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1. From Statistical
Physics to Complex
Systems

Statistical physics has ac-
customed us to mathe-
matical descriptions of
systems with a large num-
ber of components. The
thermodynamic proper-
ties of ideal gases were un-
derstood as early as the
end of the 19th century,
while those of solids were
understood at the begin-
ning of the 20th century.
In both cases, two impor-
tant properties make
modeling easy:

B These are systems in
which all of the compo-
nents are identical.

W If the interactions be-

network.
tween the components

Abstract

The purpose of this paper is to describe concepts and
methods inspired from statistical physics of disor-
dered systems and non linear physics and their appli-
cation to theoretical biology. The central perspective is
the study of functional organization of multi-compo-
nent systems, based on a simplified description of in-
dividual components. The first section discusses a few
examples of complex systems in physics and biology.
We then describe three basic formalisms used in theo-
retical biology. The most important concept of attrac-
tor is introduced in the section on networks. We will | ucts.
discuss generic organization properties and the differ-
ence between organized and chaotic regimes. We will
then propose two possible implementations of memo-
ry in the nervous and immune systems as examples of
functional organization.
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very large number of
specificities which inter-
act via molecular recog-
nition, in the same way
as recognition of foreign
antigens.

B Even the metabolism
of a single cell is the re-
sult of the expression of a
large number of genes
and of the interactions
among the gene prod-

Although complexity
is now a somewhat over-
used expression, it has a
precise meaning within
this text: a complex system
is a system composed of a
large number of different in-
teracting elements.

In fact, the great major-
ity of natural or artificial
systems are of a complex

are very weak, they can be

ignored, as in the case of ideal gases. Otherwise, as
in the case of solids, we can use linearization meth-
ods to put the problem into a form in which these
simplifications can be made.

These early successes compared to the difficulties
encountered in the understanding of biological sys-
tems would make us consider the above mentioned
systems as rather simple. On the other hand, here are
some examples of complex living systems:

B The human brain is composed of approximately
ten billion cells, called neurons. These cells interact
by means of electrico-chemical signals through
their synapses. Even though there may not be very
many different types of neurons, they differ in the
structure of their connections.

B The immune system is also composed of approxi-
mately ten billion cells, called lymphocytes with a

Evolution and Cognition [11

nature, and scientists
choose more often than not to work on systems sim-
plified to a minimum number of components,
which allows him or her to observe “pure” effects.
The complex systems approach, on the other hand,
is to simplify as much as possible the components of
a system, so as to take into account their large num-
ber. This idea has emerged from a recent trend in
research known by physicists as the physics of disor-
dered systems.

1.1 Disordered systems

A large class of physical systems, known as mul-
tiphase systems, are disordered at the macroscopic
level, but some are disordered even at the micro-
scopic level. Glasses, for example, differ from crys-
tals in that interatomic bonds in a glass are not dis-
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tributed according to symmetries which we ob-
serve in crystals. In spite of this disorder, the mac-
roscopic physical properties of a glass of a given
composition are generally the same for different
samples, as for crystals. In other words, micro-
scopic disorder in a system does not lead to ran-
dom global behavior. The simple models used by
physicists are based on periodic networks, or grids,
and simplified components of two different types
are placed on the nodes, such as for example con-
ductors or insulators in the problem known as per-
colation. These components are randomly distrib-
uted, and the interactions are limited to pairs of
neighboring nodes. For large enough networks, we
perceive that certain interesting properties do not
depend on the particular sample created by a ran-
dom selection, but of the parameters of this selec-
tion. In the case of the aforementioned insulator/
conductor mixture, the conductivity between the
two edges of the sample depends only on the ratio
of the number of conductive sites to the number of
insulating sites.

The percolation formalism exemplifies the ap-

proach taken by a number of theoretical biologists:
B We choose to oversimplify the components of
the system whose global behavior we would like to
model. The formal genes, neurons and lymphocytes
discussed below are cartoon-like simplifications of
biological polymers and cells.
B Nonetheless, these simplifications enable us to
apply rigorous methods and to obtain exact results.
B This approach is a dynamical approach. As in the
differential methods, we start from a local description
of the system, in terms of the short term state
changes of the components as a result of their inter-
actions. We expect the global description of the sys-
tem from the method, that is to say the long term
behavior of the system as a whole. The global be-
havior can be very complex, and it can be interpret-
ed in terms of emergent properties. Within this notion
is the idea that the properties are not a priori predict-
able from the structure of the local interactions, and
that they are of biological functional significance
(WEISBUCH 1990).

2. Networks
2.1 Units

Boolean automata. A simplified automaton is de-
fined by its sets of inputs and outputs and by the
transition function, which gives the output at time

t + 1 as a function of the inputs and sometimes also
the internal state (i.e., the output) at time ¢.

Boolean automata operate on binary variables,
that is to say variables which take the values O or 1.
In logical terms, O and 1 correspond to FALSE and
TRUE, respectively. The usual logic functions AND,
OR, and XOR are examples of transition functions
of boolean automata with two inputs. A boolean
automaton with k inputs, or of connectivity k, is de-
fined by a truth table which gives the output state
for each one of the 2K possible inputs. There are
22" different truth tables, and then 22" qutomata.

Let k = 2. Here are the truth tables of four boolean
logic functions with two inputs:

AND OR XOR EQU
Input 00011011 00011011 00011011 00011011

’Output 0:0:0:1 0:1:1:1 0:1:1:1 1:0:0:1

On the inputline of the table, we have represented
the four possible input states by 00, 01, 10, and 11.
The four truth tables correspond to the standard def-
initions of the following logic functions: AND re-
turns a 1 only if its two inputs are 1; OR returns a 1
only if at least one of its inputs is a 1; XOR is 1 only
if exactly one of its inputs is a 1; and EQU the com-
plement of XOR returns 1 when both input are equal.
In logical terms, if A and B are two propositions, the
proposition (A AND B) is true only if A and B are true.

We will further discuss the application of boolean
units to genetics.

Threshold automata. The state x; of the ith thresh-
old automaton is computed according to:

h; = Z]iixj, (2.1)
j
x; = 1if h;>8;; x; = 0 otherwise

The sum is computed over all of the inputs, sub-
scripted by j. ]l.]- is the weight of the interaction
between the ith and jth automata. In other words,
the ith automaton has the value 1 if the weighted
sum of the states of the input automata } J;.x; is
greater than or equal to the threshold, and O other-
wise. Threshold automata are Boolean, but not all
Boolean automata are threshold automata. We will
further summarize some applications of threshold
units to cognition (HERTZ/KROGH/PALMER 1990).

Formal lymphocytes. Not all networks are made of
automata. A number of authors studying neural
nets used differential equations as units. In immu-
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Figure 1: A network of five boolean automata with two inputs.
Each automaton has two inputs and transmits its output signal
to two other automata. The XOR and AND functions have
been previously defined. The EQU(ivalence) function is the
complement of the XOR function—it is O only if exactly one
inputisa 1.

nology, PERELSON/WEISBUCH (1997) started from the
following model, called the B model since it deals
with B cells dynamics. The time evolution of the
population x; of clone i is described by the following
differential equation:

dx;
— = max(pfih) -d), 2.2)
where m is a source term corresponding to newly
generated cells coming into the system from the
bone marrow, the function pf(h;) defines the rate
of cell proliferation as a function of the “field” h,,
and d specifies the per capita rate of cell death. For
each clone i, the total amount of stimulation #; is
considered to be a linear combination of the popu-
lations of other interacting clones j. This linear
combination is called the field, h;, acting on clone
x;, i.e.,

hi = 3 T (2.3)
]

where ]ii specifies the interaction strength (or affin-
ity) between clonesx; and X;. The choice of a ] ma-
trix defines the topology of the network. Typically
J ij values are chosen as 0 and 1. The most crucial fea-
ture of this model is the shape of the activation
function f(h;), which is taken to be a log bell-
shaped dose-response function
h,

. h, 0
_ i _ i |:|= i 2
) _61+higl 0,+h" 6, +h;8,+h; (2:4)

with parameters 0; and 6, chosen such that
8,<< 8,. Below the maximum of f(h;), increasing h;
increases f(h;); we call this the stimulatory regime.

Above the maximum, increasing h; decreases f(h;);
we call this the suppressive regime. When plotted as a
function of log h;, the graph of f(h;) is a bell-shaped
curve.

2.2 Structural Properties

An network is composed of a set of units intercon-
nected such that the outputs of some are the inputs
of others. It is therefore a directed graph, where the
nodes are the units and the edges are the connec-
tions from the output of one unit to the input of an-
other. Figure 1 represents the graph of the connec-
tions of a network of five boolean automata with
two inputs. This graph is equivalent to a set of five
logical relations:

e(1) = XOR (e(2), e(3))

e(2) = EQU (e(3), e(4))

e(3) = AND (e(4), e(5))

e(4) = EQU (e(5), e(1))

e(5) = XOR (e(1), e(2))
where e(i) is the state of the ith automaton.

2.3 Dynamical properties

Iteration mode. The dynamics of an automata net-
work are completely defined by its connection
graph (which automaton is connected to which),
the transition functions of the automata, and by the
choice of an iteration mode: It must be stated
whether the automata change their state simulta-
neously or sequentially, and in what order. In the
parallel mode, for instance, all of the automata
change their state simultaneously as a function of
the states of the input automata in the previous
time step. Conversely, in the case of sequential itera-
tion, or iteration in series, only one automaton at a
time changes its state. Sequential iteration is there-
fore defined by the order in which the automata are
to be updated. In the discussion that follows, we will
talk only of parallel iteration.

Iteration graph. There are 2N possible configura-
tions for a network of N boolean automata. The
network goes from one configuration to the next
by applying the state change rule to each automa-
ton. Its dynamics can be represented by a directed
graph, the iteration graph, where the nodes are the
configurations of the network and the directed
edges indicate the direction of the transitions of
the network from its configuration at time ¢ to a
new configuration at time t + 1. Figure 2 represents
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the iteration graph of the previous network (Figure
1) for the case of parallel iteration. This graph con-
tains the 2° = 32 possible states. It illustrates the
fundamental dynamical characteristics which we
will define below.

Attractors. Since an automata network is a deter-
ministic system, if the network reaches a state for
the second time, it will go through the same se-
quence of states after the second time as it did after
the first time. Therefore, the system will go into an
infinite loop in state space. These loops are called
the attractors of the dynamical system, and the time
it takes to go around the loop is called the period of
the attractor. If this period is 1, as is the case for the
configuration numbered 8 in the example, the at-
tractor is a fixed point. We speak of a limit cycle if the
period is greater than 1. The set of configurations
which converge toward an attractor constitutes a
basin of attraction. The network shown in the exam-
ple below has four attractors.

Clearly it is only possible to construct a complete
iteration graph for small networks. For the large net-
works we must be content to describe the dynamics
of the system by characterizing its attractors. In this
way we can try to determine:

B The number of different attractors,

B Their periods,

W The sizes of the basins of attraction (the number
of configurations which converge toward each at-
tractor),

B The notion of distance is also very important. The
Hamming distance between any two configurations
is the number of automata which are in different
states.

3. In Search of Generic Properties

In view of all the simplifications that were made to
define the units of the model networks, one cannot
expect all properties of living systems to be mod-
eled. Only some very general properties, indepen-
dent of the details of the model will show-up.
These are the so-called generic properties of the net-
work. In fact, we are interested not in the particu-
larities of a specific network, but in the orders of
magnitude which we expect to observe in studying
a set of networks with fixed construction princi-
ples. We therefore consider a set containing a large
but finite number of networks. We choose some of
these networks at random, construct them, and
measure their dynamical properties. We then take
the average of these properties, and we examine
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Figure 2: Iteration graph of the network of Figure 1. The num-
bers from O to 31 refer to the decimal representations of the 32
binary configurations of the network. The arrows show the
temporal order of the configurations. Note that there are four
different basins of attraction. State number 3 is an isolated
fixed point. State number 8 is another fixed point. The other,
larger, basins are composed of the configurations which con-
verge toward the limit cycles with periods 4 and 5.
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Figure 3: Histogram of the periods for 10 initial conditions of
1000 random boolean networks of 256 automata.

those which are fairly evenly distributed over the
set of networks. An example will help to clarify
these ideas.

Consider the boolean networks with connectivity
k = 2, with a random connection structure. The dy-
namical variable we are interested in is the period,
for the set of all initial conditions and networks. Of
course, this period varies from one network to the
next. We have measured it for 10 randomly chosen
initial conditions for 1000 different networks of 256
randomly connected automata, whose state change
functions were generated at random at each node of
the network. Figure 3 shows the histogram of the
measured periods. This histogram reveals that the or-
der of magnitude of the period is ten (this is the generic
property), even though the distribution of the peri-
ods is quite large.
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We can certainly construct special “extreme” net-
works for which the period cannot be observed be-
fore a million iterations. For this, we need only take
networks which contain a random mixture of exclu-
sive OR and EQUivalence functions (EQU is the com-
plementary function of XOR; its output is 1 only if
its two inputs are equal). But these extreme cases are
observed only for a tiny fraction (1/72%) of the set
under consideration. We consider them to be patho-
logical cases, i.e., not representative of the set being
studied.

We then call generic properties of a set of networks
those properties which are independent of the de-
tailed structure of the network—they are characteris-
tic of almost all of the networks of the set. This notion
then applies to randomly constructed networks. The
generic properties can be shown not to hold for a few
pathological cases which represent a proportion of
the set which quickly approaches O as the size of the
network is increased. In general the generic proper-
ties are either:

B Qualitative properties with probabilities of being
true that are close to 1; or

B Semi-qualitative properties, such as the scaling
laws which relate the dynamical properties to the
number of automata.

The notion of generic properties characteristic of
randomly constructed networks is the basis for the
theoretical biological models. It has been extensively
developed by physicists of disordered systems for the
study of random microscopic systems such as glasses,
or macroscopic multiphase systems. Physicists dis-
covered (or rediscovered) many new concepts during
the 70s. The notion of generic properties is similar to
the notion of universality classes, developed for
phase transitions. Without going into too much de-
tail, we can say that the physical variables involved
in phase transitions obey scaling laws which can be
independent of the transition under consideration
(such as, for example, phase transitions in magne-
tism, superconductivity, or physical chemistry) and
of the details of the mathematical model which was
chosen. These laws only depend on the physical di-
mension of the space in which the transition takes
place (for us, this is three-dimensional space) and on
the dimension of the order parameter. The set of
phase transitions (and their mathematical models)
which obey the same scaling laws constitutes a uni-
versality class. In fact, the first attempt to model a
biological system by a disordered network of autom-
ata by S. KAUFEMAN (1969, 1993), a theoretical biolo-
gist, predates the interest of physicists in this subject.
It is also based on the idea that the properties of dis-

ordered systems are representative of the vast major-
ity of systems defined by a common average struc-
ture.

3.1 An example: Cell differentiation
and random Boolean automata

The apparent paradox of cell differentiation is the
following:

“Since all cells contain the same genetic informa-
tion, how can there exist cells of different types
within a single multicellular organism?”

Indeed, our body contains cells with very different
morphologies and biological functions: neurons,
liver cells, red blood cells... a total of more than 200
different cell types. Yet the chromosomes, which
carry the genetic information, are not different in
different cells. Part of the answer is that not all of the
proteins coded for by the genome are expressed (syn-
thesized with a non-zero concentration) in a cell of a
given type. Hemoglobin is found only in red blood
cells, neurotransmitters and their receptors only ap-
pear in neurons, etc.

Several mechanisms can interfere with the differ-
ent stages of gene expression to facilitate or block it.
We speak of activation and repression. The best
known mechanisms involve the first steps of tran-
scription. In order to transcribe the DNA, a specific
protein, DNA polymerase, must be able to bind to a
region of the chain, called the promoter region,
which precedes the coded part of the macromolecule.
Now, this promoter can be partially covered by a con-
trol protein, called the repressor; reading downstream
gene is then impossible. It follows that, depending on
the quantity of repressor present, the gene is either
expressed or not expressed. The protein which acts as
a repressor is also coded for by another gene, which is
itself under the control of one or several proteins. It is
tempting to model the network of these interdepen-
dent interactions by an automata network.

B A gene is then represented by an automaton
whose binary state indicates whether or not it is ex-
pressed. If the gene is in state 1, it is expressed and
the protein is present in large concentrations in the
cell. It is therefore liable to control the expression of
other genes.

B The action of control proteins on this gene is rep-
resented by a boolean function whose inputs are the
genes which code for the proteins controlling its ex-
pression.

B The genome itself is represented by a network of
boolean automata which represents the interactions
between the genes.
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In such a network, the only configurations which
remain after several iteration cycles are the attractors
of the dynamics, which are fixed points or limit cy-
cles. These configurations can be interpreted in
terms of cell types: a configuration corresponds to
the presence of certain proteins, and consequently
to the biological function of a cell and its morphol-
ogy. Consequently, if we know the set of control
mechanisms of each of the genes of an organism, we
can predict the cell types. In fact, this is never the
case, even for the simplest organisms. Without
knowing the complete diagram of the interactions,
S. KAUFEMAN (1969) set out to uncover the generic
properties common to all genomes by representing
them by random boolean networks. Since there is a
finite number of possible boolean laws for an autom-
aton with a given input connectivity k, it is possible
to construct a random network with a given connec-
tivity.

S. KAUFFMAN determined the scaling laws relating
the average period of the limit cycles and the number
of different limit cycles to N, the number of automata
in the network. For a connectivity of 2, these two
quantities seem to depend on the square root of N
(although the fluctuations are very large). In fact,
these same scaling laws have been observed for the
time between cell divisions and for the number of cell
types as a function of the number of genes per cell.

It is clear that KAUFFMAN’s approximations were
extremely crude compared to the biological reality—
binary variables representing protein concentra-
tions, boolean (and thus discrete) functions, simul-
taneity of the transitions of automata, random struc-
tures... The robustness of the results obtained with
respect to the possible modifications of the model
(these are random networks) justifies this approach.
As for the existence of a large number of attractors,
it is certainly not related to the particular specifica-
tions of the chosen networks; it is a generic property
of complex systems, which appears as soon as frus-
trations exist in the network of the interactions be-
tween the elements. Presently, with the availability
of many expression patterns, transcriptomes avail-
able thanks to DNA chips (BROWN/BOTSTEIN 1999),
theoretists are facing a new challenge: how to de-
duce the network of gene expression regulation from
the observation of the transcriptomes.

Presently, with the availability of many expres-
sion patterns, transcriptomes avail-able thanks to
DNA chips (BROWN/BOTSTEIN 1999), theoretists are
facing a new challenge: how to deduce the network
of gene expression regulation from the observation
of the transcriptomes.

3.2 Generic properties of random Boolean nets

In fact, the results obtained by KAUFFMAN show two
distinct dynamical regimes, depending on the con-
nectivity. For networks of connectivity 2, the aver-
age period is proportional to the square root of N,
the number of automata. The same is true of the
number of attractors. In other words, among the
2Nconﬁgurations which are a priori possible for the
network, the dynamics selects only a small number
of the order of N which are really accessible to the
system after the transient period. This selection can
be interpreted to be an organization property of the
network. As the connectivity is increased, the pe-
riod increases much faster with the number of au-
tomata; as soon as the connectivity reaches 3, the
period as well as the number of attractors become
exponential in the number of automata. These peri-
ods, which are very large as soon as the number of
automata is greater than one hundred, are no
longer observable, and are reminiscent of the cha-
otic behavior of continuous aperiodic systems. In
contrast with the organized regime, the space of ac-
cessible states remains large, even in the limit of
long times. Further research (see DERRIDA 1987) has
shown that other dynamical properties of these dis-
crete systems resemble those of continuous chaotic
systems, and so we will refer to the behavior charac-
terized by long periods as chaotic.

Functional structuring. We have shown that when
boolean automata are randomly displayed on a grid
their temporal organization in period is related to a
spatial organization in isolated islands of oscillating
automata as soon as the attractor is reached. In the
organized regime, percolating structures of stable
units isolate the oscillating islands. In the chaotic
regime the inverse is true: few stable units are iso-
lated by a percolating set of oscillating units (WEIS-
BUCH 1990).

The phase transition. The connectivity parameter
is an integer. It is interesting to introduce a continu-
ous parameter in order to study the transition be-
tween the two regimes: the organized regime for
short periods, and the chaotic regime correspond-
ing to long periods. B. DERRIDA and D. STAUFFER
(1986) suggested the study of square networks of
boolean automata with four inputs. The continuous
parameter p is the probability that the output of the
automaton is 1 for a given input configuration. In
other words, the networks are constructed as fol-
lows. We determine the truth table of each automa-
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ton by a random choice of outputs, with a probabil-
ity p of the outputs being 1. If p=0, all of the
automata are invariant and all of the outputs are 0;
if p=1, all of the automata are invariant and all of
the outputs are 1. Of course the interesting values of
p are the intermediate values. If p = 0.5, the random
process described above evenly distributes all of the
boolean functions with four inputs; we therefore ex-
pect the chaotic behavior predicted by KAUFFMAN.
On the other hand, for values of p near zero, we ex-
pect a few automata to oscillate between attractive
configurations composed mainly of 0’s, correspond-
ing to an organized behavior. Somewhere between
these extreme behaviors, there must be a change of
regimes. The critical value of p is 0.28. For smaller
values, we observe small periods proportional to a
power of the number of automata in the network.
For p > 0.28, the period grows exponentially with
the number of automata.

Distances. The distance method has recently been
found to be one of the most fruitful techniques for
determining the dynamics of a network. Recall that
the Hamming distance between two configurations
is the number of automata in different states. This
distance is zero if the two configurations are identi-
cal, and equal to the number of automata if the
configurations are complementary. We obtain the
relative distance by dividing the Hamming distance
by the number of automata.

The idea of the distance method is the following:
we choose two initial conditions separated by a cer-
tain distance, and we follow the evolution in time
of this distance. The quantity most often studied is
the average of the asymptotic distance, measured in
the limit as time goes to infinity. We compute this
average over a large number of networks and of ini-
tial conditions, for a fixed initial distance. Depend-
ing on the initial distance, the two configurations
can either evolve toward the same fixed point (in
which case the distance goes to zero), or toward two
different attractors, or they could even stay a fixed
distance apart (in the case of a single periodic attrac-
tor), regardless of whether the period is long or
short. Again, we observe a difference in the behav-
iors of the two regimes. On Figure 4, obtained with
a cellular connectivity (the network is a regular two-
dimensional grid), the x-axis is the average of the
relative distances between the initial configura-
tions, and the y-axis is the average of the relative
distances in the limit as time goes to infinity. In the
chaotic regime, we observe that if the initial dis-
tance is different from O, the final distance is greater

T T T
t . . . . . M ¢
107 p=03 . '
102 = ) -
p=0.2"
103 = i m
10% .1 ! 1 =
104 103 1072 107 1

Figure 4: Relative distances at long times as a function of the
initial relative distances, in the organized (p = 0.2) and chaotic
(p = 0.3) regimes (from DERRIDA/STAUFEFER 1986).

‘Property Organized regime Chaotic regime
‘ Period small large
Scaling law 1

3 goes as a root of N exponential in N
(periods)
Oscillating isolated subnetworks percolate
nodes
‘Distance dy, proportional todgy  d, remains finite

Table 1: Generic properties of random networks differ accord-
ing to the dynamical regime, organized or chaotic. N is the
number of automata in the network, dg is the distance (always
taken small with respect to N) between two initial configura-
tions, and d, the distance between the two evolved configu-
rations at large times.

than 10%. The final distance seems almost indepen-
dent of the initial distance. On the other hand, in
the organized regime, the final distance is propor-
tional to the initial distance.

Conclusions. This study clearly demonstrates the
existence of two types of behaviors, organized and
chaotic. Table 1 summarizes the differences in the
generic properties of these two regimes.

4. Memories

4.1 Neural nets and distributed memories

There now exists a very large literature on neural
nets which we are not going to report here (HERTZ/
KROGH/PALMER 1990). Let simply summarize the re-
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sults. Neural nets with symmetrical connections
have an exponential number of point attractors.
This result applies to random serial iteration, and
exponential means that the logarithm of number
of attractors is proportional to the number of units.

Neural nets are most often used in learning tasks.
A general learning algorithm is HEBB's rule. When
reference patterns (network configurations) are pre-
sented to a network to be learned, connections can
be constructed that ensure that the attractors of the
network dynamics are the reference patterns. Fur-
thermore the dynamics drives the network from
initial conditions not to far from the reference pat-
terns to the nearest reference patterns: these nets
can then be used as associative memories that can
be recalled from partial memories.

HEBB’s rule can be written:

_ oM
Jij = 3505
m

where [ refers to the different reference patterns
and §; and §; to the states of connected neurons
i andj in the corresponding pattern.

Memories are thus distributed in the network as
opposed to a memory that would be localized on
some part of the net. The memory capacity of a fully
connected neural net build according to HEBB's rule
scales as the number of units in the net: no more
than 0.14 N patterns, where N is the number of
units, can be stored and retrieved in a HOPFIELD neu-
ral net.

4.2 Immune nets and localized memories

As a memory device, the immune system needs to
obey certain constraints (PERELSON/WEISBUCH
1997): it should be sensitive enough to change at-
tractor under the influence of antigen. It should
not be too sensitive and over react when antigen is
present at very low doses. The immune system
should also discriminate between self-antigens and
foreign antigens. Finally, it should be robust—
memories of previously presented antigens should
not be lost when a new antigen is presented. Thus,
in some sense, the system should be able to gener-
ate independent responses to many different anti-
gens. This independence property is achieved
when attractors are localized, i.e., when the pertur-
bation induced by an encounter with an antigen
remains localized among the clones that are close
to those that actually recognize the antigen (see
Figure 5).

Figure 5: Localized patches of clones perturbed by different
antigenic presentations. Two vaccination and one tolerant at-
tractors are represented.

Our problem is to classify the different attractors
of the network and to interpret the transitions from
one attractor to another under the influence of an-
tigen perturbation.

Let us start with the most simple virgin configu-
ration, corresponding to the hypothetical case
where no antigen has yet been encountered and all
populations are at level m/d, i.e., all proliferation
functions are 0. After presentation of the first anti-
gen, memorization is obtained if some populations
of the network reach stable populations different
from m/d. In the case of a localized response, there
will be a patch close to the antigen specific clone in
which cells are excited out of the virgin state. Each
antigen presented to the network will result in a
patch of clones that are modified by the presenta-
tion. As long as the patches corresponding to differ-
ent clones do not overlap, the various antigens pre-
sented to the network can all be remembered. Once
the idea of localized non-interacting attractors is
accepted, everything is simplified: instead of solv-
ing 10" equations, we only have to solve a small set
of equations for those neighboring clones with
large populations, supposing that those further
clones that do not belong to the set have popula-
tions m/d. A practical approach to studying local-
ized attractors is to combine computer simulations
and analytic checks of the attractors by solving the
field equations (see below).

Immunity. Let us examine the case of antigen pre-
sented to clone Ab;, which results in excitation of
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clones AB,, clones AB; remaining close to their vir-
gin level (see Figure 6). We expect that AB, will ex-
perience a low field, L, while AB,will experience a
large suppressive field, H. From the field equations
we can compute the populations x; Recall, from
Egs. (2.2) to (2.4),

h L= (4.1)
= ZX, = = — .
1 2 P

'0
h22x1+(z—1)% :H:‘DT2 (4.2)

where p' = p—-d.

An immune attractor is usually reached for an
intermediate initial antigen concentration, and in-
termediate decay constants, If the initial antigen
concentration is too low or if the antigen decays too
fast, the immune attractor is not attained and the
system returns to the virgin configuration, i.e., AB;
and AB, populations increase only transiently and
ultimately return to the virgin m/d level. Thus, no
memory of antigen encounter is retained.
Tolerance. Another localized attractor
sponds to tolerance (see Figure 7).

A strong suppressive field acts on AB; due to
AB,’s, the AB,'s proliferate due to a low field pro-
vided by AB;’s, but AB,'s remain nearly virgin. The
field equations once more allow one to compute the
populations:

corre-

de,
hy = x;+(z=-1)x3 = L = ra (4.3)
which gives x; if one neglects x,;, which is small.
_ z-1)m _ .. _ P8
h3—X2+(——d—)——H——d—, (44)
and thus for small m/d
hy = zx,=zH (4.5)

Substituting h; in Eq. (2.2) gives a very small
value for f(h;), which shows that x, is of the order
of m/d. The AB, population, experiencing a field
several times higher than H, is said to be over-sup-
pressed.

As in the case of the immune attractor, one can
study the conditions under which the tolerant at-
tractor is reached when antigen is presented. One
finds that tolerance is obtained for large initial anti-
gen concentrations, slow antigen decay rates and
large connectivity, z (PERELSON/WEISBUCH 1997).
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Figure 6: Time plot of an antigen presentation resulting in a
vaccination attractor. On the vertical axis are the clone popu-
lations on a logarithmic scale. Time in days is on the horizon-
tal axis. In the vaccinated configuration the largest population
is localized at the first level. X; is high (H) and sustained by an
intermediate population (L/z) of X,. The rest of the clones are
virgin (V) (or almost virgin) after the system settles into this
attractor. When antigen is presented again, it is eliminated
faster than the first time.
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Figure 7: Time plot of an antigen presentation resulting in a
tolerant attractor. X, is high (H) and sustained by an interme-
diate population (L/z) of X3. X; is over-suppressed by the X,
and is not able to remove the antigen.
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4.3 Number of attractors

Localized attractors can be interpreted in terms of
immunity or tolerance. Because these attractors are
localized they are somehow independent: starting
from a fully virgin configuration, one can imagine
successive antigen encounters that leave footprints
on the network by creating non-virgin patches, each
of these involving a set of p perturbed neighboring
clones. An immune patch contains 1 + z clones, a
tolerant patch 1 + z2 (see Figure 5). Independence of
localized attractors implies a maximum number of
attractor configurations that scales exponentially
with N, the total number of clones. The following
simplified argument gives a lower bound. Divide the
network into N/ (1 + z2) spots. Each spot can be in 3
possible configurations: virgin, immune or tolerant.
This gives a number of attractors that scales as
3N/ (1 + z2) . Few of these attractors are of interest.
The relevant question is the following: A living sys-
tem must face frequent encounters with antigen
during its life. Self antigen should elicit a tolerant re-
sponse; dangerous external antigens should elicit
immune responses and subsequent immunity. The
nature of the localized response on each individual
site of the network is then determined by the fact
that the presented antigen should be tolerated or
fought against. In this context, we can ask how
many different antigens can be presented so that no
overlap among different patches occurs.

In the case of random antigen presentation, sim-
ple reasoning (WEISBUCH 1990; WEISBUCH/OPREA
1994) is sufficient to derive the scaling law relating
m, the memory capacity (i.e., the maximum number
of remembered antigens) to N, the total number of
clones. Let n; be the number of suppressed clones

involved in a patch.
nS

m is given by:
and this provides an estimate for the mean memory
capacity of the network.

The only assumption to obtain this scaling law is
the random character of the network with respect to
antigens, i.e., the network is

the immune system, e.g., to be tolerant to self mol-
ecules and responsive to frequently encountered
parasites and pathogens. If the system were opti-
mized to the antigens in its environment, the net-
work could be filled compactly with non-overlap-
ping patches. The number of antigens (patches)
would then scale linearly, i.e.,

mDN.

N

WEISBUCH/OPREA (1994) discuss more thoroughly
the capacity limits of model immune networks with
localized responses. They verify by numerical simu-
lations the square root scaling law for the memory
capacity. They also examine a number of other fea-
tures of the network. They show that when the num-
ber of presented antigens increases, failures to re-
move the antigen occur since the relevant clone has
been suppressed by a previous antigen presentation.
They also show that previous immune or tolerant
attractors are rather robust in the sense that destruc-
tion of these local attractors by new encounters with
antigen is rare, and that the complete re-shuffling of
the attractors, as in HOPFIELD nets (HERTZ/KROGH/
PALMER 1990), is never observed.

5. Conclusions

This presentation does not mention a number of in-
teresting topics such as the origin of Life and Spe-
cies, issues in population ecology, metabolic net-
works, etc. The selected topics that I developed
reflect only my own research interests. Since the first
version of the paper was written new experimental
techniques and the availability of huge series of data
changes the outlook for theoretical biology.

B A number of empirical studies concerned the to-
pology of interactions and pointed to the impor-
tance of scale free networks, i.e., networks with a
wide distribution of connectivities, such as food-
webs, gene regulatory nets, metabolic networks...
(ALBERT/BARABASI 2002).

B The availability of huge data sets allow to envi-
sion the solution of inverse problems: how to com-
pute the set of interactions from the set of observed

network configurations.

not organized to respond to
the set of presented antigens.
On the other hand, it can be
argued that the clones ex-
pressed by mammals have
been selected by evolution ac-
cording to the environment of
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B But the importance of
characterizing the generic
properties of empirical or
simulated networks still re-
mains a preliminary step be-
fore further studies.
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