.

C. Predicting the size of epitopes

So far in our consideration of receptor-ligand interac-
tions we have not quantified the degree of match be-
tween two molecules. In this section we shall present a
simple model for determining molecular complementar-
ity and use that model to predict the optimal size of an
epitope. We restrict our attention to epitopes composed
of amino acids.

Farmer, Packard, and Perelson (1986) introduced the
idea of using a binary string to represent the shape of a
receptor. Any of a number of string-matching algo-
rithms could then be used to determine the degree of
complementarity between strings. Here we shall pursue
of generalization of that idea, introduced by Percus, Per-
cus, and Perelson (1993), in which strings chosen from
an alphabet of m letters are used. The idea here is that
amino acids can be classified into groups depending on
their chemical properties. Thus as a simple caricature of
the amino acid combining site of a receptor and the
complementary epitope, we assume both are composed
of m types of amino acids, with each amino acid comple-
mentary to exactly one other amino acid in the alphabet.
As an example, amino acids can be classified as being
hydrophobic or hydrophilic, and if they are hydrophilic
as being positive or negatively charged. This leads to
m53 with positive complementary to negative and hy-
drophobic complementary to hydrophobic. We also as-
sume that a receptor need only be complementary to a
piece of the antigen, i.e., an epitope, where an epitope is
defined as a sequence of at least r letters. Let us see the
consequence of this assumption on the value of the suc-
cessful recognition probability p . Once we compute p as
a function of r , we shall invert the function p(r) and
estimate the size of an epitope, r , that is consistent with
a particular value of p . Interestingly, this simple ap-
proach yields realistic estimates of epitope sizes.

Consider the simple case in which the receptor and
antigen are both sequences of length l . Align the two
sequences and denote a matching or complementary
pair of letters by x , with probability 1/m , and a non-
matching pair by y , with probability (m21)/m . We
now compute the probability p of at least one sequence
of at least r x’s out of the total of l entries. This match-
ing problem has a venerable history, going back at least
to de Moivre (see Uspensky, 1937). We shall solve it,
using generating functions, as described in Percus, Per-
cus, and Perelson (1992). It is convenient to switch con-
sideration to q512p , and hence to the probability of
having no sequence of x’s longer than r21 out of a
sequence of l x’s and y’s. Let us not worry about l for
the moment and simply construct the generating func-
tion for all sequences of x’s and y’s satisfying this con-
dition. A typical sequence will belong to the set of 2t
11 groupings

xa1yxa2y•••xat21yxat

where t>1, 0<aj<r21. (2.5)

1As pointed out to us by B. Sulzer, all cells, if they used
recognition as the criterion for stimulation and action, would
also be called into the response. Thus graded levels of re-
sponse might be difficult or impossible to obtain.
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Summing over all $aj%, we have (12xr/12x)y•••y(1
2xr/12x) and then over t , 1/@(12x/12xr)2y# , giving
us the generating function for all such sequences,

G~x ,y !5
12xr

12x2y~12xr!
. (2.6)

Now we assume that x has the probability weight 1/m ,
y has (m21)/m . If we give x and y a further weight z ,
we are then able to extract sequences of length l by just
taking the coefficient of z l . Hence, making the replace-
ment x→(1/m)z , y→(m21/m)z in Eq. (2.6), we have

q5coeff z l in
12lzr

12z1l~m21/m !zr11 (2.7)

where l5m2r. Although an exact solution can be found
(Uspensky, 1937), it is not convenient for computation,
especially when l @ r . To proceed, we expand in l as a
small parameter,

q5coeff of z l in
1

12z
2lFm21

m

zr11

~12z !2 1
zr

12z G
1••• , (2.8)

which we evaluate at once as

q512lFm21
m

~ l 2r !11 G1••• . (2.9)

This expression can be used to compute r as function of
p . Assuming l @r.1, i.e., dropping the negligible @(m
21)/m#r and 1 in Eq. (2.9), and using the definition of l
we obtain

r52lnmp1lnm@ l ~m21 !/m# . (2.10a)

To obtain an estimate of r one can either use experi-
mental estimates of p or one can substitute the optimal
value of p from Eq. (2.4) and obtain

r5lnm nl 2lnmF m

m21
lnS 11

N

N8D G . (2.10b)

Thus the size of the combining site r is mainly deter-
mined by the total number of m bits in n and l , and, in
particular, is very insensitive to the number of foreign
and self epitopes, N and N8, respectively.

In the physical system, when antibody binds an anti-
gen the binding need not involve a single uninterrupted
sequence of matches. In crystal structures of antigen-
antibody complexes one observes that binding can occur
over an area, and several linear pieces may be involved.
Thus, for successful binding, a criterion requiring, say, at
least t sequences of at least r matches might make more
sense. Generalizing the above to such a criterion is not
difficult: we ‘‘tag’’ any subsequence of r or more
matches by a variable z in order to recognize it, thereby
replacing the strict failure contribution (12xr)/(12x)
in Eq. (2.6) by

(
a50

r21

xa1z(
a5r

`

xa5
12xr

12x
1

zxr

12x
. (2.11)

When we do this, Eq. (2.6) is replaced by

G~x ,y ,z!5
12xr1zxr

12x2y~12xr1zxr!
. (2.12)

Failing configurations are then those in which only the
powers 1,z ,z2,. . . ,z t21 are present. Since

~coeff z01coeff z11•••1coeff z t21!G~z!

5coeff z t21@G~z!/~12z!# , (2.13)

we have, in the same fashion as Eq. (2.8),

q5coeff z l z t21

in
1

12z

12l~12z!zr

12z1l~m21/m !~12z!zr11 , (2.14)

from which

p5l tS m21
m D t

coeff z l in
zrt1t21/~12z !2zrt1t/m

@12z1l~m21/m !zr11# t .

(2.15)

To leading order in l, Eq. (2.15) becomes

p;l tS m21
m D tF S l 112rt

t D2
1
m S l 2rt

t D G , (2.16)

so that, for l @ rt ,

lnmp;2rt1t lnm l 2t lnm

m

m21
... . (2.17)

Now, comparing with our previous estimate, Eq. (2.4),
we have

rt5lnm~nl t!1lnm$@m/~m21 !# t ln~N/N8!%1••• .
(2.18)

In other words, allowing the R5rt matching sites to
be distributed in pieces indeed increases the required
value of R , but not significantly until l t approaches the
order of n .

How reliable is the estimate given by Eq. (2.10)? A
reasonable value for the size of the accessible receptor
variable region is l ;100 amino acids (Percus, Percus,
and Perelson, 1993). Using a three-letter charge alpha-
bet, m53, and l 5100, n5107, N;1016, and N8;106,
Eqs. (2.10a) and (2.10b) predict r;14.3 and 15.6, respec-
tively. If l 570 rather than 100, then Eq. (2.10b) pre-
dicts r.15.3; if N/N85109 rather than 1010, and Eq.
(2.10b) predicts r.15.7, illustrating the insensitivity of
the results to the choice of l and the ratio of foreign to
self antigens. These predicted values are consistent with
the various experimental determinations on the number
of contact residues between antibody combining sites
and protein antigens and the size of the region on the
MHC-peptide complex that interacts with the T-cell re-
ceptor. For example, Amit et al. (1986) found that in an
antigen (lysozyme)-antibody complex, the interface was
tightly packed with 16 lysozyme and 17 antibody resi-
dues making close contact. Sheriff et al. (1987), looking
at a second epitope on lysozyme, found that it was com-
posed of three sequentially separated subsites contain-
ing a total of 14 residues in direct contact with the anti-
body. Surprisingly, Cygler et al. (1991) found that even
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with an oligosaccharide antigen there were 15 residues
in contact with the antigen. Ajitkumar et al. (1988)
found that T cells recognized a region on peptide-MHC
complexes of approximately 600 Å2, which is roughly the
same contact area as in the antigen-antibody complexes
of native proteins like lysozyme (Sheriff et al., 1987) and
influenza virus neuraminidase (Colman et al., 1987).

Our predictions are sensitive to the alphabet size m .
Thus, if m54 rather than 3, then Eqs. (2.10a) and
(2.10b) give r.11.3 and 12.5, respectively. However, we
argue in Percus, Percus, and Perelson (1993) that based
on empirical data m53 appears to be a quite reasonable
estimate.

Why is the result given by Eq. (2.10) interesting?
First, it provides a quantitative estimate of what should
be clear—that epitopes cannot be too small or too big. If
epitopes were very small, say two amino acids, then the
same epitope would be expected to be found on both
foreign and self proteins. For example, Ohno (1991),
looking at the information on the amino acids of pro-
teins in current databases, observed that two totally un-
related proteins, on the average, shared 30 identical tri-
peptides, two tetrapeptides, and one pentapeptide per
500 residues. Hence receptors that recognized short pat-
terns would be expected to bind molecules throughout
the body. Thus, to be useful, receptors must recognize
long strings that uniquely characterize the antigen popu-
lation. Recognizing each antigen by its entire string
would require a receptor for each possible antigen and
would not be consistent with reasonable repertoire sizes.
Thus antigens need to be recognized over regions that
are long but not too long. It is interesting that this prin-
ciple when made quantitative predicts epitopes sizes that
are consistent with observation. Second, from a more
general perspective, the calculation illustrates an impor-
tant principle, namely, that the diversity seen in immune
repertoires reflects not only the large number of foreign
epitopes that the immune system must recognize but
also, and even more importantly, the number of self
epitopes that the immune system must avoid reacting
with, a point further discussed in De Boer and Perelson
(1993).

III. CLONAL MODELS

A central issue in immunology is the regulation of the
immune response. What determines which clones are in-
volved, how big do the clones grow, and how is the re-
sponse turned off once the antigen is eliminated?

The simplest idea, based on clonal selection, is that
particular subsets of B cells (and T cells) are selected for
growth and differentiation by antigen, and turn off when
the antigen concentration falls below some threshold.
Antibody feedback and antigen specific helper, and pos-
sibly suppressor, T cells could regulate the magnitude of
the response. In this clonal selection view, antigen-
specific clones respond more or less independently of
one another and are primarily regulated by antigen. Fur-
thermore, in the absence of antigen, the immune system
would be predicted to be at rest.

In this section we develop models in which B cells
interact with antigen and this interaction determines the
kinetics of the cell’s response. In Sec. IV we shall exam-
ine network models in which clones of B cells can inter-
act with each other as well as with antigen.

A. Receptor cross-linking and cell activation

One of the most fundamental issues in immune sys-
tem modeling is determining what the correct equations
are for describing the growth of cells in the immune
system. Although we should like to begin from a com-
plete description of the properties of lymphocytes and
how they vary in response to various inputs, such infor-
mation is still lacking. As compared to neurobiology,
where the Hodgkin-Huxley equations have provided a
basis for modeling, quantitative immunology is still in its
formative stages. There are no agreed upon generic
equations describing the properties of single cells. Many
modelers have used a ‘‘log-bell-shaped’’ function to de-
scribe how B cells respond as a function of antigen dose.
By log-bell-shaped we mean a function that when plot-
ted on a logarithmic scale has a shape that resembles a
Gaussian. Here we give a brief description of where the
log-bell-shaped function comes from and try to justify its
use in this early stage of modeling in immunology.

B cells have on their surfaces between 104 and 105

immunoglobulin molecules that act as receptors for an-
tigen. Immunoglobulin molecules are Y shaped, with the
terminal portions of the arms of the Y forming the anti-
gen binding region (Fig. 1). Because the receptors are
bivalent (i.e., have two identical arms), each receptor
can bind 0, 1, or 2 epitopes. Experiments have shown
that monovalent antigen cannot stimulate B cells,
whereas bivalent and multivalent antigen can. Fre-
quently, anti-immunoglobulin antibodies are used as a
‘‘generic’’ bivalent antigen, since these molecules are ca-
pable of binding immunoglobulin receptors of all speci-
ficities. Antibody molecules can be enzymatically
cleaved. A fragment, known as Fab (Fig. 1), contains
one arm of the Y-shaped antibody molecule and binds
monovalently. Fab fragments of anti-immunoglobulin
molecules bind B cells but do not stimulate them,
whereas complete bivalent anti-immunoglobulin can
stimulate B cells. Experiments such as these have led to
the notion that antigen binding to B cells per se is not
the signal that triggers clonal expansion, and it has been
inferred that the triggering signal involves the cross-
linking or clustering of receptors on the cell surface.
This has been shown to be the case in a rather direct
manner on basophils, another type of white blood cell
involved in allergic reactions, which respond to stimula-
tion by releasing histamine-containing granules.

Receptor cross-linking is attained when multiple re-
ceptors bind to a single multivalent antigen. Because
surface immunoglobulin molecules are bivalent, one im-
munoglobulin may also bind two different antigens and
cause the formation of large receptor aggregates. Cross-
linking brings and holds receptors close together within
the cell membrane and allows subsequent intracellular
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biochemical reactions to occur that seem to be necessary
for cell activation. The fraction of linked surface recep-
tors initially increases with the free-antigen concentra-
tion. When free-antigen molecules are in excess, each
receptor site tends to be bound to a different antigen
molecule and few antigen molecules are simultaneously
bound by several receptors. Thus we might expect the
degree of receptor cross-linking first to increase with
free-antigen concentration, then to reach a maximum,
and then to decrease as the antigen concentration con-
tinues to rise.

Consider the following model for the cross-linking of
bivalent receptors by a bivalent antigen (Fig. 6). Mol-
ecules that bind to a receptor are called ligands. We
analyze a situation in which there are a fixed number of
B cells, each with a constant number of bivalent recep-
tors on its surface. Thus the total number of receptor
sites in the system, S0 , is constant. Assume that the two
sites on each receptor are identical and can be charac-
terized by the same forward and reverse kinetic con-
stants. Further assume that these binding constants are
the same when the receptor is free and when it is in an
aggregate. This is called the equivalent-site hypothesis.
Let S(t) be the concentration of free sites at time t , let
C be the concentration of free bivalent ligand, C1 be the
concentration of ligand bound at one site, and C2 the
concentration of ligand bound at both sites. Note that
C2 is the concentration of cross links. To describe the
kinetics of cross-linking, let kf and kr be kinetic con-
stants describing the binding and release of one site on
the ligand to and from a receptor site, let kx and k2x be
kinetic constants describing the binding and unbinding
of the second site on a ligand already bound at one site.
Also, let K5kf /kr and Kx5kx /k2x be the correspond-
ing equilibrium constants. Then by the law of mass ac-
tion we can write

C1S�
kr

2kf

C1 ,

C11S �
2k2x

kx

C2 ,

or

dC1

dt
52kfCS2krC12kxC1S12k2xC2 , (3.1)

dC2

dt
5kxC1S22k2xC2 . (3.2)

The factors of 2 arise because either site on the ligand
can bind to a receptor site, and either of the two bound
sites on C2 can dissociate. By conservation of receptor
sites,

S05S~ t !1C1~ t !12C2~ t !, (3.3)

where we have used the fact that C1 occupies one site
and C2 occupies two sites. In what follows, we shall as-
sume ligand is in excess and take C(t) to be a constant,
which for simplicity we denote C .

Although approximate solutions can be found for the
kinetic equations, Eqs. (3.1)–(3.3) (Perelson and DeLisi,
1980), here we shall examine only the equilibrium solu-
tion. At equilibrium,

C152KCS , (3.4)

C25KxC1S/25KKxCS2. (3.5)

Substituting into Eq. (3.3) and simplifying, one finds

S5S0~12b!S 211A11d

2d D , (3.6)

where

b5
2KC

112KC
and d5b~12b!KxS0 . (3.7)

Hence the equilibrium concentration of cross links

C25
S0

2 S 112d2A114d

2d D . (3.8)

Notice that C2 depends only on d and that d in turn
depends on KxS0 , a dimensionless cross-linking equilib-
rium constant, and on the ligand concentration C . The
dependence on C is through the term b(12b), which is
zero when C50, i.e., b50, and when C→` , i.e., b51,
and which has a single maximum at C51/2K , i.e., b
51/2. The fraction of cross-linked receptors C2 inherits
these properties and, when plotted versus log 2KC , has
a bell-shaped form with a single maximum at 2KC51.
The curve is symmetric around this maximum (see Fig.
7). The graph of C2 versus log C has been called a cross-
linking curve. Because receptors are bivalent, it is pos-
sible for a ligand to bind both arms of a single receptor.
When this is taken into consideration, cross-linking
curves can have two local maxima (Dembo and Gold-
stein, 1978).

This simple example was meant to show how a bell-
shaped cross-linking function can arise. An extensive
modeling effort has pursued the development of both
dynamic and equilibrium models of receptor cross-
linking for bivalent, trivalent, and multivalent ligands,
interacting with monovalent, bivalent, and multivalent

FIG. 6. Bivalent ligand in solution at concentration C reacts
with bivalent surface receptors. The forward and reverse rate
constants for the binding of a single site on the ligand to a
single receptor site are kf and kr , respectively. Once the
ligand is bound to the surface at one site, with concentration
C1 , its second site can bind to another receptor site with for-
ward and reverse rate constants kx and k2x , respectively, to
form a doubly bound ligand C2 . Note that the second reaction,
the ‘‘cross-linking step,’’ is a surface reaction, whereas the first
reaction involves the binding from bulk solution. Thus kf and
kx have different units and need to be distinguished.
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receptors. Macken and Perelson (1985a) present a gen-
eral treatment using branching process methods for the
analysis of multivalent ligand-multivalent receptor inter-
actions. Macken and Perelson (1986) use renewal theory
to calculate the maximum number of receptors that can
be cross-linked by a randomly haptenated polymer act-
ing as a T-independent antigen. Other references in-
clude Dembo and Goldstein (1978, 1980) DeLisi (1980,
1981), Perelson and DeLisi (1980), Perelson (1981, 1984,
1986), Wiegel and Perelson (1981), and Goldstein and
Perelson (1984), Posner, Wofsy, and Goldstein (1995),
Sulzer and Perelson (1996), DeBoer et al. (1996), and
Sulzer, De Boer, and Perelson (1996). From this body of
literature one learns that when ligands are not bivalent
the cross-linking curve,

C25f@ ln~C !# , (3.9)

is no longer symmetric (Perelson, 1981). Typically it has
a single broad maximum over a large range of low con-
centrations and falls rapidly at high concentrations.
However, empirical dose-response curves showing, for
example, the concentration of antibody produced in
mice versus the logarithm of the antigen concentration
are still bell-shaped even when multivalent antigens are
used (see Dintzis, Vogelstein, and Dintzis, 1982; Vogel-
stein, Dintzis, and Dintzis, 1982). In what follows, we
shall assume that activation functions for cell prolifera-
tion and differentiation are log bell shaped and resemble
the cross-linking curve derived in the example of a biva-
lent ligand binding to bivalent receptors without ring
formation.

B. Clonal selection models: B-cell proliferation and
differentiation

Bell (1970, 1971) developed the first model of clonal
selection. It was quite complete for its time, and it in-
cluded the dynamics of antigen binding to B-cell recep-
tors and the various stages of B-cell differentiation. In

the model, based on the scheme shown in Fig. 4, a set of
small resting or virgin B cells are present before intro-
duction of antigen that are capable of being stimulated
into proliferation by antigen. The model assumes that in
the presence of sufficient antigen the proliferating cells
continue to multiply and produce antibody, which can
bind to antigen and hasten its elimination. When the
antigen concentration falls to a low level it is assumed
that the cells stop proliferating and divide asymmetri-
cally to become plasma cells and memory cells. Plasma
cells are terminally differentiated cells that produce
large amounts of antibody but that are incapable of fur-
ther division (Eisen, 1980). The memory cells were as-
sumed to be similar to virgin cells, i.e., producing no
antibody and capable of being stimulated by antigen.
They may be more easily triggered than virgin cells but
in the model this was ignored. Interestingly, in the 25
years since the model was formulated the actual process
that controls whether a proliferating cell becomes a
plasma cell or a memory cell has still not been eluci-
dated. Thus, while the assumption of half the cells’ be-
coming memory cells and half plasma cells seems too
simplistic, Bell found that the model yielded reasonable
predictions.

The dynamics considered were

dS

dt
5m~ t !2F~R8!S/T1 , (3.10a)

dL

dt
5G~R8!S/T11H~R8!L/T22L/T28 , (3.10b)

dP

dt
5S 12H~R8!

2 DL/T22P/T3 , (3.10c)

dM

dt
5S 12H~R8!

2 DL/T22M/T4 , (3.10d)

where S , L , P , and M and the number per unit volume
of small (virgin) lymphocytes, large (proliferating) lym-
phocytes, plasma cells, and memory cells, respectively.
Small lymphocytes are created in the bone marrow and
thus have a source, m(t). The parameters in the model
are T1 , the mean time for an optimally stimulated virgin
cell to become a proliferating large lymphocyte; T2 , the
mean time for a proliferating cell to divide; T28 , the
mean time for death of a proliferating cell; T3 , the mean
time for death of a plasma cell; and T4 , the mean time
for death of a memory cell.

The model also includes a number of functions of R8,
the average number of occupied receptor sites per cell.
Thus this model, developed before experimental infor-
mation on the importance of receptor cross-linking was
elucidated, assumes that cell responses are proportional
to receptor occupancy. Interestingly, current models of
affinity maturation by somatic mutation (Kepler and
Perelson, 1993a, b), discussed in Sec. III C, also assume
responses proportional to receptor occupancy. The cur-
rent models are motivated by the fact that, in environ-
ments such as the spleen and lymph nodes, antigen is
localized on the surface of specialized antigen-trapping

FIG. 7. A plot of the equilibrium nondimensional concentra-
tion of cross links (C2 /S0) vs log(2KC). The curve has a single
peak at 2KC51, about which it is symmetric. Since the surface
concentration of receptor sites is S0 and each cross link occu-
pies two sites, C2 /S0<0.5.
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cells called follicular dendritic cells (FDC). When recep-
tors on the B cell bind antigen on an FDC, the B-cell
receptors cluster at the interface between the two cells.
This bringing of the receptors close together may pro-
vide the same signals to the B cell as the cross-linking of
receptors by soluble antigen.

In Eqs. (3.10a), and (3.10b), F and G are functions
that control the stimulation of small lymphocytes
through antigen binding to their immunoglobulin recep-
tors. The idea is that, as receptor sites are bound, a small
lymphocyte has a better chance of being activated. Thus
F is chosen to be a monotonically increasing function of
R8, the number of occupied receptor sites. Bell used
F(R8)5R8/(11R8), but other monotonic functions
should work just as well. The function G is equal to F
times the fraction of virgin cells induced to proliferate
rather than to die. Bell assumed that when a large frac-
tion of the receptors on a cell were occupied the cell
tended to die rather than to proliferate. This was mod-
eled by choosing G(R8)5(12r8)F(R8), where r8 is the
fraction of receptor sites occupied on a cell, i.e., r8
5R8/RT , where RT is the total number of receptor sites
per cell. Note from Fig. 7 that at high antigen concen-
trations cross-linking decreases. Since receptor occu-
pancy will increase monotonically with antigen concen-
tration, Bell’s function G , like the cross-linking function,
decreases at high antigen. Thus Bell’s model, even
though it does not explicitly consider cross-linking, still
incorporates the most important phenomenological fea-
ture of cross-linking, decreasing response at high antigen
doses.

Lastly, Bell assumed that the fraction of large lympho-
cytes that still proliferate following division is @1
1H(R8)#/2; the fraction that become plasma and
memory cells is thus @12H(R8)#/2. Thus, when a pro-
liferating cell divides, there results on average 1
1H(R8) proliferating cells for a net change of H(R8)
cells. Bell chose H5(R821)/(R811), so that when
many sites were occupied H.1 and most divisions led
to proliferating cells, while when few sites were occu-
pied, R8!1, H.21 and most divisions led to plasma
and memory cells.

In order to compute R8, Bell also modeled the pro-
duction of antibody by large lymphocytes and plasma
cells and the loss of antibody by natural decay and by
binding to antigen. A differential equation was also in-
cluded for the total amount of antigen in the system, and
chemical equilibrium equations written for the fraction
of antigen bound to cells and to antibody. Thus the
model comprised six differential equations and algebraic
equations describing chemical equilibrium between anti-
gen and antibody in solution and receptors on cells. The
equations were solved numerically and gave rise to rea-
sonable dynamics for an immune response.

A more elaborate version of the model was then for-
mulated that contained a large number of different
clones, each clone characterized by having a receptor
with a different affinity for antigen and secreting anti-
body with that affinity. Equation (3.10a) was also modi-
fied by adding a term corresponding to memory cells’

being put back into the small lymphocyte pool, which
could then be activated. Up to 41 different clones were
followed and quantities such as the average affinity of
free antibody computed. The model exhibited a phe-
nomenon called maturation of the immune response, in
which the average antibody affinity increased with time.
This was due to the fact that cells with higher affinity
would preferentially bind antigen as the antigen concen-
tration was reduced. Thus for low affinity cells R8 would
be small and there would be little stimulation and little
proliferation, while for high affinity cells R8 would be
large and proliferation would expand their numbers.
Bell compared simulation results obtained with different
antigen concentrations with experimental data on affin-
ity maturation.

Perelson, Mirmirani, and Oster (1976) examined in
more detail the choices a stimulated B cell has in terms
of either proliferating and secreting modest amounts of
antibody or giving up the ability to divide and differen-
tiating into a short-lived plasma cell that rapidly secretes
antibodies. They developed a model based on Bell’s pre-
vious work that included only three populations: large
lymphocytes L , plasma cells P , and antibody A . They
assumed

dL

dt
5pu~ t !L2d@12u~ t !#L2mLL , (3.11a)

dP

dt
5d@12u~ t !#L2mPP , (3.11b)

dA

dt
5k~L1gP !, (3.11c)

where p is the average proliferation rate of large lym-
phocytes and d is their average differentiation rate into
plasma cells. It was assumed that at a given time a frac-
tion u(t) of lymphocytes proliferated and the remaining
fraction 12u(t) were differentiating into plasma cells.
Lymphocytes and plasma cells had death rates mL and
mP , respectively, and large lymphocytes secreted anti-
body at rate k , whereas plasma cells secreted antibody
at a rate g@1 times larger. Using optimal control
theory, Perelson, Mirmirani, and Oster (1976) asked
how u(t) should be chosen in order to minimize the
time needed to secrete the amount of antibody A* re-
quired to neutralize a given dose of antigen. Thus the
control problem was

min E
0

T
dt , (3.12a)

where the minimization was carried out over all func-
tions u and where the final time T was defined by

A~T !5A* . (3.12b)

Using Pontryagin’s maximum principle, they discovered
that there were a number of possible strategies u* (t) for
an optimal primary response. They showed that if (g
21)d<p , so that plasma cells hold no advantage over
large lymphocytes, then the optimal strategy is u* (t)
51, 0<t<T , i.e., produce only large lymphocytes.
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Parameter estimates suggest that plasma cells have a
large advantage over lymphocytes and thus the immune
system probably operates with (g21)d.p . In this pa-
rameter regime, the optimal strategy depends on the an-
tigen concentration. If the antigen concentration is suf-
ficiently low that a single generation of plasma cells
could produce the target amount of antibody A* , then
the optimal control is u* (t)50, 0<t<T , i.e., differen-
tiation to plasma cells should begin immediately, with no
proliferation of large lymphocytes. The more relevant
case occurs when A* is large. Plasma cells live a short
time, so that immediate differentiation to plasma cells
could deplete all the lymphocytes in the body that could
respond to the antigen before A* was reached. Thus
with A* large, the optimal strategy is proliferate first,
i.e., u* (t)51, 0<t,t* , so that a large pool of lympho-
cytes is created, and then switch to plasma cell differen-
tiation, u* (t)50, t* <t<T . The switching time t* is a
function of the parameters and can be computed explic-
itly. The optimal solution is thus a ‘‘bang-bang’’ control
in which u is always either 0 or 1. It is interesting that no
graded response with u varying between 0 and 1 is more
efficient than this extreme control with differentiation
either being fully off or fully on. Using realistic param-
eter estimates, Perelson, Mirmirani, and Oster (1976)
computed that the optimal switching time t* should be
approximately four days. This is roughly when the first
plasma cells are observed experimentally.

Perelson, Mirmirani, and Oster (1978) extended their
control model so that they could consider the possible
consequences of repeated exposures to the same anti-
gen. For this case they allowed the possible differentia-
tion of a large lymphocyte into a plasma cell or a long-
lived memory cell. Memory cells were assumed to be
stimulated into large lymphocytes on a subsequent en-
counter with antigen. Thus in a second encounter with
antigen, i.e., a secondary response, the initial number of
large lymphocytes was the sum of the number of virgin
cells stimulated plus the number of memory cells cre-
ated by the end of the primary response that survived
until the second encounter with antigen. In order to gen-
erate memory cells they had to modify the optimization
criterion so that it included the time to complete both
the primary and the secondary responses. Since memory
cells did not contribute to the primary response but only
to the initial conditions for the secondary response, they
found, not surprisingly, that it was optimal to create
memory cells only at the end of the primary response.
Although Perelson, Mirmirani, and Oster (1978) found
some data supporting this prediction, not all data were
consistent. The major difficulty in comparing prediction
to experiment was the fact that experimentalists had not
fully characterized the nature of memory cells. This is
still the case.

It is not clear yet whether memory in the immune
system is carried by long-lived memory cells that remain
at rest until a second encounter with antigen, as in the
Perelson, Mirmirani, and Oster (1978) model, or if
memory is a property carried by a population of prolif-
erating cells. Models in which memory is carried dy-

namically by proliferating cell populations will be given
in Sec. IV. There is also a third possibility—memory
may be carried by retained antigen, with lymphocytes
repeatedly encountering this retained antigen and being
restimulated. Fishman and Perelson (1995) model this
scenario. Data for it also exist. For example, Tew and
Mandel (1979) and Tew, Phipps, and Mandel (1980)
showed that protein antigens can be retained in the
lymph nodes of mice for months, while more recent evi-
dence suggests that retention may be for over a year
(Tew, personal communication). Growing antigens, such
as virus or bacteria, can lead to persistent low-level in-
fections that are not cleared, and hence antigen can be
present for very long periods indeed. Thus, while it was
once thought that memory was due to long-lived
memory cells, this view is no longer universally accepted
among experimentalists (see Mackay, 1993), and other
hypotheses and combinations of hypotheses about the
nature of memory need to be explored.

The general problem of control of cell proliferation
and differentiation in a network context has been ap-
proached by Sulzer et al. (1993). The nature of memory
has also been examined theoretically by Behn, van
Hemmen, and Sulzer (1992, 1993), and Behn et al.
(1993). Batt and Kompala (1990) reexamined the Perel-
son, Mirmirani, and Oster optimization problem for a
replicating antigen using a different optimization crite-
rion. The models we have discussed have all been ideal-
ized and have not included the role of T cells in deter-
mining B-cell proliferation and differentiation. Models
of immune regulation involving T-helper/T-suppressor
cell circuits have been developed (see Herzenberg et al.,
1980; Eisenfeld and DeLisi, 1985; Kaufman, 1988; King,
1988). We shall not review these models since the very
existence of T suppressor cells has been called into ques-
tion. Including T cells and the cytokines that they se-
crete (e.g., interleukin-2) in immune system models is
still an area in which much work needs to be developed.
Although some recent modeling work exists (see
Kevrekidis, Zecha, and Perelson, 1988; McLean and
Kirkwood, 1990; Goldstein et al., 1992; McLean, 1992;
Michie et al., 1992; Kaufman, Andris, and Leo, 1992;
Kürten, 1992; Morel, Kalagnanam, and Morel, 1992;
Perelson and Goldstein, 1992; Schweitzer, Swinton, and
Anderson, 1992; Fishman and Perelson, 1993, 1994,
1995; Merrill, De Boer, and Perelson, 1994; De Boer and
Perelson, 1994, 1995; Segel and Jäger, 1994; Morel et al.,
1996) we shall restrict our attention in this article to the
more developed area of B-cell models.

C. Affinity maturation

Bell’s (1970) model of affinity maturation showed that
as the antigen concentration decreased and became lim-
iting higher-affinity cells would capture antigen and
grow, while low-affinity cells would be unable to bind
enough antigen to remain activated. Thus high-affinity
cells would be preferentially selected to grow and the
average affinity would increase. The model, however, as-
sumed that cells of all possible affinities preexisted in the
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animal. Experimental measurements made in the 1980s
showed that this was not the case, and that the majority
of high-affinity cells were created by mutation during
the course of the immune response. The process Bell
modeled has been called affinity selection (Siskind and
Benacerraf, 1969; De Boer and Perelson, 1994; Fishman
and Perelson, 1995).

Recent models of affinity maturation deal with a pro-
cess known as somatic hypermutation in which point mu-
tations are introduced into the genes that code for the
variable portion of the antibody molecule (see Fig. 1) at
surprisingly high rates. Mutants with higher affinity for
the immunizing antigen are selected for growth and the
average affinity increases with time. Models of this pro-
cess have been developed by Kauffman, Weinberger,
and Perelson (1988), Macken and Perelson (1989, 1991),
Macken, Hagan, and Perelson (1991), Weisbuch and
Perelson (1991), Weinand (1991), Agur, Mazor, and
Meilijson (1991, 1992), and most recently by Kepler and
Perelson (1993a, 1993b).

The models of Kauffman, Weinberger, and Perelson
(1988), Macken and Perelson (1989, 1991) and Macken,
Hagan, and Perelson (1991) all deal with spin-glass-like
models, in which affinity is defined as a value landscape
over the space of antibody V region sequences. Affinity
maturation is then modeled as a strictly uphill walk on a
random landscape (Fig. 8). Because there are a large
number of local optima on a random landscape, strictly
uphill walks quickly get trapped at an optimum. Thus
these models predict that affinity will improve for a
while and then stop improving. When animals are immu-
nized with a foreign antigen and the affinity of B cells
for the immunizing antigen measured, one frequently

finds B cells that have an increased affinity for the im-
munizing antigen. Increases of affinity of order ten to
fiftyfold are common, larger increases much rarer. After
an order of magnitude or so of improvement in affinity,
further point mutations tend not to lead to additional
substantial improvements. Typically 8 to 10 point muta-
tions are seen, although there is great variability from
antibody to antibody; with extremes roughly between 2
and 20 mutations. This stopping of improvement in af-
finity is precisely what is to be expected from an uphill
walk on a rugged landscape. Additionally, one can pre-
dict the probability of getting to an optimum in k steps
(Macken, Hagan, and Perelson, 1991). For a random
landscape the mean of this probability distribution is
about 8 with a standard deviation of about 3. This is in
surprisingly good agreement with immunological mea-
surements.

Macken and Perelson (1995) have generalized their
calculations of walk length to correlated landscapes
which result from considering an antibody to be com-
posed of independent parts or ‘‘blocks.’’ Antibody se-
quences and three-dimensional structures have been
partitioned into framework and complementarity-
determining regions (CDR). The complementarity-
determining region encompasses the parts of the anti-
body that contact the antigen, and the framework region
comprises the remainder of the molecule that provides
its general structure. Assuming that the framework and
complementarity-determining regions make indepen-
dent contributions to the fitness of the antibody leads to
a two-block model. The fitness landscape is correlated
because a mutation in one block leaves the fitness con-
tribution from the other block unchanged. Assuming
that the CDR and framework blocks have evolved to
different starting fitnesses allows one to fit immunologi-
cal data on the number of mutations in each of these
regions of the antibody molecule.

The landscape models discussed above follow the evo-
lution of only a single antibody sequence. In an animal a
large number of different B-cell clones simultaneously
respond to antigen and mutate. Further, the somatic mu-
tation process appears to be turned on and off during
the course of an immune response and thus the mutation
rate varies in time. Kepler and Perelson (1993a, 1993b)
developed a model of B-cell growth, mutation, and com-
petition for antigen. In their model they assumed that
the rate of somatic mutation could be regulated and they
sought the mutation schedule m(t) that maximizes, at
the end of the immune response, (biKi , where bi is the
number of B cells with affinity Ki . Since this model led
to some surprising results, we summarize its main fea-
tures.

B cells were assigned to discrete affinity classes. The
response was assumed to be initiated by cells in single
affinity class, denote by i=0, and assigned affinity K0 .
Clones with i<0 have decreased affinity, whereas clones
with i>0 have increased affinity. Mutations lead to tran-
sitions between the affinity classes, with mij defined to
be the probability that a daughter of a cell in affinity
class i mutated to affinity class j . These probabilities

FIG. 8. A random landscape. The affinity of an antibody de-
pends on its variable region. However, one cannot yet predict
affinity from sequence. If affinities are assigned to variable-
region gene sequences at random, say from a log-normal dis-
tribution, then a random landscape results. Here a two-
dimensional representation of sequence space is indicated, the
x and y coordinates being arbitrary indexes. Each integer
value (x ,y) indicates a sequence, above which a random affin-
ity K(x ,y) is plotted.
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were computed from a lower-order model but in prin-
ciple could be obtained from experimental data.

The B-cell population dynamic equations used by Ke-
pler and Perelson (1993a, 1993b) are

dbi /dt5biu i@2kd~12hi!1kphi~2mii21 !#

12kp(
jÞi

mjihjbju j . (3.13)

Ignoring u for the moment, the first term on the right is
the rate of death of unstimulated cells, the second term
the rate of proliferation, and the third term the rate at
which cells of class j have daughters that have mutated
into class i . The term 2mii21 represents an event in
which a cell divides into two daughters of type i and the
parent is lost. The factor 2 in the last term is a result of
fact that either of the two daughters of a cell of type j
may be of type i . The rates for proliferation and death,
kp and kd , respectively, are multiplied by

hi[KiC/~11KiC !, (3.14)

where C is the concentration of unbound antigen. At
equilibrium, the fraction of receptors on a B cell of af-
finity class i bound by antigen is hi . In this model this
fraction is identified with the fraction of cells bi that are
activated at antigen concentration C . Under this model,
cells with higher affinity Ki grow faster and die less fre-
quently than cells with lower affinity.

The factor u i , defined to be 1 when bi>1 and 0 other-
wise, is a term included as a correction to the naive con-
tinuum description that prevents mutant populations of
less than one cell per animal from growing. A more for-
mal justification for using this correction is presented in
Kepler and Perelson (1995).

Lymph nodes are designed to trap antigen, which is
then retained on the surface of certain cells (follicular
dendritic cells) for long periods of time. Thus, as a first
approximation, Kepler and Perelson assume that anti-
gen is conserved and obeys the equation

C1(
i

sbihi5C0 , (3.15)

where the total antigen C0 is equal to the free antigen C
plus the bound antigen. The factor s is a scaling constant
equal to the number of antibody receptors per B cell
divided by the system volume.

Using this model Kepler and Perelson (1993a, 1993b)
solved the optimal control problem of choosing the mu-
tation schedule m(t) that maximized (bi(T)Ki , at some
time T corresponding to the end of the primary immune
response. The optimal solution was one in which muta-
tion was turned on only for short periods (Fig. 9, lower
panel). Thus periods of mutation-free growth were
punctuated by periods in which there were bursts of high
mutation rates. With this strategy, advantageous muta-
tions are acquired sequentially rather than simulta-
neously (Fig. 9, upper panel). The reason that this strat-
egy is optimal is straightforward. At high mutation rates,
clones (or affinity classes) lose many daughter cells to
lower affinity classes. Therefore net growth within an

affinity class is greatest when m 5 0. Because advanta-
geous mutants are relatively rare, a large number N of
mutants must be generated to assure a significant likeli-
hood that one of them will be advantageous. For ex-
ample, in Fig. 9 it was assumed that the probability of an
advantageous mutation pA is 0.01; thus N should be of
the order of 100 to assure the generation of a higher-
affinity mutant (in fact, it needs to be larger since in the
underlying model for mij some mutations are lethal and
some are silent). In the optimal solution, the population
grows as quickly as possible without mutation until there
are more than about 1/pA cells. Mutation is then
‘‘switched on’’ at a rate consistent with the rapid produc-
tion of cells with a very small number of point mutations
(see also Agur, Mazor, and Meilijson, 1991). After the
appearance of an advantageous variant, mutation is
switched off, so that the new high-affinity clone can
grow as rapidly as possible and to avert the possibility
that it is lost through further mutation. This cycle is then
repeated until the end of the primary response.

Immunologists have discovered that somatic mutation
seems to occur only in very special structures called ger-
minal centers. It is possible that a near-optimal phasic
mutation schedule arises naturally from the structure of
the germinal center.

Germinal centers are found in lymphoid organs, such
as spleen, lymph nodes, and tonsils, and are spatially
organized into zones (Liu et al., 1989). As shown in Fig.
10, cells initially enter the dark zone, where they prolif-
erate rapidly. They then migrate to the light zone, where
they stop dividing. Lymph nodes act as filters for anti-
gen, and the cells that capture antigen, follicular den-

FIG. 9. The lower panel shows the optimal mutation schedule
that generated the dynamics in the upper panel. There are a
number of rounds of mutation, each of which produces some
cells that have a one-step increase in their affinity class. After
an advantageous mutant appears, mutation is turned off to
maximize the growth of the mutant clone and to prevent its
loss through further mutation. The upper panel shows the dy-
namics of the B-cell response, bi vs t . The response begins
with a single B-cell clone in affinity class i50. Mutation, when
turned on, generates cells in lower affinity classes, i=−1, −2, −3,
as well as cells in higher affinity classes (i=1, 2, 3, 4).
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dritic cells, have their highest density in the light zone.
Thus in the light zone, B cells can encounter antigen
trapped on follicular dendritic cells and compete for
binding. Cells that lose the competition die within the
germinal center, whereas cells that win the competition
survive. Some cells migrate out of the germinal center
and differentiate into memory cells or antibody-
secreting plasma cells. A phasic mutation schedule could
be implemented if some cells migrated back to the dark
zone and repeated the process of proliferation in the
dark zone followed by antigen-driven selection in the
light zone, with mutation occurring after proliferation,
presumably as cells leave the dark zone or as they enter
the light zone. This theory can explain the great cell-to-
cell variation in the number of mutations per gene found
near the end of the primary response (Berek, Berger,
and Apel, 1991); some cells may have completed more
cycles through the germinal center than others. Models
by Oprea and Perelson (1997) and Pierre et al. (1997)
explicitly take into account events that occur in germinal
centers. Oprea and Perelson (1997) show in detail how
cycling through the germinal center multiple times in-
creases the efficiency of affinity maturation.

This consideration of the spatial structure of germinal
centers points out a deficiency of essentially all existing
immune system models. Current differential equation
models treat the immune system as one or two (Perelson
and Weisbuch, 1992a) well-stirred compartments. Mod-
els that take into consideration the spatial structure of
lymphoid organs and well as the lymphocyte traffic be-
tween them still need to be developed. Cellular au-
tomata models (see Mosier and Sieburg, 1994; Seiden
and Celada, 1992; Celada and Seiden, 1996), discussed in
Sec. V, have included some spatial structure.

IV. NETWORK MODELS

Jerne (1974) hypothesized that the immune system,
rather than being a set of discrete clones that respond

only when triggered by antigen, is a regulated network
of molecules and cells that recognize one another even
in the absence of antigen. Because antibodies are cre-
ated in part by random genetic mechanisms, they must
look like novel molecules to the rest of the immune sys-
tem and thus should be treated like antigens. The novel
or idiosyncratic parts of an antibody are called idiotopes.
The set of idiotopes that characterizes an antibody is
called its idiotype. Due to the completeness of the rep-
ertoire, the immune system should recognize the id-
iotopes on its own antibodies and make antibodies
against them. Jerne suggested that during an immune
response antigen would directly elicit the production of
a first set of antibodies Ab1 . These antibodies would
then act as antigens and elicit the production of a second
set of ‘‘anti-idiotypic’’ (anti-id) antibodies Ab2 , which
recognize idiotopes on Ab1 antibodies (see Fig. 11).
Similarly, a third set of antibodies Ab3 could be elicited
that recognized Ab2 antibodies, and so forth. Anti-id
antibodies have been found to occur naturally (Binion
and Rodkey, 1982) and when injected into animals pro-
foundly alter the animal’s antibody repertoire in later
life (Eichmann, 1978; Takemori and Rajewsky, 1984;
Vakil et al., 1986; Freitas et al., 1988). Furthermore, by
idiotypic interactions one clone or an antibody carrying
its idiotope should be able to stimulate its anti-idiotypic
partner. Such stimulatory idiotypic interactions have
been described (Eichmann and Rajewsky, 1975;
Cosenza, 1976). Suppressive idiotypic interactions have
also been found (Hardt et al., 1972; Vakil et al., 1986).
Whether idiotypic interactions regulate or play a part in
regulating the immune system, especially given other
levels of control (e.g., antigen processing, interleukins,
helper and suppressor T-cell circuits, etc.), is still unre-
solved. One of the major thrusts of theory in immunol-
ogy has been to evaluate the network hypothesis and
illustrate the types of phenomena that can result from
network interactions. Unfortunately, theory has lagged
behind experiment, and in the 1990s experimental im-
munologists have largely abandoned working on the net-
work hypothesis. There are probably many reasons for
this but a major factor is that the experiments that can
easily be done have been done, and new experiments
are no longer producing exciting and novel results or
generating new ideas. Whether theory can lead the way

FIG. 10. Schematic illustration of a germinal center. Cells en-
ter the dark zone DZ, a site of proliferation. They migrate to
the light zone LZ, where they encounter antigen and are se-
lected for survival based on affinity. Mutation may occur in
either the dark zone or the light zone. The established path-
ways of cell movement are shown as solid arrows. The Kepler-
Perelson model suggests that cells recycle through the germi-
nal center using either of the pathways indicated by the broken
arrows.

FIG. 11. Jerne idiotypic cascade. The antigen Ag is recognized
by B cells, which secrete antibodies Ab1 . These antibodies are
themselves recognized by ‘‘anti-idiotypic’’ B cells, which se-
crete antibodies Ab2 . Further interactions can lead to Ab3
antibodies that recognize Ab2 and so on.
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to the design of experiments that can give insights into
the complex interactions that underlie network behavior
remains to be seen.

A. The B model

De Boer (1988), De Boer and Hogeweg (1989b),
Weisbuch, De Boer, and Perelson (1990), De Boer and
Perelson (1991), Perelson and Weisbuch (1992b), and
Stadler, Schuster, and Perelson (1994), all considered
variations of the following model for B-cell clonal dy-
namics. It is one of the simplest models that can be con-
ceived, yet it still exhibits interesting properties. We call
it the B model since it deals only with B cells. In Sec. E
we shall generalize the model so that it includes both B
cells and antibodies.

The time evolution of the population xi of clone i is
described by the following differential equation:

dxi

dt
5m1xi@pf~hi!2d# , (4.1)

where m is a source term corresponding to newly gen-
erated cells coming into the system from the bone mar-
row, p is the rate of cell proliferation, the function f(hi)
defines the fraction of cells proliferating as a function of
the ‘‘field’’ hi , and d specifies the per capita rate of cell
death. Because cells only proliferate when they are acti-
vated, f(hi) is called an activation function or sometimes
a proliferation function.

For each clone i , the total amount of stimulation is
considered to be a linear combination of the populations
of other interacting clones j . This linear combination is
called the field hi acting on clone xi , i.e.,

hi5(
j

J ijxj , (4.2)

where Jij specifies the interaction strength (or affinity)
between clones xi and xj . The choice of a J matrix de-
fines the topology of the network. For simplicity, Jij val-
ues are typically chosen as 0 and 1, although some au-
thors (e.g., De Boer and Perelson, 1991; Detours, Sulzer,
and Perelson, 1996) also use intermediate values to
model circumstances in which one wants to be truer to
the biology in which interactions need not be all-or-
none.

The most crucial feature of this model is the shape of
the activation function f(hi), which is taken to be a log-
bell-shaped dose-response function

f~hi!5
hi

u11hi
S 12

hi

u21hi
D5

hi

u11hi

u2

u21hi
, (4.3)

with parameters u1 and u2 chosen such that u2@u1 (see
Fig. 12).

The function f(hi) is composed of two factors. The
first factor increases from 0 to 1, reaching its half-
maximal value at u1 , the second factor decreases from 1
to 0, reaching its half-maximal value at u2 . For u2@u1 ,
the maximum, u2 /(Au11Au2)2, is approximately one.
This maximum is attained at h5Au1u2. Because

0<f(h),1, we derive from Eq. (4.1) that the B cells can
maximally grow at a rate p –d . Thus in order to allow
for net clonal expansion p must be greater than d . Maxi-
mally stimulated cells divide about once every 16 h, so
p51 day−1 is a typical rate of proliferation. Cells live a
few days, so that d50.5 day−1 is a typical death rate.
Although different experiments may lead to slightly dif-
ferent estimates of p and d , we shall assume throughout
that p.d , so that net clonal expansion can occur when
cells are activated.

Below the maximum of f(hi), increasing hi increases
f(hi); we call this the stimulatory regime. Above the
maximum, increasing hi decreases f(hi); we call this the
suppressive regime. Plotted as a function of log hi , the
graph of f(hi) is a bell-shaped curve. As discussed in
Sec. III.A, an important argument for the use of a log-
bell-shaped function is that receptor cross-linking (Fig.
6) is involved in B-cell activation. The log-bell-shaped
function is also observed experimentally in the response
of the immune system as a function of the dose of anti-
gen (Celada, 1971, 1992; Dintzis, Vogelstein, and
Dintzis, 1982; Vogelstein, Dintzis, and Dintzis, 1982).
The function f(h), given by Eq. (4.3), should be consid-
ered as a phenomenological description of B-cell activa-
tion, motivated by the chemistry of cross-linking and ex-
perimental observations. The exact functional form that
is being used was chosen for its algebraic simplicity and
other similarly shaped functions could also be used (cf.
De Boer et al., 1996).

B. The two-clone problem

Before analyzing large networks, we discuss the
simple case of two interacting populations. One popula-

FIG. 12. The log-bell-shaped activation function f(h) defined
by Eq. (4.3). As discussed in the text, when m is small, inter-
sections of the line y 5 d/p with the bell-shaped curve define
the activating and suppressive field values, L and H , respec-
tively. For the parameters used here, p 5 1 and d 5 0.5, these
intersections occur near the field values u1 and u2 .
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tion, x1 , reacts with the antigen, while the other popu-
lation, x2 , reacts with x1 . In idiotypic network theory,
the population x1 is called the idiotype and x2 the anti-
idiotype. The interaction constants are J125J2151 and
J115J2250. Thus the fields are h15x2 and h25x1 . The
system of equations (4.1) now becomes

dx1

dt
5m1x1@pf~x2!2d# , (4.4a)

dx2

dt
5m1x2@pf~x1!2d# . (4.4b)

In the presence of antigen at concentration A , the
field h1 experienced by x1 is given by h15x21J1,AA .
Antigen is eliminated by reacting with antibody and
hence as a simple model one might assume

dA

dt
52kAx1 ,

where k is a rate constant. Here we are interested in the
long-time behavior of the system after antigen presum-
ably has been eliminated. After an introduction of anti-
gen, first x1 and then x2 increase, and by the time the
antigen is eliminated they reach some value that we take
as the initial conditions for the solution of system (4.4).

We are interested in the attractors of system (4.4). For
most parameter values of immunological interest, the
two isoclines, ẋ150 and ẋ250, intersect in five points, of
which only three are stable. We call these stable configu-
rations virgin, immune, and tolerant.

The virgin configuration is obtained when the activa-
tion function is very small, i.e., pf(h)!1. It has coordi-
nates

x15x2.m/d[V . (4.5)

In the limit of small m , the other possible steady so-
lutions correspond to intersections of the activation
function with the decay term (see Fig. 12). In this limit,
steady-state solutions occur when f(hi)5d/p . Since
p.d , there are two intersections of the line y5d/p with
the curve y5f(h), one on each side of the maximum of
the bell-shaped curve. (If the source m is small but non-
zero, then the steady states will be somewhat below the
two intersection points.) We call the field values at the
intersection points L and H . In Fig. 12 because of our
choice d/p50.5 these intersection points occur at ap-
proximately u1 and u2 . The steady-state field L , which
is below the maximum of the log-bell-shaped activation
curve, is called stimulatory since increasing the field
above L increases the proliferation rate. The field H ,
which is above the maximum, is called suppressive, since
increasing the field above H reduces proliferation.

One stable steady state, the immune state, occurs when
x1 experiences the low stimulatory field L , and x2 the
high suppressive field H (Weisbuch, De Boer, and Per-
elson, 1990). In this state the idiotypic B cells x1 have a
large population and generate a large, and hence sup-
pressive, field on the anti-idiotype x2 . The anti-idiotypic
B cells thus have a small population and generate a
small, and hence excitatory, field on the idiotype.

We can compute, via a simple approximation, the
population sizes x1 and x2 in the immune state. For
small and large fields f(h) can be approximated by
h/u11h and u2 /u21h , respectively. By assuming m/d is
small when compared with u1 , one obtains for the im-
mune steady state

x15H5
~p2d !u2

d
, x25L5

du1

p2d
. (4.6)

Since (p2d)/d is of order 1, for u2@u1 , x1@x2 .
This attractor is called immune because if antigen A is

injected into the system its elimination is much faster
than when the system is in the virgin state. This is due to
the fact that the clone that recognizes antigen, x1 , is
present at a much higher population than when the sys-
tem is in the virgin state. An interesting feature is that
the x1 population remains large even in the absence of
the antigen. Thus, if this steady state was obtained by
perturbation of the virgin state by antigen, as shown in
Fig. 13, a memory of the original response is kept by the
x1 –x2 couple, which sustain each other. Linear-stability
analysis shows that the immune state is stable, but be-
cause the eigenvalues have an imaginary part, attenu-
ated oscillations towards the attractor are expected and
indeed observed in numerical solutions to Eqs. (4.4)
(Fig. 13).

The tolerant attractor is obtained by exchanging x1

FIG. 13. Dynamics of a response induced by injecting antigen
A that results in the system’s approaching the immune attrac-
tor. The clone population sizes are plotted vs time in days. In
the immune configuration the largest population is localized at
the first level. x1 is high (H) and is sustained by interacting
with x2 , which is at a lower level (L).
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and x2 . Thus in this configuration x1 has a low popula-
tion L and x2 has a high population H . The attainment
of the tolerance attractor is shown in Fig. 14. This con-
figuration is interpreted as tolerance because, if antigen
is presented, clone x1 is not able to react with a strong
intensity, since it is experiencing a high (suppressive)
field due to clone x2 , and antigen will increase its field
and make it even more suppressive.

There are also two symmetric steady state solutions
with both x1 and x2 having suppressive (high) or stimu-
latory (low) fields. Both of these symmetric states are
unstable (Fig. 15).

C. Network topology

In the previous section we examined interactions be-
tween two B-cell clones. In models with more than two
clones one needs to specify the interconnections be-
tween the clones, i.e., the topology of the network that is
formed and the strengths of the connections.

Due to the great diversity of the immune system and
the fact that on average only one cell in 105 responds to
a particular epitope, it has been extremely difficult to
examine experimentally interactions between particular
clones, as would be required to gain a detailed under-
standing of idiotypic networks. Clones in immune net-
works can communicate with each other over long dis-
tances by broadcasting signals in the form of anti-
idiotypic antibodies. These antibodies can react with

complementary receptors on the surface of B cells and T
cells throughout the body. In neural networks, one can
trace in vivo the connections between neurons, for ex-
ample by using horseradish peroxidase staining, and
thus learn the topology of a network. In the immune
system there is no equivalent technique available, and
thus one is forced to rely on models to gain even a ru-
dimentary understanding of the degree of interaction
among cells.

One of the major stumbling blocks in formulating a
faithful mathematical model of an idiotypic network is
determining a realistic topology for the network. In a
system with a repertoire of, say, 107 elements how can
one ever determine all of the possible interactions? A
number of different theoretical approaches have been
taken. In the first, one simply assumes that the topology
and connection strengths are given. By studying a num-
ber of different cases one then hopes to gain an under-
standing of how the network behavior depends on the
connections. Some examples of this approach are Hoff-
mann’s plus-minus network theory (Hoffmann, 1975,
1979, 1980; Gunther and Hoffmann, 1982), which dealt
with only two specificities, an antigen-specific population
and its anti-idiotypic partner. Richter (1975, 1978) dealt
with a linear network, which is a linear sequence of
clones and their anticlones (Ab1 ,Ab2 ,. . .Abn), in which
antibodies and/or lymphocytes (a distinction between
the two was not made) at idiotypic level i interact with
populations at levels i21 and i11, and antigen is de-
fined to be level 0:

Antigen→Ab1→Ab2→•••→Ab l .

Although l , the number of levels in the network,

FIG. 14. Dynamics of a response induced by antigen A that
results in the system’s approaching the tolerant attractor. At
the attractor, x2 is high (H) and is sustained by x1 , which is at
L .

FIG. 15. Phase portrait of the dynamics of two interacting
clones. Of the five singular points in the plane, only the virgin
state (x1 ,x2)5(L ,L), the tolerant state (x1 ,x2)5(H ,L), and
the immune state (x1 ,x2)5(L ,H) are attractors. The two
symmetric states (L ,L) and (H ,H) are unstable.

1239A. S. Perelson and G. Weisbuch: Immunology for physicists

Rev. Mod. Phys., Vol. 69, No. 4, October 1997



could be very high, in early simulation studies l was
generally taken to be rather small, i.e., l ,10. Hiernaux
(1977) noticed that the dynamical behavior of Richter’s
model depended upon whether the network had an even
or odd number of levels. Thus even in the case of a
linear network, topology was important. To avoid the
artificial choice of even or odd networks, Hiernaux
(1977) analyzed a model in which the linear chain was
converted into a simple cyclic network by identifying
Ab1 with Ab l .

More recent models have analyzed much larger net-
works and have considered more complex and possibly
more realistic topologies. Weisbuch, De Boer, and Per-
elson (1990), Weisbuch (1990a), Neumann and Weis-
buch (1992a), and Anderson, Neumann, and Perelson
(1993) have all considered models with a Cayley tree
topology (Fig. 16), work that is reviewed in detail in Sec.
IV.D. Neumann and Weisbuch (1992b) examined other
discrete topologies that arise by adding connections to
the Cayley tree, which form even or odd loops (see Sec.
IV.D.4).

Another approach to specifying the interactions be-
tween clones is to set up an ‘‘affinity’’ or Jij matrix (De
Boer, 1988). The nonzero elements in the matrix repre-
sent interactions and the magnitude of the elements rep-
resents the strength of the interaction. The affinity ma-
trix is the equivalent to a matrix of synaptic weights in

neural network models. If one takes the point of view
that the network is so large and complex that it is im-
possible to determine the relationships between the ele-
ments, then one can assign the elements at random with
a specified fraction of nonzero elements (see De Boer,
1988; Hoffmann et al., 1988; Parisi, 1990). Alternatively,
specific terms can be placed in the matrix to represent
networks of a given topology (Stewart and Varela,
1989). Some data are available from experiments by
Zöller and Achtnich (1991), Kearney, Vakil, and Nichol-
son (1987), and Holmberg et al. (1984) on the structure
of networks in neonatal mice, which can guide the con-
struction of realistic forms for the affinity matrix.

A different approach, pioneered by Perelson, assumes
that the interactions in a network are determined by the
specific chemical interactions between the various cells
and molecules in the immune system. The basis of these
interactions is what we previously called generalized
shape (see Sec. II). Thus if one knew the shape of each
molecule one could predict which molecules would react
and the affinity of their interaction. Even though we do
not know the actual shapes of molecules we can develop
simple mathematical representations of antibodies that
allow us to compute the degree of complementarity be-
tween molecules and even assign an affinity to their in-
teractions. In one approach, first introduced by Farmer,
Packard, and Perelson (1986), one represents the anti-
body binding site by a binary string of length n . An
antigen containing a single epitope is represented by a
single binary string, whereas antigens with multiple
epitopes are represented by multiple strings (Seiden and
Celada, 1992). With this representation shape space is a
hypercube of dimension n . If one chooses n=32, then
one can represent 232'43109 different epitopes in this
shape space. This is a diversity comparable to that ex-
pressed in the mammalian immune system.

Complementarity between molecules represented as
strings can be defined by any of a number of rules, and
the degree of complementarity can be quantified and
used as a measure of the affinity of the antigen-antibody
interaction. For example, two n-bit strings are comple-
mentary if at least some critical number of their bits are
complementary; the number of complementary bits ex-
ceeding the threshold can be taken proportional to the
affinity of the interaction (Fig. 17). Other rules can also
be used for determining complementarity. For example,
since the strings represent molecules they need not be
aligned when they interact. Thus one can also use a
matching rule in which the sequences are shifted and
then checked for complementarity. Furthermore, mol-
ecules generally do not interact over their entire length,

FIG. 16. A Cayley tree. This is a network without loops, in
which each clone interacts with a fixed number z of other
clones. A Cayley tree with z 5 3 is illustrated. Here only
clone x1 reacts with the antigen Ag.

FIG. 17. Generalized shapes of molecules, represented by strings. The degree of complementarity between two binary strings can
be computed using the exclusive or (XOR) function. The number of positions at which a 0 matches a 1 can be used as a measure
of the interaction strength between the molecules.
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but rather in localized areas. To model this one can use
a complementarity rule in which the number of adjacent
complementary bits is important. This type of approach
was used in Sec. II.C to predict the size of epitopes and
will be used again in Sec. IV.G in an idiotypic network
model. Papers that use bit-string models include those of
Farmer, Packard, and Perelson (1986), Perelson (1989a),
De Boer and Perelson (1991), Celada and Seiden (1992,
1996), Percus, Percus, and Perelson (1992, 1993), Seiden
and Celada (1992), Forrest et al. (1993), Rose and Per-
elson (1994), Detours, Sulzer, and Perelson (1996), and
Perelson, Hightower, and Forrest (1996).

Another approach, which emphasizes the effects of
cross-reactivity among clones, uses the continuous shape
space of Segel and Perelson (1988). In this approach,
which we discuss in detail in Sec. IV.F, one describes the
shape of a molecule by one or more continuous ‘‘shape’’
variables and constructs a system of partial differential
equations for the dynamics. For example, in Segel and
Perelson (1988) it was assumed that a single (positive or
negative) number x characterizes the generalized shape
of antibody (or antigen). This variable x could be
viewed as the height or depth of the antibody combining
site (Fig. 18). Thus an antibody with x522 has a bind-
ing site that is deeper than an antibody with x521 and
can better bind an antigen with a bump of height x5
12. Recent structural determinations of idiotype–anti-
idiotype complexes indicate that a bump on one anti-
body fits into a groove of the other as envisioned in this
simple model. A potential difficulty of a one-
dimensional shape space is that an antibody has only
one natural complement and the complement of the
complement is the original antibody. To generate richer
idiotypic structures requires higher-dimensional models
and more complex matching rules. Recent work by
Stewart and Varela (1991), De Boer, Hogeweg, and Per-
elson (1992), and De Boer, Segel, and Perelson (1992)
considers two-dimensional shape spaces. Weinand
(1991) considers a three-dimensional shape space. Weis-
buch and Oprea (1994) and Detours, Sulzer, and Perel-
son (1996) consider high-dimensional ‘‘digit-string’’
spaces.

We consider some explicit examples of these various
approaches in the sections that follow.

D. Localized attractors

As a memory device, the immune system needs to
obey certain constraints: it should be sensitive enough to
change attractor under the influence of antigen. It
should not be too sensitive and overreact when antigen
is present in very low doses. The immune system should
also discriminate between self antigens and foreign anti-
gens. Finally, it should be robust—memories of previ-
ously presented antigens should not be lost when a new
antigen is presented. Thus, in some sense, the system
should be able to generate independent responses to
many different antigens. This independence property is
achieved when attractors are localized, i.e., when the
perturbation induced by an encounter with antigen re-
mains localized among the clones that are close to those
that actually recognize the antigen (see Fig. 19). Below,
we systematically search for localized attractors.

1. Cayley tree

The topology of the immune network is defined by the
Jij’s of Eq. (4.2). Unfortunately our knowledge of the
actual Jij’s is very restricted. Some educated guesses can
be made about the structure of the network from experi-
ments or simplified considerations about the basis of im-
mune recognition. One might also be tempted to use a
well-defined network structure: a regular lattice, a com-
plete graph with random connection strengths, a Cayley
tree, etc. The Cayley tree is in fact an intermediate ap-

FIG. 18. Antibody shapes described by a real number, for ex-
ample, the height (1x) or depth of the antibody binding site
(2x), in continuous shape space.

FIG. 19. Localized patches of clones perturbed by different
antigenic presentations. Two immune and one tolerant attrac-
tor are represented. The immune attractor patches involve one
idiotypic clone (dark dot) and three anti-idiotypic clones, while
the tolerance attractor patch involves one more level.
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proximation between the two-clone model and more re-
alistic networks. Its relevance comes from one of its fea-
tures, localized attractors, which as we show below can
be interpreted in terms of phenomena seen in experi-
mental immunology. We discuss Cayley tree networks in
this section, and later discuss changes in dynamic behav-
ior that might be expected when more ‘‘realistic’’ archi-
tectures are used.

Let us consider a Cayley tree architecture (Weisbuch,
De Boer, and Perelson 1990) with z connections per site
(see Fig. 16), and Jij’s which can only be 0 (no interac-
tion) or 1 (maximum interaction). The root of the tree is
selected by the presented antigen. For simplicity, it is
assumed that a single antigen is presented to the system
and only one clone, the root, reacts with that antigen.
According to their distance to the root, the clones are
numbered 1 (and called Ab1 for the antigen specific
clones), 2 (for the Ab2 anti-idiotypic clones, specific for
some Ab1), 3, . . . ,i . The different fields for clones
1,2,3, . . . ,i in the absence of antigen are given by

h15zx2

h25x11~z21 !x3 ,

h35x21~z21 !x4 , (4.7)

... . . . . . . . . . . . . . . . . . . ,

hi5xi211~z21 !xi11 .

Our problem is to classify the different attractors of
the network and to interpret the transitions from one
attractor to another under the influence of antigen per-
turbation. Let us start with the simplest virgin configu-
ration, corresponding to the hypothetical case in which
no antigen has yet been encountered and all populations
are at level m/d , i.e., all proliferation functions are close
to 0. After presentation of the first antigen, memoriza-
tion is obtained if some populations of the network
reach stable populations different from m/d . In the case
of a localized response, there will be a patch close to the
antigen-specific clone in which cells are excited out of
the virgin state. Each antigen presented to the network
will result in a patch of clones that are modified by the
presentation. As long as the patches corresponding to
different clones do not overlap, the various antigens pre-
sented to the network can all be remembered. Once the
idea of localized noninteracting attractors is accepted,
everything is simplified: instead of solving 108 equations,
we have only to solve a small set of equations for those
neighboring clones with large populations, supposing
that clones that do not belong to the set with large popu-
lations are nearly virgin, i.e., have populations of order
m/d . A practical approach to studying localized attrac-
tors is to combine computer simulations and analytic
checks of the attractors by solving the field equations
(see below).

a. Immunity

Let us examine the case of antigen presented to clone
Ab1 , which results in excitation of clones Ab2 , with

clones Ab3 remaining close to their virgin level (see Fig.
20). In analogy with the two-clone problem, we expect
that Ab1 will experience a low field, L , while Ab2 will
experience a large suppressive field, H . From the field
equations we can compute the populations xi . Recall,
from Eqs. (4.7) and (4.6),

h15zx25L5
du1

p8
, (4.8)

h25x11~z21 !
m

d
5H5

p8u2

d
, (4.9)

where p8 5 p 2 d . Of course, the solution remains
localized only if the field h3 on x3 is nonexcitatory, i.e.,
is much less than L , otherwise x3 would also proliferate.
Thus we require

h35
L

z
1

~z21 !m

d
,L . (4.10)

This is possible only if z is larger than 1 (multiple con-
nectivity is essential to localization) and if the following
inequality, derived by using the value of L in Eq. (4.8),
is fulfilled:

p8zm

d2 ,u1 . (4.11)

This is equivalent to the statement that the field due to z
virgin clones, zm/d , should be small compared to the
proliferation threshold u1 , since p8/d is approximately
one.

FIG. 20. Dynamics of an immune response generated by a
network with a Cayley tree topology when antigen A , recog-
nized by a clone at level 1, x1 , is injected into a system in the
virgin state. The response causes the system to approach the
immune attractor. In the immune configuration the largest
population is localized at the first level. x1 is high (H) and is
sustained by interacting with x2 , which is at an intermediate
population level (L/z). In a network with a Cayley tree topol-
ogy, where z is the number of clones connected to any clone,
one sees that clones x3 as well as the rest of the clones in the
network are virgin (V) (or almost virgin) after the system
settles into this attractor. When antigen is presented again, it is
eliminated faster than the first time. Simulation parameters
were as follows: k51026, A055000, d50.5, p51, z53,
m51023, u152000, and u25105. From Neumann and Weis-
buch, 1992a, reproduced with permission.
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To decide which attractor is reached when antigen is
presented, one needs to solve Eqs. (4.1), to which a
supplementary equation describing the dynamics of an-
tigen A is added,

dA

dt
52kAx1 . (4.12)

In the presence of antigen, the field acting on Ab1 due
to the antigen is added to the field due to Ab2 . Thus

h15zx21JAA , (4.13)

where JA is the antigen interaction constant. An im-
mune attractor is usually reached for an intermediate
initial antigen concentration A0 and intermediate decay
constants k (for further details see Sec. IV.D.3 on the
window automaton). If the initial antigen concentration
is too low or if the antigen decays too fast (large k), the
immune attractor is not attained and the system returns
to the virgin configuration, i.e., Ab1 and Ab2 popula-
tions increase only transiently and ultimately return to
the virgin m/d level. Thus no memory of an antigen
encounter is retained.

b. Tolerance

Another localized attractor corresponds to tolerance,
a condition in which further response to the antigen is
prevented (see Fig. 21). A strong suppressive field acts
on Ab1 due to Ab2’s, the Ab2’s proliferate due to a low
field provided by Ab3’s, but Ab4’s remain nearly virgin.
The field equations once more allow one to compute the
populations:

h25x11~z21 !x35L5
du1

p8
, (4.14)

which can be solved for x3 , if one neglects x1 which is
small. Further,

h35x21
~z21 !m

d
5H5

p8u2

d
. (4.15)

Thus for small m/d

h15zx2'zH . (4.16)

Substituting h1 in Eq. (4.1) gives a very small value for
f(h1), which shows that x1 is of the order of m/d . The
Ab1 population, experiencing a field several times
higher than H , is said to be oversuppressed. One can
also show that h4 is small, i.e., h4'L/(z21), and that
x4 is nearly virgin.

As in the case of the immune attractor, one can study
the conditions under which the tolerance attractor is
reached when antigen is presented. One finds that toler-
ance is obtained for large initial antigen concentrations,
slow antigen decay rates (small k), and large connectiv-
ity z (see Sec. IV.D.3 and Neumann and Weisbuch,
1992a).

c. Extended localization

In another type of steady-state configuration, which
we call extended localization, the pair of neighboring H
and L fields propagate further than levels 2 and 3. Equa-
tions similar to (4.14)–(4.16) for higher levels can then
be used to find the corresponding populations. Extended
localization is usually obtained in a number of narrow-
parameter regimes that are in the vicinity of boundaries
between other dynamic behaviors. See the phase-
transition diagram in Fig. 22. Consider the case of a re-
sponse localized at levels 3 and 4. Clone x1 is at the
virgin level, clones x2 are oversuppressed, clones x3 are
excited to a high population sustained by clones x4 .
Clone x1 is then able to proliferate and it gives a tran-
sient response if the antigen is again presented. But this
response cannot be transmitted to any neighboring clone
since clones x2 are oversuppressed. After antigen elimi-
nation, clone x1 returns to the nearly virgin level it
started from. The transient response resembles a pri-
mary response, since the x1 population starts from a vir-
gin level—as opposed to a secondary response, which is
obtained when the x1 population starts from a higher
level.

d. Percolation

Some parameter values, such as a low excitation
threshold u1 , allow an excitation to propagate from the
initial node across all of the tree. In such a case perco-
lation is observed, which corresponds to a nonlocalized
dynamic response (Fig. 23). This may not be a healthy
condition, and in some autoimmune diseases, such as
systemic lupus erythematosis, a large number of differ-
ent autoantibodies are detected as if there were perco-

FIG. 21. Dynamics of a response generated by a network with
a Cayley tree topology that results in the system’s approaching
the tolerant attractor. Antigen A at a high concentration is
injected into a system in the virgin state. At the attractor, x2 is
high (H) and is sustained by x1 , which is an intermediate
population @L/(z21)# of x3 . Here x1 is oversuppressed by the
x2 and is not able to remove the antigen. Simulation param-
eters were the same as for Fig. 20, in which the immune attrac-
tor is attained except that the rate of antigen elimination is
tenfold lower, k51027, and the initial antigen concentration is
tenfold higher, A0553104. From Neumann and Weisbuch,
1992a, reproduced with permission.
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lation of an immune response within an idiotypic net-
work (Shoenfeld and Moses, 1990).

2. Number of attractors

The Cayley tree model predicts localized attractors
that can be interpreted in terms of immunity or toler-
ance. Because these attractors are localized they are
somehow independent: starting from a fully virgin con-
figuration, one can imagine successive antigen encoun-
ters that leave footprints on the network by creating

nonvirgin patches, each of these involving a set of p
perturbed neighboring clones. An immune patch con-
tains 11z clones, a tolerant patch 11z2 (see Fig. 19).
Independence of localized attractors implies a maximum
number of attractor configurations that scales exponen-
tially with N , the total number of clones. The following
simplified argument gives a lower bound. Divide the net-
work into N/(11z2) patches. Each patch can be in
three possible configurations: virgin, immune, or toler-
ant. This gives a number of attractors that scales as
3N/(11z2). Few of these attractors are of interest. The
relevant question is the following: A living system must
face frequent encounters with antigen during its life. Self
antigen should elicit a tolerant response, whereas dan-
gerous external antigens should elicit immune responses
and subsequent immunity. The nature of the localized
response on each individual site of the network is then
determined by the fact that the presented antigen should
be tolerated or fought against. In this context, we can
ask, ‘‘How many different antigens can be presented so
that no overlap among different patches occurs?’’

In the case of random antigen presentation, simple
reasoning (Weisbuch, 1990b; Weisbuch and Oprea,
1994) is sufficient to derive the scaling law relating m ,
the memory capacity (i.e., the maximum number of re-
membered antigens), to N , the total number of clones.
Let ns be the number of suppressed clones involved in a
patch.

We first compute the probability p i that a clone is
able to proliferate on encounter with antigen given that
i21 different antigens have already been presented and
resulted in the creation of i21 non-overlapping patches
of ns clones each:

p i512S ~ i21 !ns

N D ,

where the term in parentheses corresponds to the prob-
ability that the clone relevant for the ith antigen is not
able to proliferate because it is involved in another at-
tractor and already suppressed. The probability Pm that
m successive antigens are recognized by nonsuppressed
clones, and generate responses is then the product of the
p i probabilities for i running from 1 to m , which can be
expressed as

Pm5 )
i51

m21 F12S ins

N D G .

Hence

log Pm5 (
i51

m21

logF12S ins

N D G. (
i51

m21 F2S ins

N D G
52

nsm~m21 !

2N
.

For m@1,

Pm.expF2
m2

2 S ns

N D G .

Pm is close to 1 for small m and decreases exponentially
to 0 when m is larger than a transition value correspond-
ing to the argument of the exponential being 1. The
transition for m is given by

FIG. 22. Phase diagram derived from the window-automaton
model [defined by Eq. (4.17)]. u1 is the excitation threshold
and C is related to the antigen elimination time [see Eq.
(4.22)]. The transition from virginity to excitation is different
for the three regimes of C . The transition from percolation to
vaccination is independent of C . Two extended-localization
regimes, denoted E.L., are observed. This diagram corre-
sponds to a relatively low initial antigen concentration,
A05Au1u2. (A large initial antigen concentration, which can
result in tolerance, would further complicate this phase dia-
gram.) From Neumann and Weisbuch, 1992a, reproduced with
permission.

FIG. 23. Dynamics of a network undergoing percolation. The
parameters are k51025, A05105, d51.0, p51.5, z53,
m510, u15300, and u25106. From Neumann and Weisbuch,
1992a, reproduced with permission.
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m.A2N

ns
,

and this provides an estimate for the mean memory ca-
pacity of the network. Since Pm is Gaussian, the transi-
tion width is also A2N/ns, which implies a rather ex-
tended probability distribution.

The above scaling law applies to any network topol-
ogy that accommodates local attractors. The only as-
sumption is the random character of the network with
respect to antigens, i.e., the network is not organized to
respond to the set of presented antigens. On the other
hand, it can be argued that the clones expressed by
mammals have been selected by evolution according to
the environment of the immune system, e.g., to be tol-
erant to self molecules and responsive to frequently en-
countered parasites and pathogens. If the system were
optimized to the antigens in its environment, the net-
work could be filled compactly with nonoverlapping
patches. The number of antigens (patches) would then
scale linearly, i.e.,

m}
N

ns
.

A rough estimate of the number of different patho-
gens encountered in a lifetime is of the order of 103. The
same figure also holds for the number of self peptides
that need to be tolerated after clonal deletion has oc-
curred in the thymus (von Boehmer, 1991). If we take
N , the number of clones in the network, to be of order
107, and ns , the number of suppressed clones per patch,
of order 10, then the square root scaling law predicts a
memory capacity of 103, while the maximum capacity is
of order 106. Since one might expect the network to be
partially random and partially optimized, its most likely
capacity is enough to handle the expected number of self
and foreign antigens. A comparison of the results of
Weisbuch and Oprea (1994) with the scaling laws ob-
tained for Hopfield’s version of neural networks (Hertz,
Krogh, and Palmer, 1991) is of interest. In both cases,
exponential scaling laws are obtained for the total num-
ber of attractors, while ‘‘useful’’ attractors scale as
power laws in N .

Weisbuch and Oprea (1994) discuss more thoroughly
the capacity limits of model immune networks with lo-
calized responses. They verify by numerical simulations
the square-root scaling law for the memory capacity.
They also examine a number of other features of the
network. They show that when the number of presented
antigens increases, failures to remove the antigen occur,
since the relevant clone has been suppressed by a previ-
ous antigen presentation. They also show that previous
immune or tolerant attractors are rather robust in the
sense that destruction of these local attractors by new
encounters with antigen is rare, and that the complete
reshuffling of the attractors, as in Hopfield nets (Hertz,
Krogh, and Palmer, 1991), is never observed.

The questions that we addressed in this section have
some relation to those discussed in Secs. II.A and II.B.
However, the results cannot be directly mapped on one

another for the following reasons: In Sec. II, we derived
the size of the repertoire needed to respond to any an-
tigen that could be presented to the immune system.
Here we discussed the capacity of the network in terms
of a set of m successive antigens presented to the net-
work. Further, the computations in Sec. II were made
for a clonal model in which only clones responding to
the antigen (idiotypic clones) were considered. Overlap
of patches in shape-space models corresponds to cross-
reactivity, i.e., the phenomenon of the same clone’s rec-
ognizing several different antigens, and rather than be-
ing a problem it is a desirable feature, since it allows a
large number of clones to respond to any antigen. On
the other hand, in a network model, overlaps of patches
are to be avoided since they set the limit of the memory
capacity.

3. Basins of attraction and the window-automaton
approximation

The above analysis describes the attractors of the dy-
namics, but does not predict which attractor is reached
according to the conditions of antigenic simulation. De-
termining which attractor is attained under a prescribed
set of conditions is precisely the question immunologists
want to answer. Numerical simulations allow such pre-
dictions, but techniques are not available to allow us to
make this prediction analytically for the nonlinear
model given by Eq. (4.1). However, replacing the non-
linear proliferation function f(h) by a piecewise linear
function, a window automaton, allows analytical treat-
ment and prediction of which attractor is reached under
any given antigenic stimulation protocol (Neumann and
Weisbuch, 1992a). A window automaton (Weisbuch,
1990a) is a function whose value is a nonzero constant
when its input is between a low and a high threshold;
otherwise its value is zero. We have chosen as threshold
L and H , those values of the field where the function
f(h) intersects the horizontal line y5d/p . Thus

L.
d

p2d
u1 , H.

p2d

d
u2 .

The window-automaton proliferation function (see
Fig. 24) is then defined by

h,L : f~h !50,

L,h,H : f~h !51, (4.17)

H,h : f~h !50.

Using the window automaton instead of the continu-
ous proliferation function, we find that the differential
equations (4.1) become piecewise linear, and hence the
time variation of all clone populations can be described
by simple exponential functions, except in the vicinity of
the virgin population (V), where the source term cannot
be neglected and constant terms enter the solution. In-
deed, on a time diagram of the numerical simulations,
one observes piecewise linear evolution when plotting
the logarithm of the populations [e.g., compare the time
plots obtained with the continuous function f(h) in Fig.
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23 with those obtained with the window automaton in
Fig. 25]. If the source can be neglected, then according
to the field hi , xi(t) varies as

hi,L : xi~ t !5xi~t!e2d~ t2t!,

L,hi,H : xi~ t !5xi~t!e ~p2d !~ t2t!, (4.18)

H,hi : xi~ t !5xi~t!e2d~ t2t!,

where t is the last time a threshold was crossed. This
approximation enables us to divide the dynamics into
short time stretches, where the dynamics of each clone is
an exponential growth or decay.

Another favorable feature of the window-automaton
approach is that the antigen dynamics is also simple.

Starting from an excitatory concentration of antigen,
L,A0,H , the antigen concentration first decays very
slowly until the idiotypic clone population is large
enough to decrease it substantially. Since the clone
population increases exponentially, further antigen re-
duction is then very fast (see Fig. 25). Once the antigen
concentration reaches 1, it is close to being eliminated
(Fig. 25). We thus approximate the dynamics of antigen
concentration by a step function, constant up to time tA
defined by A(tA)51, and then vanishingly small,

t,tA : A~ t !5A0 ,

t.tA : A~ t !50. (4.19)

The time tA can be computed by using Eqs. (4.12) and
(4.18),

dA

dt

1
A~ t !

52kx1~0 !e ~p2d !t. (4.20)

Integrating until tA , with the initial condition x1(0)
5m/d , gives

tA.
1

p2d
lnF ~p2d !

k

d

m
ln A0G . (4.21)

Thus the antigen elimination time is almost independent
of the initial antigen population A0 . It can be seen that
tA is approximately the time that x1 takes to proliferate
from m/d to C cells, where

C5k21~p2d !ln A0 . (4.22)

In most cases C is the single parameter that suffices to
characterize antigenic stimulation.

The following sections describe the application of the
window-automaton technique to the computation of two
transition lines.

a. From virginity to excitation

As seen in Fig. 26, to escape the virgin state, excita-
tion of x1 above L needs to be maintained by x2 after
antigen elimination.

For a Cayley tree with a coordination number z , let
tLz be the time for x2 to reach L/z , the level needed to
sustain x1 at a field L . In order to escape the virgin
attractor by antigen perturbation, tLz should be small
and t1d , the time for x1 to decay back to L , thus pre-
venting x2 from further proliferation, should be large.
The condition for escape from virginity is therefore writ-
ten as (see Fig. 26)

tL1tLz,tA1t1d . (4.23)

On the left-hand side, tL is the time for x1 to grow from
V to L so as to excite x2 . The quantity tL1tLz is further
called the two-level time delay because it involves the
time necessary to excite two levels (here levels 1 and 2)
to a population sufficient to generate an excitatory field.
It also plays an important role in other transitions that
will be discussed later. On the right-hand side of Eq.
(4.23), tA is the antigen elimination time [Eq. (4.21)].
Expression (4.23) is exact and valid under any antigenic
stimulation, but the evaluation of tLz and t1d from the

FIG. 24. The activation function f(h) and its approximation
by a window automaton. From Neumann and Weisbuch,
1992a, reproduced with permission.

FIG. 25. Dynamics of a network undergoing percolation pre-
dicted with the window-automaton model. The dynamics are
very similar to those illustrated in Fig. 23 for the log-bell-
shaped proliferation function, apart from a slight difference in
time scales. The same parameters were used in both simula-
tions: k51025, A05105, d51.0, p51.5, z53, m510,
u15300, and u25106. From Neumann and Weisbuch, 1992a,
reproduced with permission.
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parameters u1 , u2 , A0 , etc. depends upon the condi-
tions of antigenic stimulation.

In the simpler case when C [defined by Eq. (4.22)] is
smaller than H , the growth of x2 up to L/z is mono-
tonic. The following expressions for the time intervals
are obtained:

tL5
1

p2d
lnFL

VG (4.24)

and

tLz5
1

p2d
lnF L

zV G . (4.25)

Proliferation and decay times (tp and td , respectively)
between the same two concentrations are related by

~p2d !tp5dtd (4.26)

and t1d is then computed from the time it takes for x1 to
proliferate from L to its maximum concentration,
reached when antigen is eliminated,

t1d5
p2d

d
tA2

1
d

lnS L

V D . (4.27)

When one replaces the times in inequality (4.23) by their
expressions given by Eqs. (4.24)–(4.27) and then re-
places the variables A0 , V , and L by their correspond-
ing expressions in terms of the parameters u1 , z , m , d ,
and p , the condition for escape from the virgin attractor
appears as the following scaling law:

u1,u1
V[

p2d

d S m

d D a

u2
b~z21 !gF ~p2d !ln A0

k Gd

,

a5g5
d

p1d
, b50, d5

p

p1d
. (4.28)

If the threshold u1 is too high, the idiotypic clone x1 ,
even if excited, does not remain above L long enough to
allow the relay of the antigenic stimulus by anti-idiotypic
stimulation, and the network falls back to the virgin
state.

b. Tolerance vs vaccination

When excitation remains localized to the first levels,
there are special cases in which tolerance (see Fig. 21) is
observed instead of vaccination (see Fig. 20). The
window-automaton approximation can be further re-
fined to take into account the fact that, under strong
antigenic stimulation, A0.Au1u2, the field experienced
by x1 is sufficiently large that the proliferation rate of
x1 , as computed from pf(h1), is significantly smaller
than p but not zero. Thus, for fields that are outside the
window because of high antigen, we use p82d as the
growth rate of x1 , i.e.,

L,h1,H : x1~ t !5x1~t!e ~p82d !~ t2t! (4.29)

where p8 is the proliferation rate due to the initial anti-
gen population,

p8.pf~h15A0!, d,p8<p . (4.30)

A large initial antigen concentration slows down the rate
of proliferation of clone x1 to p8 and favors tolerance. In
fact, x1 and x2 ‘‘race for suppression’’ (Fig. 27).

Assuming that C.H , so the proliferation rate of x1 is
constantly p8, and neglecting the role of x3 in the field
h2 , we derive the scaling law for the transition from
vaccination to tolerance,

FIG. 26. Dynamics predicted with the window-automaton
model at the transition from virginity to excitation. x2 starts to
proliferate when x1 passes L . x1 starts to decay when antigen
is eliminated. (a) Escape from virginity: excitation of x2 to L/z
(the dashed line: tL1tLm) is faster than the decay of x1 back to
L (the dotted line: tA1t1d). (b) Failure of vaccination: x2 ex-
citation is too slow and it cannot sustain x1 . From Neumann
and Weisbuch, 1992a, reproduced with permission.
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u1,u1
T[S p2d

d D 22bS m

d D a

u2~u22A0!2bzg (4.31)

where

a5b5g5
p82d

p2d
.

In conclusion, the window-automaton analysis allows
the determination of the basins of attraction of this dy-
namical immune system model. Note that attractor se-
lection is rather unusual; the attractor is selected as a
result of a competition between the growth of clones
toward an excitation or a suppression threshold.

The steps taken in this method are the following:

(1) Dividing the whole dynamics, using the window-
automaton approximation, into shorter time inter-
vals in which the time variations are simpler.

(2) Expressing the conditions for the different dynamic
regimes as inequalities among these time sequences.

(3) Transposing the inequalities in terms of populations
(e.g., V ,L ,H ,C) and then in terms of the param-
eters (e.g., u1 ,u2 ,p ,d , etc.).

These steps allow the derivation of the scaling laws for
transitions from one attractor to another and can be ap-
plied in a similar manner to determine transitions to
other dynamic regimes such as percolation and extended
localization. The eight transition lines of Fig. 22 were
drawn according to the algorithm described above. The
method also gives us more insight into the relevant
quantities that determine the dynamics, the antigen
elimination time, and the population of the idiotypic

clone at this time, C , and the two-level time delay tL
1tLz , which determines the possibility of excitation and
of triggering.

4. More realistic topologies

The Cayley tree topology with equal connection
strengths is a strong idealization. In general, one would
expect networks to contain loops and to have unequal
interaction strengths Jij .

a. Loops

The standard interpretation of recognition based on
complementary shapes implies a network with loops.

Even loops are a likely feature of any model of recog-
nition based on bit strings or shape space. We expect
that if the idiotype (Ab1) recognizes by complementar-
ity two similar anti-idiotypes (Ab2 and Ab28), any third
antibody Ab3 complementary to one of the anti-
idiotypes has a good chance of recognizing the other
anti-idiotype as well, giving rise to a four-membered
loop. Even loops give only quantitative changes to the
phase diagram, as discussed by Neumann and Weisbuch
(1992b), and they do not change our basic conclusions
about the dynamics of Cayley tree networks.

Odd loops are far less likely to occur within a model
based on rigid structures. Antibodies with shapes that
are self-complementary can stimulate themselves and
give rise to loops of length 1. In a bit-string model with a
matching rule that allows the strings to match when they
are in any alignment, self-complementarities and odd
loops arise. Rather nonspecific rules for recognition can
also account for odd loops. On the other hand, odd
loops are more probable if recognition involves soft mo-
lecular structures that can bend and have deformations
to adhere to each other. In fact odd loops are present in
experimental connection structures obtained by cross-
reactivity tests on panels of antibodies from newborn
mice (Kearney and Vakil, 1986; Holmberg et al., 1986).
Multispecific clones, which give rise to large connectivi-
ties and odd loops, are frequent in newborn animals and
seem to disappear or become infrequent in adults
(Holmberg et al., 1986).

There are several situations in which odd loops result
in tolerant attractors. We then obtain a very consistent
view of some possible mechanisms for the establishment
of localized tolerance attractors at prenatal and neonatal
stages when multispecific clones and odd loops are
present. These attractors once established remain stable,
even when the multispecific clones disappear. On the
other hand, those clones that remained virgin during
early development are able to react and memorize anti-
gen presentation by reaching vaccination attractor con-
figurations.

b. Distribution of Jij values

We have no a priori reason to suppose that all con-
nection strengths are equivalent. But when one uses dif-
ferent connection strengths, the weaker connections
seem to have more influence on the population levels

FIG. 27. Time diagram at the transition from tolerance to vac-
cination. In order for tolerance to occur, x2 has to be excited
by x1 , reach (H2A0)/z , and suppress x1 (the dashed line)
before x1 reaches H and suppresses x2 (the dotted line). This
is made possible by a large initial antigen concentration (which
implies a smaller proliferation rate for x1) and by large z .
From Neumann and Weisbuch, 1992a, reproduced with per-
mission.
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than the stronger connections. Let us first consider the
case of a single idiotype Ab1 related with different con-
nection strengths to two anti-idiotypes, Ab2 with inten-
sity J , and Ab28 with intensity Jw,J . After antigenic
stimulation, Ab2 gets excited when its field, h5Jx1 ,
reaches L . This occurs as soon as Ab1 reaches L/J . By
a similar argument, Ab28 only gets excited when Ab1
reaches L/Jw , the corresponding excitation threshold
for Ab28 , provided that the suppression threshold for
Ab2 is high enough,

Jw

H

J
.L (4.32)

(otherwise Ab28 remains nearly virgin). Ab28 proliferates,
and so does Ab1 until their populations become stabi-
lized at a level such that Ab1 suppresses Ab28 and Ab28
stimulates Ab1 , i.e.,

x15
H

Jw
, x285

L

Jw
. (4.33)

Both populations increase when Jw decreases. Further-
more, Ab2 experiences a very strong field J(H/Jw) and
is oversuppressed: its level is of order m/d rather than
L . Paradoxically, it plays no role in fixing the level of
Ab1 .

Since the population of Ab28 can be large, it now may
become higher than the excitation threshold of a clone
at level 3 with which it is connected. If we assume the
connection strength J283 is stronger than Jw , then the
condition for the excitation of Ab3 ,

J283

L

Jw
.L , (4.34)

is satisfied. Excitation is no longer localized at levels 1
and 2 as is usual in the case of a vaccination. The equiva-
lent process can be described from level 3 to level 5: a
weak connection between levels 3 and 4 gives rise to
higher populations at these levels and Ab4 is high
enough to excite Ab5 . An avalanche progresses along
weak/strong connections and localization of the re-
sponse is then lost. Neumann and Weisbuch (1992b) dis-
cuss the range of parameters for which this type of per-
colation can occur. They argue that any continuous
distribution of Jij results in percolation. Under these
conditions localized attractors can no longer exist, and
hence it would be difficult to have memory storage in a
network.

Boutet de Monvel and Martin (1995) have derived an
upper bound on the number of fixed points (which are
not necessarily attractors) corresponding to memory or
immune steady states against presented antigens, for a
random network with a continuous distribution of Jij .
They show that the maximum number of such fixed
points scales as log N where N is the total number of
clones. They thus conclude that a system with random
connectivities and a continuous distribution of affinities
will have a memory capacity that is ‘‘essentially nil.’’
This conclusion, which is rather pessimistic, may be very
sensitive to the choice of a bell-shaped activation func-

tion f(h) used in the network model. Recently, De Boer
et al. (1996) introduced a new bell-shaped activation
function derived from a physical chemical model of re-
ceptor cross-linking that greatly reduces the possibility
of percolation in networks with a distribution of Jij .
How the number of fixed points and attractors scale in
systems using this new activation function remains to be
determined.

A number of authors, e.g., Varela et al. (1988), accept
the idea of an immune network working in the chaotic
regime that results from avalanches. But in our view,
their predictions concerning the functional role of the
network are unsatisfactory. For instance, they have to
postulate the existence of two kinds of clones, those that
are functionally connected to the net and those that are
not, to account for both tolerance and clonal expansion.

If we want to maintain the existence of localized at-
tractors in a network with many different connection
strengths, we have to consider improvements to the
original model. The most convincing improvement takes
into account the role of T cells (cf. Carneiro et al., 1996;
Carneiro, Coutinho, and Stewart, 1966). Recent work of
Neumann and Perelson (unpublished results) show that
the control of B-cell proliferation by T cells can prevent
percolation from occurring.

5. Biological interpretations of the localized attractor model

The simple B-cell model allows one to understand
how the same network can support different indepen-
dent attractors that can be interpreted as virgin, im-
mune, and tolerant states. Which attractor is reached
depends on the local topology of the network and the
conditions of antigen presentation. With the additional
assumption that the parameters of the model change be-
tween early life and adulthood one can understand how
self-nonself discrimination is accomplished by the im-
mune system. Assume that a self antigen is seen only by
clone Ab1 . Recall that tolerance can be achieved by the
suppression of the idiotypic clone Ab1 by the anti-
idiotypic clone Ab2 . Once the tolerance attractor is
achieved, secondary presentation of the antigen does
not give rise to any immune response, because the anti-
gen only increases the suppression on clone Ab1 . Thus
the tolerance attractor, once reached, is robust against
secondary presentation of the antigen. If we now assume
that the anatomical and physiological situation during
prenatal and neonatal life gives rise to parameters such
that self antigen presentation results in tolerance, then
no response to self antigen will be observed after the
tolerance attractor is attained. During childhood, system
parameters may change so responses to newly encoun-
tered and presumably foreign antigens will predomi-
nantly give rise to immune responses and attainment of
the immune attractor rather than the tolerance attractor.
Thus vaccination against new (foreign) antigens will oc-
cur, except for those with very large concentrations that
generate suppressive fields. Even though system param-
eters change, the (self) antigens presented in the first
stage will continue to be tolerated; the tolerance attrac-
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tor is not removed by the change of parameters, but it
can no longer be reached from the virgin state.

‘‘Abnormal’’ presentation of self antigen during early
life can, according to this model, result in autoimmune
diseases. The dynamic approach may shed some light on
the specific role of certain MHC molecules in autoim-
munity. Since self peptides need to be presented by
MHC molecules, the local parameters (connectivity and
Jij’s) that describe network topology and antigen pre-
sentation are under the influence of the MHC. The same
logic may explain the existence of only a limited set of
autoimmune diseases: although we have discussed
mainly a homogeneous network, it is clear the immune
system is inhomogeneous. Around each node in the net-
work, connectivity and Jij’s may vary and we might ex-
pect that some tolerant attractors are more fragile than
others.

The view that autoimmune disease can result from
dynamic effects is not shared by most experimentalists
whose attention is focused on immunogenetics
(Coutinho and Kazatchkine, 1994).

E. Antibody/B-cell network models

The network models that we have discussed so far
have dealt solely with B cells. A more realistic set of
models have been developed that include both B cells
and the antibody that they secrete. When the lifetimes
of B cells and antibody differ significantly, new phenom-
ena arise in these network models. In this section we
describe the class of AB (antibody/B-cell) models and
their properties.

1. The AB model

Let bi be the density of B cells of type i and ai the
concentration of antibody of type i . Then a generaliza-
tion of the model given by Eq. (4.1) is

dbi

dt
5m1bi@pf~hi!2dB# , (4.35a)

dai

dt
5sbif~hi!2dChiai2dAai , (4.35b)

where the field

hi5(
j

J ijaj , (4.36)

is determined by the concentration of antibodies capable
of reacting with a B cell. If antigen is present, its con-
centration is added to the field with an appropriate
weighting coefficient. As in the B model, p is the rate of
proliferation of B cells and f(h) is taken to be the log-
bell-shaped function given by Eq. (4.3). Here m is the
rate of generation of cells from the bone marrow, and
dB is the rate of B-cell death. We assume that when B
cells become activated they secrete Ab at rate s . Anti-
body has a natural rate of decay dA . Antibody can also
be eliminated by binding to anti-idiotypic antibody to
form a complex, which is then assumed to be eliminated

(by macrophages and other phagocytic cells) at rate dC .
Formation and clearance of antibody-antibody com-
plexes has been measured in man (Davies et al., 1990).
Because complex formation is a chemical process that
should occur on a time scale of seconds to minutes, we
have assumed that the concentration of complex is that
at chemical equilibrium. Thus we assume that the con-
centration of complexes containing antibody ai is pro-
portional to Ci5S jJ ijajai5hiai . Since the ‘‘affinities’’
Jij are scaled to be between 0 and 1, the actual concen-
tration of complexes is obtained by multiplying Ci by a
typical affinity K for idiotype anti-idiotype interactions,
e.g., 106 M−1. This affinity constant is then subsumed
within the parameter dC .

In this model we have assumed that activated cells
proliferate and secrete antibodies, and that the signals
for doing so can be summarized by the field through the
single function f(h). Other models (e.g., those of Varela
et al., 1988; Sulzer et al., 1993) assume that different
functions of the field govern proliferation and differen-
tiation into an antibody-secreting state.

To reduce the number of parameters in this model we
nondimensionalize the equations, choosing the B-cell
lifetime as a time scale. Equations (4.35) and (4.36) be-
come

dBi

dT
5s1Bi@rf~hi!21# , (4.37a)

dAi

dT
5d@Bif~hi!2Ai#2mAihi , (4.37b)

where T5tdB , Bi5bis/(adA), Ai5ai /a , a is a typical
antibody concentration, d5dA /dB , s5msa/(dAdB),
m5dC /dB , and r5p/dB . Further, since the activation
function f(h) is symmetric around its maximum when
plotted on a logarithmic scale, we can choose a such that
h51 corresponds to the maximum level of activation
and replace u1 and u2 by a single parameter u with

f~h !5
hu

~u211h !~h1u!
. (4.38)

A discussion of this nondimensionalization is given by
De Boer, Perelson, and Kevrekidis (1993a).

2. The two-clone case

De Boer, Perelson, and Kevrekidis (1993a) study the
case of two clones with no self interaction, J115J2250,
and a symmetric connection matrix, J125J2151. The
steady states of this model can be analyzed completely.
At steady state, Eqs. (4.37) become

05s1B1@rf~A2!21# , (4.39a)

05s1B2@rf~A1!21# , (4.39b)

05d@B1f~A2!2A1#2mA1A2 , (4.40a)

05d@B2f~A1!2A2#2mA1A2 . (4.40b)

Hence, from Eq. (4.39) with sÞ0,
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B15
s

12rf~A2!
, (4.41a)

B25
s

12rf~A1!
. (4.41b)

Equations (4.40) give, for dÞ0,

B15
A1~mA21d!

df~A2!
, (4.42a)

B25
A2~mA11d!

df~A1!
. (4.42b)

Equating the right-hand sides of Eqs. (4.41a) and (4.42a)
and the right-hand sides of Eqs. (4.41b) and (4.42b), one
obtains

sdf~A2!5A1@12rf~A2!#~mA21d!, (4.43a)

sdf~A1!5A2@12rf~A1!#~mA21d!, (4.43b)

equations whose solution give the steady-state values of
A1 and A2 .

One class of solutions are the symmetric solutions
with A15A25A . From Eq. (4.43a), with A15A25A
and the substitution of Eq. (4.38) for f(A), one obtains

A$muA31@m1du2mu2~r21 !#A2

1@mu1d2du2~r21 !#A1du~12su!%50. (4.44)

One solution is A50. In this state both antibody popu-
lations are zero. De Boer, Perelson, and Kevrekidis
(1993a) call this state ZZ (for zero-zero). The B-cell
populations, from Eq. (4.5), are B15B25s . Hence the
ZZ state is a virgin state in which no antibody is present.
The AB model also has another type of virgin state, akin
to the one in the B model, in which antibody is present
but its concentration is so low that the field it generates
is insufficient to activate either B cell. This type of virgin
state, which is denoted by VV, can be found by further
analyzing Eq. (4.44) as discussed below.

The other symmetric solutions are the real positive
roots of the cubic given in brackets. If su,1, then the
cubic will have two or no real positive roots. For what
we consider to be typical parameter values, r52, u
510, d50.1, m520, and s51.4831023, there are two
positive roots. These roots correspond to the two sym-
metric states of the B model, in which either both clones
have high fields or both clones have low fields. The VV
state is negative (see Fig. 28) and hence not physically
realizable. When su.1, the cubic has one or three real
solutions. The case of one solution occurs when s is
large. Then there are always many B cells present and
the system can only produce large amounts of antibody
and hence high fields. The one steady state is then the
HH, or high-high, state. The case of three real solutions
corresponds to the VV, LL, and HH states that also
occur in the B model (see Sec. IV.A and Fig. 15).

Once the symmetric states are found, Eqs. (4.43a) and
(4.43b) can be analyzed for their asymmetric steady-
state solutions. Combining these equations, one obtains
a high degree polynomial that can be factored, with one

factor being Eq. (4.44). The remaining factor is a sixth
degree polynomial, which has not been analyzed alge-
braically. The asymmetric steady states are those in
which one field is high and one low. In the B model, we
distinguished between the two possible asymmetric
states and called one immune and the other tolerant.
Here we shall not introduce antigen and there is no rea-
son to distinguish these states; in fact, their stability
properties are identical.

Numerical studies (De Boer, Kevrekidis, and Perel-
son, 1990) indicated that the AB model could show os-
cillatory and chaotic behavior when antibody lifetimes
were greater than B-cell lifetimes, i.e., when d5dA /
dB,1. More precise analysis was carried out by De
Boer, Perelson, Kevrekidis (1993a) using numerical con-
tinuation methods. This work showed that when m50,
so that there was no antibody-antibody complex forma-
tion, continuation of either of the asymmetric (or im-
mune) steady states with d as a bifurcation parameter
led to a supercritical Hopf bifurcation at d50.98. Con-
tinuation of the Hopf bifurcation as a function of the
two antibody lifetime parameters d and m allowed De
Boer, Perelson, and Kevrekidis (1993a) to map the pa-
rameter region where the immune states are stable—and
where the principal behavior of the model is
stationary—as well as the region where the immune
states are unstable—and where the principal behavior

FIG. 28. Bifurcation diagram of AB model. Here the nondi-
mensional source s is varied and the equilibrium concentration
of antibody A1 plotted. For low values of s the virgin state
with low amounts of antibody present, the VV state, is nega-
tive, and only the ZZ virgin state with no antibody present is a
physically realizable solution to the AB model equations. The
dark line indicates a stable steady state. For s.0.1, the ZZ
state is unstable and the VV state is the virgin state for this
system. For values of s.0.56 this system has no virgin state.
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turns out to be oscillations and/or chaos. The immune
states are stable in the shaded area in Fig. 29.

Using d50.1 as a realistic estimate of the ratio of
B-cell and antibody lifetimes, this analysis suggests that
the immune states would be stable whenever m was suf-
ficiently large, i.e., m.12.6. Using biological data, De
Boer, Perelson, and Kevrekidis (1993a) estimated that
m'200 and hence predicted that immune states should
be stable.

An overview of the dynamic behavior of the AB
model can be gleaned from Fig. 30, where the complex
formation parameter 0<m<15 is varied (for d50.1).
For these parameters the immune states are unstable

when m,12.6. At m'12.6 the immune states undergo a
subcritical Hopf bifurcation (see Fig. 29). The dots in
Fig. 30 are values of ln(B1 /B2) attained at a Poincaré
section defined by ln A12ln A250. This Poincaré section
is a plane of symmetry.

Figure 30 exhibits three distinct regions of behavior.
For 0<m,3.7, there is an apparently chaotic attractor
that seems to be born via a period-doubling cascade. For
3.7<m,14, there is an apparently chaotic attractor (and
complicated limit cycles in its periodic windows). The
texture of this region is much lighter (and is even white
for 3.75,m,6 because the zero-order continuation has
difficulties following the attractor). Lastly, for m.14, the
apparently chaotic attractor has disappeared, and there
appear to be no further orbits intersecting the Poincaré
plane.

3. Chaos

One of the interesting dynamical features of the AB
model is the existence of apparent chaotic dynamics.
Further details about the oscillatory and chaotic behav-
iors observed in AB models can be found in De Boer,
Kevrekidis, and Perelson (1990), Stewart and Varela
(1990), Perelson and Weisbuch (1992a), Anderson, Neu-
mann, and Perelson (1993), De Boer, Perelson, and
Kevrekidis (1993a, 1993b), Bersini and Calenbuhr
(1995), and Calenbuhr et al. (1995).

Are such behaviors characteristic of the immune sys-
tem or are they simply behaviors of a complex nonlinear
dynamic model operating in a possibly nonphysical pa-
rameter regime? At the moment we do not know. There
have been three experimental reports (Rodkey and
Adler, 1983; Lundkvist et al., 1989; Varela et al., 1991)

FIG. 29. Stability of the immune state in the AB model as a
function of the parameters m and d.

FIG. 30. Dynamics of the AB model as seen by trajectories going through the Poincaré section defined by A12A250. The
behavior of the model is either stationary, periodic, or apparently chaotic, depending upon the value of m.
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suggesting that concentrations of particular idiotype/
anti-idiotype pairs fluctuate in an irregular and possibly
chaotic manner. However, because the data reported in
these papers contained very short time series, with of
the order of ten points, it is not possible to reach any
conclusions about the possible existence of chaos in the
immune system.

When high-dimensional AB models operate in the
chaotic regime, perturbations tend to percolate through-
out the network (De Boer and Perelson, 1991; Ander-
son, Neumann, and Perelson, 1993). Thus, in contradis-
tinction to the localized attractor models where clones
can maintain either a high (immune) or low (sup-
pressed) level for long periods, in AB models when
clones are in the chaotic region their levels tend to fluc-
tuate between high and low, although in restricted pa-
rameter domains fluctuations around only the immune
or suppressed state have been observed (Anderson,
Neumann, and Perelson, 1993). In the presence of per-
colation and large-scale fluctuations it is difficult to en-
vision how immune memory might be maintained by a
network. Thus one can conclude that either responses
are localized or that memory is maintained by non-
network mechanisms, e.g. memory cells or retained an-
tigen (see Fishman and Perelson, 1995).

F. The continuous-shape-space approach

Another approach to the study of immune networks
suggested by Segel and Perelson (1988, 1989a, 1989b,
1989c, 1990) involves using partial differential equations
rather than systems of ordinary differential equations.
Here the shape of a receptor that characterizes a B-cell
clone is described by a continuous variable x . For con-
creteness one can think of x as the height of a wedge-
shaped region on the receptor, with positive x corre-
sponding to a protuberance and negative x to an
indentation (see Fig. 18). Perfect complementarity, and
hence maximum binding affinity, occurs when the protu-
berance on one molecule and the indentation on an-
other molecule are of the same length. For definiteness,
the falling off of binding affinity for less complementary
shapes is described by a Gaussian function of the dis-
tance between a given shape and its complement. These
considerations lead to the following model (De Boer,
Segel, and Perelson, 1992):

]b/]t5m1b@pf~h !2d# , (4.45)

where b(x ,t) is written as b , and f(h) is again given by
the log-bell-shaped activation function, f(h)5hu2 /@(u1
1h)(u21h)# .

The field h(x ;b) felt by B cells of shape x is

h~x ;b !5E
2L

L
g~x , x̂ !b~ x̂ ,t !dx̂ , (4.46)

where @2L ,L# is taken to be the extent of shape space
and

g~x , x̂ !5G~2ps2!21/2 exp@2~x1 x̂ !2/2s2# . (4.47)

In Eq. (4.47) G and s are constants determining the
amplitude and width of the Gaussian, respectively. If
each shape is complementary to only a small fraction of
all possible shapes, s!L . Because we can scale u1 and
u2 , we can set G51 without loss of generality (De Boer
and Perelson, 1991). This has the advantage that for L
@s

E
2L

L
g~x , x̂ !dx̂'1. (4.48)

For a multidimensional shape space, we replace Eq.
(4.47) with

g~x, x̂!5G~2ps2!2l/2 exp@2~x1 x̂!2/2s2# ,

where l is the dimension of the shape space and x and x̂
are l-dimensional vectors. The use of different variances
in different shape-space directions is also possible in this
multidimensional model. Sometimes periodic boundary
conditions are used to avoid end effects. To study the
effects of finite shape-space size, other boundary condi-
tions are employed wherein clone sizes whose shapes lie
outside a certain interval are fixed at zero magnitude.

As might be deduced from our considerations of dis-
crete networks (Secs. IV.B and IV.D), whenever m
!u1!u2 , Eq. (4.45) formulated on the infinite domain
or using periodic boundary conditions has three spatially
uniform equilibria b(x ,t)5b̄ , the virgin, the immune,
and the suppressed or tolerant states, respectively. By
Eqs. (4.46) and (4.47) the fields of the uniform states
satisfy h(x ;b̄ )5b̄ 5const, for all x . Each of the three
states has its own typical range of values of the field. As
in the case of the discrete network one can greatly sim-
plify the analysis by approximating f(h) differently in
each of the three states, and easily obtain analytic ex-
pressions for the B-cell population levels in the three
uniform states. In the virgin state, b̄ .m/d , in the im-
mune state, b̄ .u1 /@p/d21# , and in the suppressed
state, b̄ .(p/d21)u2 . The stability of the uniform states
can be analyzed by rather standard analytical methods
(De Boer, Segel, and Perelson, 1992). The stability of
the uniform states is described in Table I.

Many nonuniform steady states also exists, which can
be found by numerical methods (see Fig. 31). Analysis
of the nonuniform solution is a type of pattern forma-
tion problem, in which the patterns form in shape space.
Learning and memory in this system correspond to ob-
taining patterns in which clonal populations that are
complementary to encountered antigens are high and
remain high after subsequent antigen challenges. Pat-
terns also form in the absence of antigen, which reflect

TABLE I. Stability properties of the uniform steady states.

State Stability to perturbation Most dangerous
uniform sinusoidal perturbation

Virgin stable stable -
Immune unstable unstable coskx
Suppressed stable unstable sinkx
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the intrinsic activity of the network.
Numerical solutions of a discrete representation of

Eqs. (4.45)–(4.48) showed that networks do not always
reach an equilibrium; clones can continue to grow due to
self-stimulation. Antibodies that are self-binding have
been discovered and are called autobodies (Kang and
Köhler, 1986a, 1986b). To see how autobodies arise,
consider the effect of a single clone at x5x1 , where x1
.0. Let

b~x !5b1d~x2x1!,

where d denotes the delta function. Then, by Eq. (4.46),

h~y !5E g~x1y !b~x !dx5b1g~x11y !.

The field is maximal at y52x1 and falls towards zero as
y approaches x1 . If, at some value ŷ , h( ŷ)'Au1u2 then
a clone at ŷ will be maximally stimulated. If this maxi-
mal stimulation occurs at ŷ5x1 , then the clone at x1 will
stimulate itself maximally. This will occur if b1g(2x1)
'Au1u2 or x15sA2 logh/2, where h5b1 /A2ps2u1u2.
Thus x1 is of order s, i.e., near the origin. Notice that
the larger b1 , the further from the origin is the clone
that maximally stimulates itself. Thus we expect the
peak near the origin to move gradually to the right as it
grows, which in fact is observed in the simulations.

Self-stimulation of clones near the origin makes sense
because shapes near zero are supposed to match them-

selves closely. B-cell clones that produce autobodies
have been discovered in mice. These clones can become
large and dominate immune responses. Similarly, in this
model a low-affinity autobody can grow large enough to
sustain its own proliferation, and—as a side effect—
dominate a large proportion of the shape space.

A simple solution to the problem of unrealistically
large population sizes formed by autobodies is to incor-
porate a self-limiting term in the growth equation for
each population. Thus one can multiply the maximum
proliferation rate p by the density-dependent function
r(b), so that Eq. (4.45) is replaced by

]b/]t5m1b@pf~h !r~b !2d# , (4.49)

where r(b) is

r~b !5
u3

u31b
.

Instead of u3 /(u31b) a variety of other functions could
be used. For example, Segel and Perelson (1988) sug-
gested e2lb. The logistic-type term (12b/bmax) could
also be used.

With the inclusion of the self-limitation term r(b),
networks now reach an equilibrium. In equilibrium
some populations are close to the maximum u3 , while
other populations attain values around the immune and
suppressed states. As was to be expected, the autobody
close to the origin x50 grows to the maximum level.

In Fig. 32 we show a number of equilibrium patterns
as a function of the standard deviation s used in the
Gaussian. This parameter controls the range of interac-
tion among clones. The main result is that the smaller

FIG. 31. Pattern formed in a continuous one-dimensional
shape space by an AB model. Here x , the shape variable, is
the horizontal axis. We show the distribution of the B-cell
population (light lines) and of the field (heavy lines) attained
long after a destabilizing perturbation of the suppressed state.
The B-cell population, which is plotted on a logarithmic scale
ranging to 1012, exhibits two unrealistically large peaks, which
are sustained by self-stimulation. In addition one sees a region
for 0.2,x,0.6 where the population is in the immune state,
and a complementary region in the negative part of shape
space in which the population is suppressed.

FIG. 32. The equilibrium distributions of B-cell populations as
a function of the range of interaction in shape space. The in-
teraction range is indicated by the heavy horizontal line at the
top of each panel. See De Boer, Segel, and Perelson (1992) for
details.
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s the more peaks there are in the equilibrium distribu-
tion. However, analysis of the patterns that formed re-
veal another interesting feature. Recall that the uniform
states of the system corresponded to clones’ being in one
of three states: virgin, immune, or suppressed. Similarly,
in two-clone networks these three types of states also
appeared with the added complication that the only
stable states were with both clones virgin or with one
clone at a high level (immune) and the other at a low-
to-intermediate level (suppressed). In the nonlinear pat-
terns that develop in continuous shape space, clones
spontaneously organize into clusters of immune clones,
and in regions of shape space that are complementary,
clusters of suppressed clones are found (Fig. 32). It is
not surprising to see immune and suppressed clones in
complementary parts of shape space since the bell-
shaped activation function requires an immune clone to
see a low field as generated by a suppressed clone, and a
suppressed clone to see a high field of the type gener-
ated by an immune clone. What is surprising is that we
find localized regions of shape space, of width much
larger than the field sensed by any single clone, in which
all clones are activated. Furthermore, this region is
complementary in shape to a region of roughly equal
size in which all clones are suppressed. These higher-
order localized structures are emergent properties of our
model. The structures are not only present at equilib-
rium as shown in Fig. 32, but appear while the network
is attaining equilibrium. During the oscillatory approach
to equilibrium all of the clones in a cluster have related
behavior, and idiotypic and anti-idiotypic clusters oscil-
late as if they were two interacting antibody species (not
shown). An interesting implication is that one should be
able to formulate a model in terms of interactions be-
tween clusters of clones. To our knowledge this has not
yet been done.

Another open problem is to demonstrate learning and
memory. Patterns that form once a system is challenged
with antigen tend not to be preserved if the system is
challenged with a second antigen. In a sense, responses
percolate through the system preventing memory from
being retained. It would be interesting to see if some
basic modifications to the fundamental equations could
be made that would allow memory retention. The local-
ized responses seen in fixed-topology models (Sec.
IV.D) do allow preservation of memory. Here localized
responses can only be obtained if s is taken sufficiently
small that clones act independently, and hence if the
network is destroyed. Immunologists, such as Coutinho
(1989), have suggested that networks may not be in-
volved in generating immune responses (see also Rose
and Perelson, 1994). If this is in fact the case, then not
being able to retain memory of previous antigen en-
counters may not be a failing of the model but rather a
reflection of the properties of an immune network.

The model presented above was one dimensional. The
general analysis of pattern formation in multidimen-
sional shape spaces is a challenging task and remains to
be resolved. Some approaches that are currently being
explored involve using window-automaton models (Sec.

IV.D.3) in which the log-bell-shaped activation function
f(h) is replaced by a piecewise linear function that is 1
when h is between u1 and u2 , and 0 elsewhere (De
Boer, Hogeweg, and Perelson, 1992; Stauffer and Weis-
buch, 1992; De Boer, van der Laan, and Hogeweg, 1993;
Stauffer and Sahimi, 1994; see also Stewart and Varela,
1990) and (Sec. V.D). While such approaches are inter-
esting mathematically and give some impression of pat-
terns, it is not clear whether they will provide additional
immunological insights beyond those that can be ob-
tained with the bit-string models discussed below.

G. Bit-string models of the network

The main advantage of the previously discussed B and
AB models is that their simplicity allows for mathemati-
cal analysis. Thus in the continuous shape space model
one can easily analyze the stability of the three homoge-
neous steady states of the model to uniform and sinu-
soidal perturbations (De Boer, Segel, and Perelson,
1992). In the discrete network model we were able to
find conditions for the existence of localized attractors.
However, a major disadvantage is that these models ig-
nore the turnover of clones in the network and have
rather simple, idealized topologies.

In the immune system the bone marrow produces
novel clones with new receptors at a rate that is suffi-
cient to replace all clones in the network in a few days.
Thus it seems that in the network the addition and de-
letion of clones takes place on a time scale that is similar
to the growth and decay rates of B cells. The addition
and deletion of clones was first considered in the simu-
lation model of Farmer, Packard, and Perelson (1986).
Farmer et al. (1987), as well as Varela et al. (1988), have
used the term ‘‘metadynamics’’ to denote the change in
dynamics of the system owing to the replacement of
clones. By adding a form of metadynamics to a class of
network models, De Boer and Perelson (1991) have at-
tempted to account for the effects of clonal insertion and
deletion processes in the network. Because the immune
network seems to be significant during early life
(Coutinho, 1989; Holmberg et al., 1989), the model was
used to study the development of the immune network.
They were particularly interested in two emergent
properties—the size and the connectivity of the net-
work.

1. Model equations

The model is composed of a varying number of B-cell
clones of different specificities that form a network.
Each clone is characterized by its specific antibody re-
ceptor, which is specified in the model by a bit string
that reflects the ‘‘shape’’ of the antibody (see Farmer,
Packard, and Perelson, 1986). A source, intended to
model the bone marrow, supplies novel B-cell clones
that can be incorporated into the network. Two clones
can interact via soluble antibodies whenever their recep-
tor shapes (i.e., bit strings) are complementary. Cells
that become activated proliferate and differentiate into
antibody-secreting cells. This maturation process takes a
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few days. Free antibodies may also react with comple-
mentary antibodies to form complexes. These com-
plexes, which are analogous to antigen-antibody com-
plexes, are removed from the system.

The field of a clone is defined as in Eq. (4.36). The
activation function f(hi) is the log-bell-shaped function,
Eq. (4.3).

To model the dynamics of the various B-cell clones
they assumed that cells proliferate at rate p upon idio-
typic stimulation and decay at rate dB . Thus

dBi

dt
5Bi@pf~hi!2dB# . (4.50)

This differential equation differs from that in the B and
AB models, Eqs. (4.1) and (4.35), respectively, in that it
has no source m . To model the time-dependent aspects
of antibody production De Boer and Perelson (1991)
used a ‘‘gearing up’’ function G(t) that accounted for
the time lag associated with the differentiation of stimu-
lated B cells. This approach was first introduced by Se-
gel and Perelson (1989b). In this model, a separate gear-
ing up function was used for each clone so that Gi(t)
could be interpreted as the proportion of fully differen-
tiated B cells of type i . Gi(t) was given by

dGi

dt
5k@f~hi!2Gi# , (4.51)

where k is a constant that determines the characteristic
time for gearing up. At t50, Gi(0)50 so that there is
no initial secretion. After antibodies are secreted they
are free in solution. Free antibodies A decay at rate dA
and form complexes with complementary antibodies,
which are eliminated at rate dC . Thus

dAi

dt
5sBiGi2dCAihi2dAAi , (4.52)

where s is the rate at which a fully mature B cell pro-
duces antibody. Note that this equation differs from Eq.
(4.35b) in the basic AB model by using Gi rather than
f(hi) as the modifier of s .

To summarize, the model consists of 3n differential
equations, where n is the number of clones in the sys-
tem. The size of the network n is determined by the
metadynamics.

2. Metadynamics

As in Farmer, Packard, and Perelson (1986) and Per-
elson (1988), the shape of each antibody molecule is rep-
resented as a bit string of length L . Antibody molecules
are assumed to recognize each other whenever their bit
strings can be matched complementarily. The specific
rule that we used was to align the bit strings and require
a complementary match over a stretch of at least r ad-
jacent positions. If the strings match over exactly r ad-
jacent positions, we assigned a low affinity, Jij50.1. If
the strings match over more than r adjacent positions,
we assigned a high affinity, Jij51. We set L532 and
varied r in order to vary the a priori matching probabil-
ity P(match) of receptors. For the matching rule de-

scribed above, P(match) is the probability of finding a
‘‘success run’’ of at least length r in a sequence of L
Bernoulli trials (e.g., r ‘‘heads’’ in a row in a sequence of
L coin tosses). For a binary string generated with equal
probabilities of 0 or 1 at each position, Feller (1968)
shows that P(match) can be approximated by the fol-
lowing formula, which becomes reasonably accurate for
L>2:

P~match!'12r
22x

~r112rx !xL11 ,

where x is the smallest root in absolute value of

12x1S x

2 D r11

50.

[One can also approximate P(match) by the methods
used by Percus, Percus, and Perelson (1993) and dis-
cussed in Sec. II.C.] Using Feller’s result, we find for L
532 and r56, 7, 8, 9, 10, and 11, P(match)'0.205,
0.103, 0.05, 0.024, 0.012, and 0.005, respectively. Experi-
mental data suggest that during early life clones are con-
nected to 20–25% of all the clones in the network
(Holmberg et al., 1984; Kearney, Vakil, and Nicholson,
1987). For L532 such a connectivity, i.e., P(match)
'0.2, is expected around r56.

In the simulation of De Boer and Perelson (1991), M
novel clones were produced each day, with each clone
containing about 10 cells. Using the string-matching al-
gorithm, each newly generated clone was compared with
the clones already in the network. A new clone was in-
corporated in the network only if it recognized at least
one other clone and if these interactions were suffi-
ciently stimulatory so that dBi /dt.0. At time intervals
of one day, clones were removed if Bi,1 and Ai
,u1/10, i.e., if the clone consisted of fewer than one cell
or if its antibody population was too small to have any
effect. As an initial condition the simulation was started
with a few randomly generated antibodies, assumed to
represent maternal antibodies.

3. Simulation results

Figure 33 shows how some global characteristics of
the network change in time for several values of the
clonal production rate (i.e., M510, 20, 40; lines increase
in thickness with M). The number of clones n in the
network [Fig. 33(a)] has a large peak during the first
month, whose height increases with M . This early peak
sharply declines by the third month, and the network
attains an equilibrium size around which it fluctuates.
The total amount of antibody produced by the network
is shown in Fig. 33(b). After a slow decline of the ma-
ternal antibodies, the total antibody concentration in-
creases until a steady-state level of about 33106 units is
attained, where a unit is the amount of antibody se-
creted by a single activated B cell during one day. This
level corresponds to roughly 1 mg/ml, the physiologi-
cally observed serum level of IgM. The daily average
number of connections per clone, i.e., the connectivity of
the network, is shown in Fig. 33(c). As in Fig. 33(a), Fig.
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33(c) shows an early peak and attains an equilibrium
around day 100. This equilibrium is about 6–9 connec-
tions per clone.

The fact that equilibrium levels are attained in Fig. 33
shows that the idiotypic network has certain self-
structuring properties. Interactions within the network
determine the network’s size and connectivity and deter-
mine the total serum antibody level. The existence of
stable ‘‘emergent’’ properties is one of the most interest-
ing features of this network model. As we all know, one
of the characteristics of living systems is their ability to
maintain themselves in the face of constant turnover of
their components. Thus, while as a whole the immune
system behaves as a coherent system, we know that the
cells and molecules that make up the system constantly
change. The De Boer-Perelson network model has pre-
cisely this property. Stable properties characteristic of
the immune system arise even though individual compo-
nents may have only short lifetimes within the system
and may even oscillate in concentration while they are
present. For example, the serum concentration of one
particular idiotype may oscillate, consistent with the
measurements of Lundkvist et al. (1989) and Varela
et al. (1991), whereas the total serum antibody concen-
tration remains quite constant. This is significant be-
cause there is no explanation of what physiological pro-
cesses maintain the constant serum immunoglobulin
concentrations. The De Boer-Perelson model is thus the
first quantitative model to address this question.

The emergent properties of the network were further
investigated by analyzing a series of networks in which
both P(match) and M were varied (Fig. 34). The equi-
librium size of the network strongly depended on

P(match) [Fig. 34(a)]. Networks comprised of sticky re-
ceptors [e.g., P(match).0.1] remained small and con-
tained fewer than 200 clones. Conversely, whenever re-
ceptors were specific [e.g., P(match),0.01], the
networks became larger and could contain thousands of
clones. From the shape of the observed curves one can
conclude that the number of clones was inversely related
to P(match). Thus systems with highly specific receptors
generated very large networks.

The light lines in Fig. 34(c) depict the dynamic con-
nectivity of the network, i.e., the average number of con-
nections per clone realized during the simulation. For
low values of P(match) the dynamical connectivity in-
creased with P(match) until it saturated at about 10
connections per clone. This saturation was surprising be-
cause it meant that the connectivity no longer depended
on the matching probability. It also showed that one
cannot always deduce P(match) from connectivity data.
The experimental estimate of a connectivity of 20–25 %
is only a transient in this model, which is attained during
the early peak shown in Fig. 34. This is consistent with
experiments by Holmberg et al. (1984) and Kearney,
Vakil, and Nicholson (1987) in which connectivities of
around 20% were observed in newborn mice and then
decreased by at least 10-to-100-fold in adult mice
(Holmberg et al., 1986, 1989; Zöller and Achtnich,
1991).

The ‘‘expected connectivity’’ of a network, i.e., the
P(match) multiplied by n , the number of clones in the
network [as provided in Fig. 34(a)], is shown by the
heavy lines in Fig. 34(c). Because the connectivity was
always smaller than the expected connectivity, one can
conclude that networks in equilibrium select for growth
and survival, within the network, of clones with low con-
nectivity. Within this framework, low connectivity is not
an intrinsic property of any particular antibody but
rather is determined by the random structure of a
clone’s receptor and the shapes of the receptors on the
other clones present in the system. A clone that is low
connectivity in one simulation may be a high-
connectivity clone in another simulation—the collection
of clones within the system at any given time determines
whether a clone will have high or low connectivity. This
is a prediction of the model that may be able to be
tested in experimental animals.

The fact that the observed equilibrium size of the net-
works is inversely related to P(match) accounts for a
‘‘self-regulatory completeness’’ of the repertoire: the
higher the specificity of the receptors the larger the
number of clones becomes in the immune network. Thus
over a large range of specificities the size of the system
changes so that the repertoire remains complete. This
completeness also provides an explanation for the fact
that the networks attain an equilibrium size. The net-
works grow until every bit string is expected to be con-
nected to a sufficient number of other clones to remain
stimulated. De Boer and Perelson (1991) explain this in
more detail.

The incorporation of metadynamics in this model was
an attempt to account for the rapid turnover of clones in

FIG. 33. Time-dependent characteristics of a sample network.
Parameters p51, dB50.5, dA50.05, m51, dC51023, u1
5102, u25104, k50.2, T58, P(match)50.05. We show three
values of bone marrow production: M510, M520, and M
540. Lines increase in thickness with M . (a) The number of
clones in the network; (b) the total antibody concentration on
a logarithmic scale (base ten); (c) the average connectivity.
(The bars indicate one standard deviation.)
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the network. Unfortunately, due to current computa-
tional limitations, it is impossible to perform the simula-
tions for realistic values of M . In the immune system the
bone marrow produces of the order of M5105 to M
5106 novel clones per day. Thus systems with of order
of a million differential equations might need to be
solved. We have simulated up to M5500 (De Boer and
Perelson, 1991). In an attempt to model systems with
larger values of M , De Boer, Hogeweg, and Perelson
(1992) approximated f(h) by a window automaton (Sec.
IV.D.3; Neumann and Weisbuch 1992a) and imple-
mented this AB model with gearing up in a two-
dimensional shape space as a cellular automaton. They
found that all of the conclusions presented above re-
mained true as M reached realistic values (see also De
Boer, van der Laan, and Hogeweg, 1993). Further dis-
cussion of automaton models is given below.

V. AUTOMATON APPROACHES

Networks of automata are dynamical systems that are
the discrete equivalent of differential systems. Recently
they have been widely used, for instance in neural nets
and cellular automata, to model complex systems such
as the brain or complex fluids. The theory of these net-
works has been actively developed during the last ten
years. We shall not try to redefine this formalism here.
The interested reader might refer to Meźard et al.
(1988), Hertz et al. (1990) or Weisbuch (1990a), for
simple introductions. One of the main advantages of
these networks for a biologist involved in modeling is
that the construction of a model requires a minimal
knowledge about the numerical values of the parameters
that define a system. The differential equation systems
described in the previous sections required biological

FIG. 34. Equilibrium characteristics of a series of networks varying P(match). Parameters as in Fig. 33. The equilibrium values
were determined by averaging over the last 100 days of a simulation. We show three values of M : h, M510; s, M520; n, M
540. (a) The total number of clones (light lines). (b) Total antibody. (c) The network connectivity (light lines) and the expected
network connectivity (heavy lines), defined by P(match) multiplied by the number of clones, as given in (a). (d) Average antibody
per clone.
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data on cell lifetimes, cell supply from the bone marrow,
thresholds for activation, affinity constants, etc. Most au-
tomata models do not require these data. The basic as-
sumption is that cell populations need only be described
by a set of discrete values, often 0 and 1, where 0 means
that a population is absent, while 1 means that it is
present at a high level. Interactions among populations
are represented by logical functions, i.e., Boolean func-
tions, which most often are equivalent to threshold au-
tomata (i.e., for physicists, spin variables at zero tem-
perature). Since the Jij are unknown they are usually
taken equal to 1, or set at random as in spin-glass mod-
els.

We describe some examples, usually in their simplest
version. Since these models often try to follow some of
the intricacies of the immune system in terms of the
cellular specificities, a faithful description would take us
too far into cellular immunology and into the idiosyncra-
sies of each model (at least in the two first cases).

A. Modeling B-T interactions

A discrete model for B-cell/T-cell interactions was
proposed by Kaufman, Urbain, and Thomas (1985).
These authors were interested in the simplest way to
describe the logic of the interactions among a number of
different cell types and their results in terms of the im-
mune response. Figure 35 shows the simplest version of
their network. The binary variables are B , the B-cell
population, A , the secreted antibody concentration, and
H and S , helper and suppressor T-cell populations, re-
spectively. Antigen is assumed to be either present or
absent and hence is represented by e , a binary param-
eter. Thus in this model suppression is taken into ac-
count by an explicit cell population, suppressor T cells,
rather than by a suppressive region in the proliferative

response function of B cells. The network is represented
by the following set of logical expressions:

B5e•h ,

H5e• s̄ 1h ,

S5h1s

A5e•b•h .

The bar over s ( s̄ ) is to be read as a NOT logical func-
tion, multiplicative sign (·) is to be read as an AND
logical function, and the + sign as an OR. The model
uses a specific kind of sequential updating so that one
has to make a distinction between states represented by
lower-case letters and updating functions represented by
upper-case letters. In the absence of antigen, the attrac-
tors of the dynamics are bhsa50000, 0110, 0010, which
can be interpreted as virgin, memory (in which there are
neither antibody nor B cells, but there are helper and
suppressor cells), and a nonresponsive or suppressed
state (the leftmost bits represent variable b , the second
h , the third s , and the last a). This analysis is extended
to more complicated networks taking into account dif-
ferent stages of development of B cells, and to systems
of differential equations by Kaufman and Thomas
(1987) and Kaufman (1988).

B. A model of autoimmune diseases

Immunologists interested in autoimmune diseases of-
ten work on animal models instead of humans. Experi-
mental autoimmune encephalomyelitis (EAE) is a dis-
ease that can be induced in mice and Lewis rats and
which serves as a model of multiple sclerosis (MS) in
humans. Adjuvant arthritis is an animal model of rheu-
matoid arthritis. Experiments on animals allow cellular
immunologists to isolate and culture those cells, T cells
in the above-mentioned models, involved in the devel-
opment or the suppression of the disease (Cohen, 1986).
The knowledge available to the theorist about an au-
toimmune disease is then which cell types have large
populations, what kind of interaction—help or
suppression—might exist among the different cell types,
and, at some ‘‘macroscopic level,’’ the result of immuni-
zations or cell transfers on the course of the disease.
This knowledge can then be incorporated into one or
several models, whose dynamical behavior can be com-
pared with experimental results. Although one can use a
differential equation model (cf. Segel and Jäger, 1994),
here we focus on automaton models. Figure 36 repre-
sents an early and very simple attempt to model by a
network of threshold automata the local network in-
volved in the response to the self antigen myelin basic
protein, as might occur in the diseases EAE or MS
(Weisbuch and Atlan, 1988a).

A five-cell-type network is shown in Fig. 36. Automa-
ton ]1 represents killer cells in a resting state, ]2 killers
activated by the presence of the antigen, ]3 and ]5 sup-
pressor cells, and ]4 helper cells. The arrows represent
‘‘synaptic connections’’ of either sign. The strengths of

FIG. 35. Boolean model of B-T cell interactions was based
upon the interaction scheme shown above in which E stands
for epitope (the antigen), B for B cells, A for antibody, TH

and TS for helper and suppressor T cells. From Kaufman, Ur-
bain, and Thomas (1985), reproduced with permission.
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all synaptic connections are taken equal to 1. The
thresholds are positive and less than 1. The iteration
process involves parallel updating of the automata. Such
a net can be in any of the 32 configurations correspond-
ing to different populations of the five cell types. The
dynamics of this network has two attractors, one with all
automata in state 0, which can be interpreted as a virgin
state corresponding to the absence of any cell type spe-
cific for the antigen. The other attractor has binary rep-
resentation 10111, which indicates a small concentration
of activated killers and a large concentration of all other
cell types. It corresponds to a healthy carrier state, with
killer cells only in a resting state, thus unable to harm
the organism by developing an active autoimmune reac-
tion. The basin of attractors of these two attractors are
obttained by the iteration of all the 32 possible configu-
rations. Attractor 10111 is preceded for instance by con-
figuration 10111, with active killer cells. If one survives
this critical period one reaches attractor 10111, the vac-
cinated carrier state.

More elaborate versions of this approach were devel-
oped by Atlan and Cohen (1992). Chowdhury and
Stauffer discussed extensions of the small-network ap-
proach to AIDS and cancer (see their review paper pub-
lished in 1992). Cellular-automaton models have also
been formulated for the interactions between helper
T-cell subsets (Brass, Grencis, and Else, 1994), for HIV
infection of T cells and macrophages (Pandey and
Stauffer, 1990; Pandey, 1991; Mosier and Sieburg, 1994),
and for more general immune system models (Celada
and Seiden, 1992, 1996; Seiden and Celada, 1992).

The Seiden and Celada (1992) approach is particularly
noteworthy since an attempt is being made to build a
general immune system simulator. Their model begins
with a bit-string description of receptors on B cells and
T cells, as well as major histocompatibility complex

(MHC) molecules on antigen-presenting cells. Antigen,
8 bits long, interacts with an 8-bit MHC molecule and
under the correct matching conditions a complex is
formed which has 4 antigen bits and 4 MHC bits ‘‘ex-
posed.’’ This complex is now capable of interacting with
an 8-bit T-cell receptor. The full 8-bit antigen can also
interact with 8-bit antibodies secreted by B cells that
were stimulated by interacting with the antigen and ap-
propriate T helper cells. The number of cells and mol-
ecules are discrete variables, and events such as cell
division or antigen-antibody binding occur probabilisti-
cally, with probabilities chosen so that the relative rates
of different processes can be modeled. The simulation is
done on a two-dimensional grid, and cells and molecules
migrate over the grid; interactions occur only among
cells and molecules in the same automaton cell. The
model incorporates a lot of immunological details, and
parameters have been tuned to give realistic-looking im-
mune responses. Questions related to the optimal num-
ber of MHC molecules and the process of affinity matu-
ration have been addressed with the model.

C. Spin-glass models

Spin glasses and neural nets have also inspired some
models in theoretical immunology that are direct imple-
mentations of these formalisms. Parisi (1988), for in-
stance, used a spin-glass formalism with symmetrical
random connections to show that even in the case of
large connectivity resulting in many clones Ab1 that
recognize the antigen, the anti-idiotypic clones Ab2, un-
like the internal image of the antigen-specific clone,
have little chance to be excited since the field they ex-
perience is the result of random contributions. Only the
clone corresponding to the internal image has some
chance to be excited since its field results from a coher-
ent contribution from the first-level clones. Lefèvre and
Parisi (1993) have examined learning and memory in
spin-glasslike immune networks.

Weisbuch and Atlan (1988b) used a dilute neural net
formalism as a generalization of the simple neural net-
work model discussed in Sec. V.B. With this formalism
they studied the transition between organized behavior
(localized attractors and cyclic attractors with short pe-
riods) and chaos (nonlocalization and aperiodic dynam-
ics). In the dilute random-neural-nets formalism, local-
ized behavior is observed only when a sufficiently large
threshold u is applied to the automata. The condition
found by Weisbuch and Atlan was

u.Az log~z !,

where z is the connectivity of the network.

D. Automata on a 2-dimensional shape space with
metadynamics

Stewart and Varela (1991), De Boer, Hogeweg, and
Perelson (1992), De Boer, Segel, and Perelson (1992),

FIG. 36. Boolean net analyzed by Weisbuch and Atlan
(1988a), reproduced with permission.
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and De Boer, van der Laan, and Hogeweg (1993) have
proposed and analyzed automaton models in a two-
dimensional (2-d) shape space. We first describe the
Stewart and Varela model. As in the De Boer and Per-
elson (1991) bit-string model described in Sec. IV.G,
Stewart and Varela were interested in a metadynamics
in which new clones are constantly generated from the
bone marrow. Their basic algorithm consists in the gen-
eration of new clones at each time step. A new clone is
randomly assigned a position on the 2-d space, with
population 1. Fields on each clone are computed by add-
ing contributions from neighboring clones. Individual
contributions to the field are weighted by a Gaussian
distribution according to the distance between clones as
in the Segel and Perelson (1988) continuous-shape-space
model (Sec. IV.F), but instead of using a single shape
plane with maximum complementarity at opposite sites
in the plane, Stewart and Varela use a representation
with two sheets of complementary clones, white and
black, and maximum complementarity occurs for clones
of different colors at the same place. With our notation,
the field hi acting on clone i , is given by

hi5(
j

e2dij /c2
, (5.1)

for all j clones of opposite color, where dij is the dis-
tance between clone i and j , and c is a scaling constant.
All clones, old and new, are set to zero population ex-
cept if they experience an intermediate field, L,h
,H , in which case their population is set to 1. This dy-
namics results in the appearance of black and white
stripes in the shape space (see Fig. 37). Black stripes
apply large suppressive fields which exclude white
clones. The parallel stripes of white clones create inter-
mediate fields sufficient to sustain the black clones.
These regions are stabilized by the presence of self an-
tigens. The large fields created by these self antigens is
sufficient to suppress complementary clones of opposite
color in their immediate neighborhood, but excite them
at a distance (see Fig. 37). A generalization of this black-
white model to a system using differential equations to
model the relevant dynamics is given by Detours et al.
(1994).

A related model is that of De Boer, Segel, and Perel-
son (1992). Their model is formally a coupled map lat-
tice model rather than an automaton model. Using a 2-d
shape space, they let B5ln b, where b is the B cell con-
centration at position (x ,y) in shape space. With m50,
Eq. (4.45) then becomes

]B/]t5pf~h !21, (5.2)

where the B-cell death rate was set to 1 by an appropri-
ate choice of the time scale, and p'2 in these units.
Because 0<f(h)<1, 21<]B/]t<p21'1. Thus the
derivative is bounded, and using an Euler integration
method with step size one gives

B~x ,y ,t11 !5B~x ,y ,t !1pf~h !21. (5.3)

Since B50 corresponds to b51, i.e., one B cell, it seems
reasonable to require that B(x ,y) never become smaller
than zero. Thus De Boer, Segel, and Perelson (1992)
assume

B~x ,y ,t11 !5max@0,B~x ,y ,t !1pf~h !21# . (5.4)

Computing h(x ,y) by a discrete representation of
(4.46), i.e., similar to Eq. (5.1), converts this model into
a 2-d lattice map. Figure 38 shows the distribution of
clones and field values that result from a typical simula-
tion of this type. At each location (x ,y) the gray scale
indicates the size of clone B(x ,y) [Fig. 38(a)] and the
size of the field h(x ,y) [Fig. 38(b)]. The patterns seen in
the figure are roughly circular due to the use of a trun-
cated Gaussian function for f(h). Were we to use a
square local neighborhood rather than the circular
Gaussian neighborhood used here, the patterns would
be more rectangular. The distribution of clone sizes and
fields form a landscape of hills and valleys that resemble
the distribution seen in the one-dimensional shape space
illustrated in Figs. 31 and 32.

Restricting B to a small set of integer values and
choosing f(h) as a window automaton converts the
model into a cellular automaton. Dasgupta (1992) stud-
ies this model with B restricted to values 0, 1, and 2 and
with a stochastic updating rule. Stauffer and Weisbuch
(1992) and De Boer, van der Laan, and Hogeweg (1993)
use only two values, 0 and 1. These models are compu-
tationally efficient and have been used to study pattern
formation in shape space and the effects of high rates of
cell recruitment into the network (De Boer, Hogeweg,
and Perelson, 1992; De Boer, van der Laan, and
Hogeweg, 1993).

In these models the patterns that appear represent the
immune activity in the animal. Memory to an antigen or

FIG. 37. Simulation of a two-dimensional shape space with
window automata. Black and white clones recognize each
other with strength decaying according to a Gaussian function
of the distance. Homogeneous stripes are organized around
self-antigens, represented by squares. From Stewart and
Varela, 1991, reproduced with permission.
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set of antigens involves parts of the pattern remaining
relatively invariant for long periods. Patterns do change
on a slow time scale due to the influx of new cells and
perturbations by antigens. Whether these low-
dimensional models can usefully represent the changing
immune repertoire remains to be seen.

The effect of changing the dimensionality d of the
network was studied by Stauffer and Weisbuch (1992).
Bit-string models correspond to large-d networks, while
1- or 2-d networks have a small dimension with respect

to the dimension required for a valid mean-field ap-
proximation. The shape-space model of Perelson and
Oster (1979) suggested that the immune system operates
with a shape space of an intermediate value of d be-
tween 5 and 10. By systematic studies of three-state cel-
lular lattices with d varying from 1 to 10, Stauffer was
able to observe that small-d lattices (d,4) were always
ordered, thus having localized attractors, while large-d
lattices exhibited a chaotic regime when the initial dis-
order was above a given threshold.

VI. DISCUSSION

Immunology developed over the past 200 years as a
branch of medicine originally aimed at preventing infec-
tious disease through vaccination. Because of these be-
ginnings immunology through most of the 19th and 20th
centuries has been dominated by physicians and has
been taught in medical schools, usually in departments
of pathology or departments of immunology and micro-
biology. First slowly at the beginnings of the 20th cen-
tury, with the interests of chemists in immunological re-
actions, and with accelerating pace in the last decade
with cell and molecular biologists taking increasing in-
terest in immunology, the field has become one of basic
science. The newest group of scientists to take an active
interest in the field are theoreticians, trained in physics
and mathematics. The Nobel Laurecte Jerne, for ex-
ample, had undergraduate training in physics. An era is
thus beginning in immunology in which theory is playing
a part in the intellectual development of the field. We
feel that, as in other areas in which systems are complex,
theory and techniques of theoretical physics have an im-
portant contribution to make towards increasing our un-
derstanding of the phenomena of immunology.

Theories in immunology have taken two forms: verbal
or nonmathematical and mathematical. Nonmathemati-
cal theories have been pioneered by experimental im-
munologists, such as MacFarlane Burnet, the inventor of
clonal selection theory, and Neils Jerne, the inventor of
idiotypic network theory. These theories, while not
originally formulated in a quantitative way, have been
developed into quantitative theories (see Secs. II and
IV). The other class of theories have been formulated
mathematically. For example, the model of Percus, Per-
cus, and Perelson (1993), which predict the size of
epitopes (Sec. II.C), the models of receptor cross-linking
(Sec. III.A), and affinity maturation (Sec. III.C) are all
of this form. Both classes of models are important and
have made contributions to the field of immunology.

One area in which mathematical models will probably
grow in importance is in the study of global behavior of
the immune system. Cellular and molecular biologists
and immunologists have achieved great success in isolat-
ing and even in understanding many of the molecules
and cells of the immune system. However, their reduc-
tionist techniques fail when one asks questions about the
behavior of large collections of cells and molecules. For
example, what controls the total number of lymphocytes
in the body or what determines the level of serum im-

FIG. 38. Patterns of clone size (a) and corresponding field
values (b) that result from a two-dimensional lattice map
model of shape space. Illustrated is the solution to Eq. (5.4)
after 500 iterations.
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munoglobulin are questions that have not yet been an-
swered. Models have the potential of showing how local
interactions among cells and molecules can generate the
global coordinated behavior that characterizes many im-
mune phenomena. The model of De Boer and Perelson
(1991), discussed in Sec. IV.G, illustrated how control of
the total serum antibody level could be attained as a
consequence of a log-bell-shaped activation function for
cells in a network.

Dynamics is an area well appreciated by physicists but
one in which little work is being done in immunology.
Because of difficulties in collecting data from one animal
at many time points, dynamic experiments are rarely
done, and when they are done they rarely have data
taken at more than a few time points. Thus questions
about whether immune systems operate at steady state,
whether they oscillate, whether they are chaotic, etc. are
difficult to answer. It is hoped that through modeling we
can demonstrate the power of dynamic analyses to the
experimental community and perhaps generate the mo-
tivation for carrying out both difficult and expensive dy-
namic experiments.

Lee Segel has said that one of the hallmarks of a com-
plex system is that it is a system that cannot be described
by a single model (Segel, 1995). This point has been well
illustrated in this article. Different individuals and dif-
ferent groups have explored fundamentally different
models of the same phenomena. For example, Weisbuch
and co-workers have pursued immune network models
that have localized attractors and that can account for
some of the most basic phenomena in immunology—
immunity and tolerance. Perelson, on the other hand, in
addition to pursuing localized attractor models, has also
investigated models that operate in a chaotic regime and
that are typically characterized by nonlocal percolative
behavior. In these models he has shown that, although
individual clones or small sets of clones may act chaoti-
cally, when averages are taken over large populations
the immune system behavior appears regular and con-
trolled. Insufficient data exist at the level of single clones
to distinguish between these classes of models and thus
at this stage in the development of a field of quantitative
immunology both classes of models are being studied.

Mathematical modeling in immunology is a field still
in its infancy. The payoffs for developing successful
models will be increased understanding of the operation
of the immune system, the generation of new ideas, and
new experiments to test them, as well as the eventual
possibility of conducting immunological experiments in
machina rather than in vitro or in vivo (Celada and
Seiden, 1992, 1996). The models described above al-
ready contain insights into how clonal selection works,
how affinity maturation occurs, how immunological net-
works may be involved in immune memory and how
networks may be responsible for controlling the serum
level of immunoglobulin. The challenge in immunology,
as in brain research, is to understand a system of enor-
mous complexity. One can only hope that the principles
and ideas being developed in complex systems, nonlin-

ear science, and the tools of computer simulation will
help unravel the remaining mysteries.
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Holmberg, D., Å. Andersson, L. Carlson, and S. Forsgen, 1989,
Immunol. Rev. 110, 89–103.

Holmberg, D., S. Forsgen, F. Ivars, and A. Coutinho, 1984,
Eur. J. Immunol 14, 435–441

Holmberg, D., G. Wennerstrom, L. Andrade, and A.
Coutinho, 1986, Eur. J. Immunol 16, 82–87.

Hraba, T., and J. Dolezal, 1989, Folia Biologica (Praha) 35,
156–163.

Hraba, T., and J. Dolezal, 1994, Folia Biologica (Praha) 40,
103–111.

Hraba, T., J. Dolezal, and S. Celikovsky, 1990, Immunobiol.
181, 108–118.

Inman, J. K., 1978, in Theoretical Immunology, edited by G. I.
Bell, A. S. Perelson, and G. H. Pimbley, Jr. (Dekker, NY),
pp. 243–278.

Jerne, N. K., 1974, Ann. Immunol. (Inst. Pasteur) 125 C, 373–
389.

Kang, C.-Y., and H. Kohler, 1986a, Ann. (N.Y.) Acad. Sci. 475,
114–122.

Kang, C.-Y., and H. Kohler, 1986b, J. Exp. Med. 163, 787–796.

Kauffman, S. A., E. D. Weinberger, and A. S. Perelson, 1988,
in Theoretical Immunology, Part One, SFI Studies in the Sci-
ences of Complexity, edited by A. S. Perelson (Addison-
Wesley, Redwood City, CA), pp. 349–382.

Kaufman, M., 1988, in Theoretical Immunology, Part One, ed-
ited by A. S. Perelson (Addison-Wesley, Redwood City, CA),
pp. 199–222.

Kaufman, M., F. Andris, and O. Leo, 1992, in Theoretical and
Experimental Insights into Immunology, edited by A. S. Per-
elson and G. Weisbuch (Springer, Berlin), pp. 93–115.

Kaufman, M., and R. Thomas, 1987, J. Theor. Biol. 129, 141–
162.

Kaufman, M., J. Urbain, and R. Thomas, 1985, J. Theor. Biol.
114, 527–561.

Kearney, J. F., and M. Vakil, 1986, Immunol. Rev. 94, 39–50.
Kearney, J. F., M. Vakil, and N. Nicholson, 1987, in Evolution

and Vertebrate Immunity: The Antigen Receptor and MHC
Gene Families, edited by G. Kelsoe and D. Schulze (Univer-
sity of Texas, Austin, TX), pp. 373–389.

Kepler, T. B., and A. S. Perelson, 1993a, Immunol. Today 14,
412–415.

Kepler, T. B., and A. S. Perelson, 1993b, J. Theor. Biol. 164,
37–64.

Kepler, T. B., and A. S. Perelson, 1995, Proc. Natl. Acad. Sci.
USA 92, 8219–8223.

Kevrekidis, I. G., A. D. Zecha, and A. S. Perelson, 1988, in
Theoretical Immunology, Part One, edited by A. S. Perelson
(Addison-Wesley, Redwood City, CA), pp. 167–197.

Kirschner, D. E., and A. S. Perelson, 1995, in Mathematical
Population Dynamics: Analysis of Heterogeneity and the
Theory of Epidemics, edited by O. Arino, D. E. Axelrod, M.
Kimmel, and M. Langlais (Wuerz Publishing, Winnipeg,
Canada), pp. 295–310.

King, R. B., 1988, in Theoretical Immunology, Part One, edited
by A. S. Perelson (Addison-Wesley, Redwood City, CA), pp.
257–272.

Klinman, N. R., and J. L. Press, 1975, Transplant. Rev. 24,
41–83.

Kürten, K. E., 1992, in Theoretical and Experimental Insights
into Immunology, edited by A. S. Perelson and G. Weisbuch
(Springer, Berlin), pp. 163–170.

Kuznetsov, V. A., I. A. Makalkin, M. A. Taylor, and A. S.
Perelson, 1994, Bull. Math. Biol. 56, 295–321.
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Segel, L. A., and E. Jäger, 1994, Bull. Math. Biol. 56, 687–721.
Segel, L. A., and A. S. Perelson, 1988, in Theoretical Immunol-

ogy, Part Two, SFI Studies in the Sciences of Complexity,
edited by A. S. Perelson (Addison-Wesley, Redwood City,
CA), pp. 321–343.

Segel, L. A., and A. S. Perelson, 1989a, Immunol. Lett. 22,
91–100.

Segel, L. A., and A. S. Perelson, 1989b, In Cell to Cell Signal-
ling: From Experiments to Theoretical Models, edited by A.
Goldbeter (Academic, NY), pp. 273–283.

Segel, L. A., and A. S. Perelson, 1989c, in Theories of Immune
Networks, edited by H. Atlan and I. R. Cohen (Springer, Ber-
lin), pp. 63–70.

Segel, L. A., and A. S. Perelson, 1990, SIAM (Soc. Ind. Appl.
Math.) J. Appl. Math. 50, 91–107.

Seiden, P. E., and F. Celada, 1992, J. Theor. Biol. 158, 329–357.
Sheriff, S., E. W. Silverton, E. A. Padlan, G. H. Cohen, S. J.

Smith-Gill, B. C. Finzel, and D. R. Davies, 1987, Proc. Natl.
Acad. Sci. USA 84, 8075–8079.

Shoenfeld, Y., and E. Moses, 1990, FASEB J. 4, 2646–2651.
Siskind, G. W., and B. Benacerraf, 1969, Adv. Immunol. 10,

1–50.
Stadler, P. F., P. Schuster, and A. S. Perelson, 1994, J. Math.

Biol. 33, 111–137.
Stauffer, D., and M. Sahimi, 1994, J. Theor. Biol. 166, 289–297.
Stauffer, D., and G. Weisbuch, 1992, Physica A 180, 42–52.

Stewart, J., and F. J. Varela, 1989, Immun. Rev. 110 (1989),
37–61.

Stewart, J., and F. J. Varela, 1990, J. Theor. Biol. 144, 103–115.
Stewart, J., and F. J. Varela, 1991, J. Theor. Biol. 153, 477–498.
Sulzer, B., R. J. De Boer, and A. S. Perelson, 1996, Biophys. J.

70, 1154–1168.
Sulzer, B., and A. S. Perelson, 1996, Math. Biosci 135, 147–185.
Sulzer, B., J. L. van Hemmen, and U. Behn, 1994, Bull. Math.

Biol. 56, 1009–1040.
Sulzer, J. L. van Hemmen, A. U. Newmann, and U. Behn,

1993, Bull. Math. Biol. 55, 1133–1182.
Takemori, T., and K. Rajewsky, 1984, Immunol. Rev. 79, 103.
Tew, J. G., and T. E. Mandel, 1979, Immunology 37, 69–76.
Tew, J. G., R. P. Phipps, and T. E. Mandel, 1980, Immunol.

Rev. 53, 175–211.
Uspensky, J. V., 1937, Introduction to Mathematical Probabil-

ity (McGraw-Hill, New York), pp. 77–84.
Vakil, M., H. Sauter, C. Paige, and J. F. Kearney, 1986, Eur. J.

Immunol. 16, 1159–1165.
Varela, F. J., A. Anderson, G. Dietrich, A. Sundblad, D.

Holmberg, M. Kazatchkine, and A. Coutinho, 1991, Proc.
Natl. Acad. Sci. USA 88, 5917–5921.

Varela, F., and A. Coutinho, 1991, Immunol. Today 159, 159–
166.

Varela, F., A. Coutinho, B. Dupire, and N. M. Vaz, 1988, in
Theoretical Immunology, Part Two, edited by A. S. Perelson
(Addison-Wesley, Redwood City, CA), pp. 359–375.

Vogelstein, B., R. Z. Dintzis, and H. M. Dintzis, 1982, Proc.
Natl. Acad. Sci. USA 79, 395–399.

von Boehmer, H., 1991, Sci. Am. (Int. Ed.) , 74–81.
Wei, X., S. K. Ghosh, M. E. Taylor, V. A. Johnson, V. A.

Emini, P. Deutsch, J. D. Lifson, S. Bonhoeffer, M. A. Nowak,
B. H. Hahn, M. S. Saag, and G. M. Shaw, 1995, Nature (Lon-
don) 373, 117–122.

Weinand, R., 1991, in Molecular Evolution on Rugged Land-
scapes: Proteins, RNA and the Immune System, edited by A.
S. Perelson and S. A. Kauffman (Addison-Wesley, Redwood
City, CA), pp. 215–236.

Weisbuch, G., 1990a, Complex Systems Dynamics (Addison-
Wesley, Redwood City, CA).

Weisbuch, G., 1990b, J. Theor. Biol. 143, 507–522.
Weisbuch, G., and H. Atlan, 1988a, J. Phys. A 21, L189–L192.
Weisbuch, G., and H. Atlan, 1988b, in Theories of Immune

Networks, edited by H. Atlan and I. R. Cohen (Springer, Ber-
lin), pp. 53–62.

Weisbuch, G., R. De Boer, and A. S. Perelson, 1990, J. Theor.
Biol. 146, 483–499.

Weisbuch, G., and M. Oprea, 1994, Bull. Math. Biol. 56, 899–
921.

Weisbuch, G., and A. S. Perelson, 1991, in Molecular Evolu-
tion on Rugged Landscapes: Proteins, RNA and the Immune
System, edited by A. S. Perelson and S. A. Kauffman
(Addison-Wesley, Redwood City, CA), pp. 189–205.

Wiegel, F. W., and A. S. Perelson, 1981, J. Theor. Biol. 88,
533–568.
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