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Résumé. 2014 Les réseaux d’automates à seuil sont des systèmes dynamiques à structure aléatoire
semblables aux verres de spins dont J. Hopfield a proposé l’application comme mémoires associa-
tives. Nous établissons les lois d’échelles reliant le nombre maximum d’attracteurs utiles et la dis-
tance d’attraction, au nombre des automates du réseau. Notre approche permet aussi un meilleur
choix des seuils, ce qui double les performances du réseau en nombre d’attracteurs.

Abstract 2014 Networks of threshold automata are random dynamical systems with a large number
of attractors, which J. Hopfield proposed to use as associative memories. We establish the scaling
laws relating the maximum number of « useful » attractors and the radius of the attraction basin
to the number of automata. A by-product of our analysis is a better choice for thresholds which
doubles the performances in terms of the maximum number of « useful » attractors.
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J. Hopfield [1] has recently renewed the interest for networks of threshold automata (further
abbreviated as NTA) by proposing their use as content addressable memories. The basis of the
device is to encode the information to be retrieved as a sequence of binary signals, 0 or 1, which
are taken as states of threshold automata. A sequence of bits is considered as the state of a NTA
and Hopfield’s device, explained further, is based on a formula allowing to build the network
such that a set of predefined sequences, referred to as the reference sequences, are among the
attractors of the dynamics of the network. Furthermore, if sequences which differ by a few bits
from a reference sequence are taken as initial states, the NTA converges with a high probability
towards the reference.

This property of convergence exists only if the number of reference sequences is not too large.
J. Hopfield gives some data based on simulations for networks of 30 and 100 automata and
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proposes as a limit of m, the number of reference sequences, a ratio of 0.15 to the number of
automata n. Simulations done by Peretto [2] for larger n (500) give less optimistic results.
As we further explain, NTA are formally equivalent to spin glasses at zero temperature. Such

systems are known to have a large number of attractors, which also includes « spurious attrac-
tors » as opposed to the reference attractors. These attractors and the relations between NTA
and spin glasses are fully discussed in Peretto [2] and Amit [3] where a more comprehensive
bibliography can be found.

However, the purpose of this paper is limited to the « useful attractors » : : we shall derive
the scaling laws relating m to n and test them against numerical simulations. Furthermore we
give the expression for the probability that a sequence differing by d states from a reference
sequence converges towards the reference. Finally the discussion of these scaling laws gives
indications about the best choice for thresholds.

1. Definitions.

A threshold automaton i is a device which receives inputs j and computes its state at each dis-
crete time step from the binary input signals x~ according to the following expression :

where xi and xJ are binary variables 0 or 1,
Y(x) is the Heaviside function, taking value 0 if x is negative and 1 otherwise.
The aij are called the synaptic weights of the i-j link, hi is the threshold for automaton i.
A network of threshold automata is built by connecting a set of automata, the state of each

automaton being an input signal for the connected automata.
We are interested in particular NTA’s such that :
- all inputs are coming from other automata,./ ~;
- the graph of connections is complete : every automaton is connected with all the others;
- the connections are symmetrical aij = all.
In order to completely define the dynamics of the network, an iteration mode has to be chosen :

either parallel when all automata are simultaneously changed, or sequential when the new
state of only one automaton is computed at each time step. Dynamical properties generally
depend upon this choice. In fact, we shall see that this is not the case for the results of sections
2 and 3.

Computer simulations show that after a rather short transient time, starting from any initial
distribution of states, the configuration of states evolves towards attractors which are fixed
points, at least for sequential iterations.

(The condition aij = aji ensures that the attractors are of period 1.)
The use of NTA as associative memories is based on the possibility to build the connection

matrix A such that given configurations are attractors. If these configurations are vectors xB ..., 5
xs, ..., xm, the au are computed by

which is written with a simplifying notation

where

The. xi being 0 or 1, the Xi are - 1 or + 1.
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At this stage the formal equivalence between NTA and spin glasses can be explicited : the
aij can be interpreted as exchange terms between spins Xi and Xj, and the thresholds as random
local magnetic fields. The equivalence is complete if one chooses random sequential iteration
mode, when automata are randomly selected for the application of the transition rule. A similar
model proposed by Little [4] to model neural networks has some features of spins glasses at
finite temperature, but uses parallel iteration.

2. Invariance of the reference sequences.

Let us recall the conditions imposed by the invariance of the reference sequences on the threshold.
If in sequence s automaton i is in state 1, it remains in 1 if :

if ~ is in state 0, stability requires :

Since such conditions have to be verified by threshold bi for all the different sequences, hi must
then belong to an interval defined by :

where the maximum is taken for all s such that ~ = 0, and the minimum for all s such that ~ = 1.
When the number of sequences is increased, it may happen that the minimum on the right

is smaller than the maximum on the left and the interval to choose bi does not exist anymore [5].
Replacing the a by their expressions as functions of the X; one obtains for the right hand

side inequality :

which can be decomposed into :

by taking out the term s’ = s.
In a similar way for ~ = 0 one obtains :

We now introduce two fundamental assumptions about the reference sequences :
First they are random collections of zeroes and ones, which implies that the y xjs term is

large and close to (n - 1)/2. We call it further the polarized term.
Second, the sequences are not correlated with each other, and the double sums (called further

the random sums) are random collections of 0, + 1 and - 1 terms. The result of the summation
is then the same as that of a random walk with (n - 1) (m - 1)/2 steps.
The factors 1/2 come from the fact that half xj are zeroes.
For symmetry reasons bi = 0 is a good first guess. We can then evaluate the probability

that one condition of invariance for one automaton is satisfied : it is the probability that the
random sum is inferior to the polarized term. (The probability is the same for symmetry reasons
for the two cases xi - 0 or 1.)
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For large n and m we approximate the binomial distribution by a Gaussian. The probability
that after p steps the abscissa of the end of a random walk is smaller than xo is given by :

where erf, the error function is defined by :

Here xo = (n - 1)/2 and p = (n - 1) (m - 1)/2.
The probability for one inequality to be true is then

A similar expression is found in Hopfield [1] and used to predict a linear dependance of maxi-
mum m with n.
As a matter of fact the invariance of one sequence requires n such conditions to be satisfied

simultaneously for the n automata of the network. If the n samplings of the random terms were
independent, the probability for the n random terms to be smaller than (n - 1)/2 would simply
be the product of all the probabilities. We would then obtain for the probability of invariance
of one sequence :

An examination of the construction of the double sum shows that this simplifying hypothesis
is not unreasonable.

Let us rewrite matrix X with the X~ on the first row :

The evaluation of the double sum can be decomposed into several steps. First, half of the
rows are decimated corresponding to the xj = 0. Along rows s’, Xj’ are added together.
These partial sums are then randomly flipped when multiplied by the X~ . As long as the

samplings and summation of the lines are in small number as compared to the total number
of possible combinations (n  2(m-l») they can be considered as independent. We then adopt
this hypothesis at the present time. Its validity has been tested by computer simulations.

If we carry on with the same assumptions about the different sequences, based on similar
examination about the construction of the double sums, we end up with the following probability
that all automata for all sequences are stable

If we want this probability P to be equal to po, any number not too close to 0 or 1, the error
functions should be taken for arguments very close to 1. The error function can then be replaced
by its asymptotic approximation
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This expression to power nm is approximated by its Taylor expansion :

which gives the relationship between Po and m

This expression allows the calculation of a critical m° such that if m  m° the probability
for all sequences to be invariant is larger than P°. In fact computer simulations show that mo
does not vary much when Po goes from 0.9 to 0.1 - for instance, for n = 100, ~(0.9) = 5
and mo(O. 1) = 7. -

By choosing po = 1 - 1/,,/7r = 0.44 the last term is cancelled and by approximating ~20131
(resp. m - 1) by n (resp. m) the following simple expression for # = n/m is obtained :

P increases with n, but much slower.
For large n, p varies as In n which implies that m scales as n/ln n instead of n.
Expression (2. 10) is verified by numerical simulations for values of n varying from 50 to 500

(see Fig. 1). It is difficult to explore a larger range for n because the computer time to test nm
conditions implying sums of n - 1 terms is roughly of order n3. For n = 50 it takes a few minutes
of VAX time and for n = 500 more than 4 hours. The independent samplings assumption
explains for the fact that the theoretical curves lay slightly below the simulation data.

Fig. 1. z Variation of m, the maximum number of reference sequences as a function of n, the number of
automata of the network. Solid lines correspond to theoretical calculations. Equation (2. 10) allows to
compute m for P, the probability of having at most one unstable reference, being equal to 0.5. The lower
line is obtained from Hopfield’s algorithm (zero thresholds) and the upper line from ours (thresholds as
defined by expression (3.1)). The simulation results are obtained by testing nm inequalities (2 .1) or (2.2)
per network and by adjusting m so that the probability for all inequalities to be verified is 0.5. Circles cor-
respond to zero thresholds, dots to non-zero thresholds.
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3. A better choice for thresholds.

We can use expression (2.5) to select a threshold. For a given choice of sequences to retrieve,
there always exist some residual correlations among sequences and usually the random sums
are not centred around 0. The best choice for thresholds is therefore the mean value of the ran-
dom term. Using the approximation  x~ ~ - 1/2, we obtain for bi

This choice is equivalent to subtract this expression from the sums while keeping a 0 threshold.
The argument of the Heaviside function now becomes :

Since the 1/2 does not change anything to the argument of a Heaviside function we can ignore
it. If we now recalculate the two sums as in equation (2.5), we find that the polarized term is
now exactly n - 1, and that the random sum contains (n - 1) (m - 1) terms. This gives a
twofold increase for the argument of the error function which implies a nearly equivalent increase
for the maximum number of retrieved sequences as verified by the computer simulation on figure 1.

This simple and efficient improvement of the algorithm which consists in replacing the x~
by Xj in the evaluation of the argument of the Heaviside function is from now on adopted and
the scaling law for P becomes :

4. Memories as attractors.

In order for this system to be used as an associative memory, the reference sequences should be
attractors for initial conditions which differ by a few bits from one of the reference sequences.
The expressions which we started from in order to study invariance, can also be used to study
stability. Let us suppose that we take as an initial state for the network a sequence which differs
by d bits from a reference sequence s. 

_ _

For d modified automata j, Xj has become X~, where X~ = 2013 Xj.
If none of the inequalities ensuring the invariance of sequence s has changed its direction

when the dX~’s are inverted, the reference state is reached after one iteration per automaton.
Let us compute the probability of this event, which is a sufficient condition for convergence
toward the reference sequence. The sums S? aij Xj are then changed into :

j

where the sums are taken for the modified j only. The main effect of the modification is thus
to decrease the amplitude of the polarized term by 2 d (if automaton i has itself been modified
this decrease is only 2(d - 1)). On the other hand the random term is only randomly and par-
tially modified : d(m - 1) random terms are inverted.
Once more the modified inequalities remain satisfied as long as the random terms are kept

inferior to the polarized terms.
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The probability for one inequality to be satisfied is now :

An initial state will thus be attracted towards the reference if n inequalities are verified. At
this point, some care has to be taken because the probability of convergence depends upon
the mode of iteration, which was not the case for the results we have formerly derived During
a sequential iteration process, some of the d spins which were in the « wrong » direction are
reset, thus increasing the probability for the polarized term to be larger than the random sum
during the next iteration steps. For example, a, process during which all modified automata
would be first updated is more likely to converge towards the reference. In order to avoid easy
to derive but cumbersome expressions, we can write the probability of convergence for parallel
iteration, when all automata change their state at the same time :

The probabilities for sequential iteration are bounded below by, and close to this probability.
As in section 2, further approximations are used to derive the scaling laws relating n, m and d :

Figure 2 compares the plot of this equation in the m, d plane for several values of n to the
simulation results obtained by direct tests of the modified inequalities. The theoretical predictions
show the same behaviour slightly shifted towards the small values of m and d, probably because
of residual correlation among simulated reference sequences.

Let us summarize our hypotheses and results.
- The basic assumptions concern the randomness and the non correlations of the sequences

to be retrieved. Of course, the inequalities (2. 3) are necessary and sufficient conditions to ensure
invariance or attractivity whatever the sequences, but the derivation of the scaling laws is based
on the above hypotheses. In contrast, in a preceding paper [7], Hopfield device was applied to
pattern recognition of letters. In such cases, the patterns have spatial correlations, and the maxi-
mum number of retrieved patterns is smaller than predicted by the scaling laws given here.
- Performances are increased by 100 percent as compared to the original model by a proper

choice of thresholds.

Fig. 2. - Relative width of the attraction basins. Theoretical curves relating d/(n - 1), the relative width
of the attraction basin, to (m - 1)/(n - 1), the relative number of automata, are plotted for several values
of n, the number of automata (from right to left, n equals 50, 100, 200 and 500). The dots correspond to
computer tests of the inequalities ensuring the return to the reference sequence for the case when n = 50.
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- For a number of reference sequences definitely smaller than the limit for invariance, there
exists a Hamming distance such that any initial state closer to the reference converges to this
reference with a given probability. This property can be interpreted as a tesselation of the hyper-
cube of the states, such that the reference sequences are well inside the frontiers. In fact the deri-
vations concern sufficient conditions for convergence in one iteration step. The attraction basins
are larger since they also contain states which converge in more than one iteration step.
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