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Abstract. We discuss the influence of information contagion on the dynamics of
choices in social networks of heterogeneous buyers. Starting from a cellular au-
tomata model we show that when buyers and sellers try to adjust bids and asks the
tatonement process does not converge to equilibrium at some intermediate mar-
ket share and that large amplitude fluctuations are actually observed. When the
tatonement dynamics is slow with respect to the contagion dynamics, large periodic
oscillations reminiscent of business cycles appear.

1 Introduction

Bubbles in financial market are one of the most spectacular stylised fact
in contradiction with General Equilibrium Theory. Economists and “econo-
physicists” have also noticed that the spectral properties of stock, commodi-
ties and foreign exchange return series were far for Gaussian noise: return
series display scale invariance, a property that physicists and economists re-
late to as cooperativity (interactions) among the agents. To our knowledge
there have been very few explicit models of the phenomenon and our aim in
this contribution is to discuss one of the simplest theoretical approach.

Basically our model couples interaction among agents with their tatone-
ment procedure to get “fair” prices. Both processes have attracted the at-
tention of modelers, see e.g. Folmer (1974), Galam (1982, 1991) and Orlean
(1995) for interactions and herding behaviour and Lesourne (1992) for ad-
justment.

e We suppose that agents are not independent and that their individual
choices are influenced by the choice of their neighbours for whatever rea-
son, externalities or information;

e Agents initially have some reservation price that they adjust to match
offers.

In a previous attempt to understand these phenomena, we used a perco-
lation model to describe the information contagion dynamics (Solomon etal
2000, Weisbuch and Stauffer 2000, Weisbuch and Solomon 2000, Weisbuch
etal 2001). Agents are nodes of a lattice and are susceptible to purchase a
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good when its quality meet their expectations after one of their neighbours
purchased. Adjustment of qualities and expectations are based on a standard
tatonement process which we describe further in section 2.2. The resulting
dynamics were checked by the observation of time series of purchase, patterns
of purchase, and Fourier transform of the time series. A distinctive feature
of cooperativity was the observed 1/f2 spectrum of the purchase time se-
ries. Comparable results were obtained by Plouraboué etal (1998) and Steyer
and Zimmermann (2000) who reported 1/ f noise when the slow dynamics is
Hebbian learning.

One of the purpose of the present study is to check the genericity of the
previously modeled behavior: we only have a very indirect knowledge of the
reasons why agents decide to purchase a good or not to purchase it, not to
mention the specific algorithm they would use to survey their neighbours
before taking a decision. The previously used percolation approach supposes
that the purchase by one of their neighbour is sufficient to provide a full
knowledge of the quality of the product, while the “counter” (or voting)
dynamics presented here implies that agents survey all their neighbours to
take some average opinion. There might be specific situations for which one
or the other scheme would make more sense, but in general we would like to
know how different would the resulting global dynamics be.

The paper first describe the model. We then give simulation results for
the two different dynamical regimes. After some study of the influence of pa-
rameters we discuss in the conclusion the relevance of the observed dynamics
to business cycles and financial markets.

2 The INCA model

2.1 Information contagion

A rather standard model of information contagion is based based on cellular
“counters” (also called voters dynamics). Let us consider cellular automata:
binary agents occupy sites of a 2-dimensional lattice. The decision rule, buy or
not buy, corresponding to state S; = 1 or to state S; = —1,! is based on some
combination of private information and information coming from neighboring
(on the lattice) agents. The private information of agent ¢ is some threshold
0;, and information incoming from neighbours is simply the sum of their
individual states. At each time step one agent randomly selected updates its
state by comparing the sum of its neighbours’ states to its threshold:

Sit+1)=1 iff »_ S;t+1)>6; (1)

! the choice 1 or 0 for buy or not buy, is more standard in economics, but our
choice, inspired from physics, respects symmetry and thus makes computations
and mathematical expressions simpler.
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Otherwise S;(t + 1) = —1. Homogeneous counters automata, with identical
thresholds, are simple cellular automata which dynamical attractors depend
on the amplitude of the threshold as compared to the number of neighbors.
Lower threshold (less than -2) give homogeneous attractors with state 1 for
all automata, higher thresholds (more than +2) give homogeneous attractors
with state -1 for all automata. Intermediate threshold values give coexisting
domains of plus and minus ones which size depends upon thresholds and
initial conditions (see e.g. Weisbuch 1991 for more details).

But we are interested here in inhomogeneous counters with different thresh-
olds: INCA? are disordered systems and their dynamical properties reflect
their disordered structure: one observes stable dynamical regimes separated
by finite width phase transitions for which attraction basins depend up on
the particular realisation of disorder. Weisbuch and Boudjema (1999) have
shown for instance that even under a favourable average threshold which
would predict invasion by +1’s in a sea of -1’s, the detailed positions of the
automata initially at state +1 are important. The phenomenon is well-known
in the physics of phase transitions: germs are initially necessary to the growth
of a stable phase in conditions of supercooling for instance.

2.2 The adjustment model

Let us now be more specific about the interpretation of the threshold in
terms of economics. The threshold which drives the buying behavior of the
agent can be seen as a price difference between how much a seller would
like to get from a product and how much a buyer is ready to pay for it in
the absence of any buyer in the agent neighborhood. A positive threshold
would prevent purchase, a negative one would allow it. The presence of other
purchasers in the neighborhood would favour purchase. (Of course prices have
to be expressed in some units consistent with equation 1. Two units in price
difference corresponds to a threshold change of one extra neighbour).
The adjustment process now can be simply stated as:

e When an agent did not purchase upon update (S; = —1), she decreases
her threshold with the hope to be able to be in a better condition to
purchase next time;

e in the opposite case she increases it.

The algorithm is above described as adjustment of a buyer reservation price,
but a symmetrical reasoning for a seller would give the same threshold dy-
namics.

The adjustment dynamics in the absence of any coupling between agents
would be similar to the simple mechanism describe e.g. by Laffond and
Lesourne (1992) and would yield a similar clearing of the market as described
in Lesourne’s book (1992). The difference here is that we are interested in

2 INhomogeneous Cellular Automata (Vichniac 1986).
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multiple purchases by agents and that we couple adjustment and contagion
dynamics.

3 Simulation results

3.1 The slow adjustment regime

Before a full study of parameters and variants let us try to understand the
simplest case. An obvious parameter of the model is how fast the threshold
is adjusted with respect to the buying propagation dynamics. Let us suppose
that at every update, the adjustment is random and uniformly distributed
on [0,¢]. We further refer to ¢ as the adjustment rate. Its magnitude has
to be compared with the number of neighbours taken into account in the
simulation: we used four. For slow adjustment rate such as ¢ = 0.1, we expect
the dynamics of adjustment to be slow with respect to the diffusion dynamics.
Let us define the relative adjustment rate p as the ratio between the average
adjustment, here ¢/2, and the difference between thresholds such that isolated
individuals among a neighbourhood of either buyers or non-buyers would take
an opposite view to their neighbours, here 8. The slow adjustment regime is
such that:

p<% 2)

where L is the linear dimension of the lattice. The second term is the inverse
of the time necessary to propagate a position, buying or not buying, across
the net, under the most favourable threshold condition (the term 2 is due to
the fact that we use periodic boundary conditions).

The simulation conditions are then:

e A square lattice of dimension L? (e.g. 20x20 for figure 1);

e random?® updating based on the described algorithms;

e The initial configuration of agents is random for the binary state and
thresholds are uniformly distributed on [-1,1].

Figure 1 is a time plot of the average state of agents fraction of buyers
and average threshold.

The regular oscillations of agents states and average thresholds obtained
at large time give some indication of the processes which control the dy-
namics. Note that both quantities display relaxation rather than sinusoidal
oscillations, threshold varying as a triangular wave and purchases more like
a square wave which saturates at maximum (all or no agents purchasing).
The two quantities have a phase shift of 7/2: extreme variations of the aver-
age threshold occur when purchases saturate. These observations plus direct

3 at each time step one node randomly chosen is updated according to equation 1
for its state and section 2.2 for its threshold
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Fig. 1. Time evolution of the average state of agents and average threshold, in the
slow adjustment regime. (average state=1, everyone buys, average state=-1, no-one
buys.). Unit time correspond to updating each site once on average).

online observation of the lattice dynamics for purchase and threshold can be
easily understood.

Once the lattice is in a saturated condition, say everyone buying, an iso-
lated agent who would choose not to buy needs a threshold much higher than
if she were surrounded by non-buyers. The system has to “wait” until thresh-
olds which were low during the rise of the purchasing behaviour rise again
to allow the apparition of isolated non-buyers. Hence the straight part of the
average threshold evolution corresponding to its slow and regular increase.
But as soon as isolated non-buyers are present, their neighbours need a lower
threshold to switch to no-purchase; a wave of no-purchase propagates accross
the lattice. Hence the fast switch observed on the purchase time evolution:
online observation display the growth of non-purchaser germs surrounded by
disappearing domains of purchasers. One single sweep from purchasing to
non-purchasing is the equivalent of a phase transition for which germs are
needed (first order phase transitions). The phenomenon is symmetrical for
purchase and no purchase, hence the observed oscillations.
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3.2 The fast adjustment regime

With large networks and fast adjustment rates, the global synchrony between
all agents on the lattice is destroyed. Agent states (purchase/no-purchase)
and thresholds display small homogeneous domains on the lattice. Because
of the randomness of the updating process, some agents easily reach “eccen-
tric” (opposed to their neighbours) positions and many domains out of phase
start growing in different places*. This behaviour is observed with online
simulations and displayed on figure 2 at time 100 000.

The change of dynamical regime with adjustment rates ¢ is very smooth
and correspond to what physicists call a crossover rather than a phase tran-
sition.

Fig. 2. Pattern of behaviour at time 100 000 in the fast adjustment regime. Adjust-
ment rate ¢ is 0.7. Grey squares correspond to buyers, black squares to non-buyers.
(In the slow adjustment regime domains would be much larger. Sometimes, consen-
sus accross the lattice is achieved).

Because of domains asynchrony, oscillation are relatively smaller and less
regular in amplitude in the fast adjustment regime than in the slow adjust-
ment regime as observed in figure 3. Saturation of the (no)purchaser fraction
is never reached.

4 By contrast, in the slow adjustment regime, many time steps are needed to sweep
from the lower to the upper threshold, and the standard deviation of the threshold
is reduced by the summing process, thus allowing synchrony of agents behaviour.
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Fig. 3. Time evolution of the average state of agents and average threshold in the
fast adjustment regime. Oscillation are smaller and less regular in amplitude than
in the slow adjustment regime.

Another way to monitor inhomogeneity is to check the spatial autocorre-
lation function of states.

0(@) = TiSOSG+) = (£,50) o

where i is the position of lattice sites and d the translation distance. L? is
the number of agents.

Figure 4 displays the autocorrelation function for different lattice sizes
in the fast adjustment regime when the adjustemnt rate ¢ = 0.7. Its fast
decay, over some 4 lattice sites, tells us that the average linear dimension
of purchasing or no-purchasing domains is of order 4 to be compared with
the patterns observed on figure 2. A striking result is that although lattice
linear sizes change by a factor 8, the autocorrelation function are very similar,
implying that the average size of domains is independent of lattice size in the
fast adjustment regime. In other word, figure 2 is statistically representative
of any part of a larger lattice.

Scaling

The system has only two parameters, L the lattice dimension and the
average adjustment rate p. We would like to know how the characteristic
variable of the dynamics, frequency and amplitude of the oscillations, and
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Fig. 4. Spatial autocorrelation function of the average fraction of buyers for lattice
sizes varying from 20x20 to 160x160. Abscissa is distance in units of lattice spacing.
Note that the correlation length, given by the distance at which the autocorrelation
is zero is nearly invariant with lattice size.

their space Dependance through the autocorrelation function, vary with L
and p.

Frequencies are surprisingly stable over time and from sample to sample
as opposed to magnitudes. A direct measure on time plots of oscillations
shows that periods T vary as:

10L2
q

T ~

(4)

This result has a very simple interpretation. The factor L? is simply the
number of agents. The period is close to the number of agents multiplied by
a time which scales with average time it takes for threshold to switch between
extremal values of -4 and 4. The threshold dynamics is the rate limiting step
of the overall dynamics.

As seen on figure 3, amplitudes display a lot of variations. A simple way
to average them on time is to measure power, namely the time averaged
squared amplitudes. Even with time averaging over some 800 periods, power
values had to be further averaged over several runs (9 in our measurements)
to further reduce noise. A first result is that for larger values p values, p > 5,
average power scales as L? = N the number of agents. If agents behaviour
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were oscillating in phase, we would expect power to scale in N2. The scaling in
N implies that N/s patches of constant size s oscillate independently giving:

N N

where P, is the power of one patch, proportional to s2. This interpretation is
consistent with our interpretation of autocorrelation measurements and the
observation of small domains.

Figure 5 display the rescaled inverse power (i.e. %) as a function of q the
maximum adjustment rate (¢ = 8p) for N varying from 400 to 6400. The
collapse of the three curves above ¢ = 0.6 is good, the quadratic scaling in ¢

is approximate.
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Fig. 5. Rescaled inverse power in the fast adjustment regime, for several network
sizes, L = 20,40,80 as a function of the adjustment rate g. When ¢ > 0.5 one
observes a good collapse of simulation data for the rescaling in NV and a quadratic
variation in gq.

Figure 6 displays the Fourier power spectrum of the time series of agent
states when ¢ = 1. The large peak around abscissa 30 corresponds to a
frequency of 10 iterations per agent. At larger frequencies, the long tail cor-
responds to a 1/ f2 noise. Small scale correlations in agents behaviour due to
local imitation processes are responsible for this long tail. For lower values of
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the maximum adjustment rate ¢, the importance of the peak with respect to
the 1/f? noise is increased.

Power spectrum averaged over 500 iterations g=1 m=0 L=80
10000 T

Power Spectrum +

1000

100 |

10

0.1

0.01 !
10 100 1000

Fig. 6. Power spectrum in the fast adjustment regime, for a large network (L = 80)
and fast adjustment (¢ = 1) . The frequency scale correspond to 320 updating per
agent on average for one frequency unit

4 Conclusions

The obtained results were based on very simple assumptions on the economic
network structure and on the imitation and adjustment process. But these
results, especially the 1/f? noise, should not depend upon the details of
these assumptions. Let us give some directions about the generality of our
hypotheses.

e We based the “voting” process on information processing, but this process
can be also be accounted for on the basis of “positive externalities”.
Agents can experience increase in the utility of equipments when their
neighbours also own such equipments.

e Who are the agents? The discussion implicitly assumes for simplicity
reasons that agents are individuals, but the same reasoning could apply to
firms taking decisions on purchasing goods or equipment or even making
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strategic decisions. In this respect the size of the network (number of
firms) would be much smaller which could move the dynamics towards
the slow adjustment regime.

e The network topology A lattice is an extremely regular network which
allows nice pattern observation, but which cannot be considered as a
good model of a socio-economic network. In fact a lattice shares with
real networks the property of having many short loops, which is not the
case of random nets. Anyway the imitation model can be extended to
structures with inhomogeneous local connectivity, small worlds or scale
free networks, by rewriting equation 1 using fraction of sites with positive
or negative state rather than direct summation.

e We discussed random updating of agent states, but one can also intro-
duce other conditions, such as propagation of a purchase wave as in the
Weisbuch and Solomon (2000), Weisbuch etal (2001) percolation model
for which 1/ f? noise was also observed.

Let us now come to the observations.

e The 1/f? noise was expected: such fat tails have been consistently re-
ported in empirical data from financial markets. The commonly admitted
reason for the fat tails are interactions among agents, although specific
models have seldom been proposed.

e The periodic oscillations were unexpected, although their origin becomes
pretty evident after observation. The most interesting interpretation in
real life are business cycles. In this framework the agents are firms and the
network is the “economy”: the set of production, trade and services which
form the economic network. We here have a possible microscopic theory
of business cycles which does not suppose any external trigger such as
innovation cycles often suggested by macro-economists. We probably have
to take into account some specific features of economic networks such as
the anisotropic character of connections (producers/users interactions are
different from competition interactions) to get more precise predictions
but some results such as the increase of the amplitude of activity variation
with coupling are already within the framework of the present model.
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