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1 Introduction

Many markets are characterised by trading relationships. Individuals systematically
trade with particular partners in certain markets whilst in others no such stable links
are observed. Some other markets exhibit a mixture of stable links and ”searching”
behaviour. Yet the way in which such organisation develops and its economic con-
sequences are not considered in most standard theoretical models. In a Walrasian
equilibrium, for example, the following questions are left unanswered:
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1 INTRODUCTION 2

• How do agents get the information about who demands or supplies which good
at what price? Who determines those prices?

• How is that information used to determine who will make which transaction
with whom, thereby clearing the market at each stage and determining market
organisation in the long run?

One of the objectives of this paper is to examine a situation in which individuals set
prices and the way in which those who wish to buy, at those prices, become matched
with those who wish to sell. In standard search models (see e.g. Diamond (1989))1,
buyers sample sellers according to some rule and buy from the cheapest. All sellers
are anonymous and are searched with equal probability. There is no memory of where
favourable opportunities were found in the past. Such models seem to be plausible
for transactions which take place infrequently. Yet many markets are ones on which
individuals trade frequently with each other. This particularly true for markets for
perishable goods. Furthermore, in the latter case, since sellers cannot hold inventories,
they only supply the quantities they expect to sell during one session. The essential
risk, in our stylised context, for a buyer is not that of paying too high a price but
rather of not being served at all. Hence, rather than gathering information about
different sellers at each session, a buyer may find it worthwhile to use the experience
gained from transactions with sellers during previous sessions.

In our model, trading relationships develop precisely because buyers learn, in
this way, about the value of trading with particular partners. Such stable trading
relationships are also profitable to sellers who can then predict with some accuracy
the demand they will face in each session and determine their supply accordingly. The
more loyal the customers, the better the prediction and the more likely the customer is
to find the goods he is seeking. Thus the establishment of regular trading relationships
may be mutually profitable. The basic aim of this paper is to examine the extent to
which agents in a simple model of such markets will learn their way to establishing
trading links and to characterize the conditions under which this happens.

We emphasize that the intrinsic uncertainty in our model is due to the behaviour
of the buyers.There is no exogenous uncertainty about the parameters of which agents
learn. Thus our model differs from those of (Felli and Harris (1996), Bergemann and
Valimaki (1994) and (1996)), in which agents learn about some exogenous random
variable and strategic behaviour influences such learning. Our model, on the other
hand, uses a simple rule of thumb for learning with no strategic thinking. This would
seem to be well adapted to a situation with no a priori stable distribution of the
quantities available at each shop. This the case for buyers in the Marseille wholesale
fish market from which our empirical evidence is taken.

In this paper, we limit our attention to situations in which individuals have to
rely on their own experience and do not observe that of others directly. We shall
be interested here, in particular, in markets in which transactions are not made
public, and no prices are posted. In such markets agents have to rely on their own
information. We will therefore develop a model which seeks to explain some of the

1for more elaborate models, see e.g. Fisher (1973) and Lesourne (1992).
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phenomena that characterise this particular type of market in which learning is from
individual past experience. Our emphasis is on the buyers side of the market but the
conclusions that we draw will be shown to hold even when different sellers behaviour
is introduced. We will adopt an approach which allows us to obtain analytical results
for the simplest version of our model and we then use simulations to check that these
results still hold in more complicated and realistic versions.

The structure of the paper is as follows. We start by proposing a very simple model
of a market for a perishable good, in which at each time step buyers (retailers) meet
sellers (wholesalers) and buy quantities of the homogeneous good to resell on their
own local market. They do this in a shop which is chosen according to the information
gathered during previous purchases. This model is solved analytically using the ”mean
field” approximation. The theory predicts that two distinct types of behaviour for the
agents should be observed according to their learning and choice parameters: some
agents should remain loyal to one selected shop, while others should keep on shopping
around for ever. We then use multi-agent simulations to study more complex, and
more realistic versions of the model, allowing for instance several purchases per buyer
during the same day, varying prices, and more complicated adaptive behaviour of
buyers and sellers. Our simulations show that the same patterns of dynamic behaviour
persist. Finally, we verify that the theoretical predictions which are specific to our
model are consistent with empirical data from the wholesale fish market in Marseille.

2 The Simplest Model

Let us consider a set of n buyers i and a set of m sellers j.

2.1 Basic Assumptions

In order to simplify assumptions as much as possible, let us suppose that:

• Customers choose one shop every day according to their memory of previous
transactions. As long as the shop has supply, a customer purchases a quantity
qi(t) implying a profit πi(t). Whether the customer is served when he visits the
shop depends on which shop j is visited at time t, how many people bought
from that shop before, and how much endowment the shop had at the beginning
of the day2.

• Since the good is perishable and therefore cannot be stored between days, each
day a seller supplies a quantity Qj(t) which he expects to sell on that day. In
the simplest version of the model, this quantity is simply the quantity he sold
yesterday.

• Every day the same market scenario is repeated.

2In the simplest model, customers visit only only one shop and thus have only one chance to get
served everyday.
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These simplistic assumptions will be used in sections 2, 3 and 4. More realistic
assumptions will be made in section 5.

2.2 Preference coefficients, Learning and Choice Probabili-
ties

Our model seeks to explain trading relationships. Therefore, our assumptions about
how buyers choose which shop to visit are crucial. These assumptions3 are kept
constant throughout the entire paper, i.e. they are the same for the basic model and
its extensions.

A buyer has to choose one shop each day. The basic assumption of the present
model is that his present choice of which shop to visit is based on his previous experi-
ence. His decision rule is therefore a mapping from the time series of the transactions
he has had with different sellers and the profits associated with the transactions4,
I(t), to the unit simplex ∆m, where m is the number of sellers:

P (t) : I(t) −→ ∆m (1)

A point in the simplex ∆m represents the probabilities with which an individual
chooses each of the m sellers.

The mapping P (t) can be decomposed into two components, a mapping from I(t)
to a vector J(t) of ”preference coefficients” and a second mapping from J(t) to ∆m.
The first mapping is an encoding based on a learning process and the second mapping
describes the probabilistic choice process.

Let us first specify the learning process of the buyers. By assumption the only
information available comes from past transactions, so each buyer has a record for
each shop. The profits buyer i made when buying from shop j are mapped into
the preference coefficient Jij by adding profits every period and discounting previous
profits at a constant rate γ. Since we use discrete time for transactions, preferences
are updated at each time step according to:

Jij(t) = (1− γ) · Jij(t− 1) + πij(t), ∀i,∀j, (2)

In other words, at each time step, all preference coefficients are discounted at a
constant rate, and the preference coefficient for the shop with which a transaction
occurs is increased by the profit made in that shop. Preference coefficients thus appear
as the sum of discounted past profits. Discounting can be interpreted in different ways:
it describes gradual forgetting of past events; it also serves to ensure that information
is relevant to the current situation. In real life shops do not necessarily have stationary
characteristics in terms of the profits that they offer, because of possible changes in

3The learning and probabilistic choice process described in this section was inspired by the formal
neural networks approach to reinforcement learning as described for instance in Weisbuch (1990).

4In wholesale markets of perishable goods, profits are more pertinent to retailers than prices since
retailers are facing uncertainties related to prices and available quantities. The relation between
profits, prices and available quantities are discussed in section 5.
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prices for many possible reasons, in their initial endowment and in their number of
customers.

The decision rule used by the buyers then maps these preference coefficients into
the choice of a shop. One deterministic way to do so is to choose the shop with the best
record, that is the shop with the highest Jij(t). This would amount to mapping the
J(t) into one of the apices of ∆m. However, by doing this, the buyer would become a
captive of the selected shop which would then be in a position to diminish the buyer’s
profit and to increase its own profit by changing prices. The shop could do this until
the buyer’s profit becomes negative before running any risk of losing that buyer. It
is therefore in the buyer’s interest to search from time to time among other sellers to
check whether he could get a better profit elsewhere. In other words, a reasonable
rule-of-thumb for the buyers would be a balance between the deterministic choice in
favor of those shops which gave the best profits in the past and random search among
other sellers. This raises the well known issue of the trade-off between exploitation
of old knowledge and exploration to acquire new knowledge.

We use a probabilistic choice rule here, which characterizes this trade-off with a
single parameter β. We suppose that the decision rule by which a buyer i assigns a
probability Pij of visiting seller j is proportional to the exponential of the preference
coefficient for that seller. That is:

Pij =
exp(βJij)∑
j′ exp(βJij′)

, ∀i,∀j, (3)

where β, the discrimination rate, measures the non-linearity of the relationship be-
tween the probability Pij and the preference coefficient Jij. This specification5 allows
for any choice rule in the range of equal probabilities (β = 0) to best-reply (β = ∞).

In our case, the exponential rule can be derived directly (see Brock (1993) for a
discussion). This is done by maximizing the weighted sum Fi of two terms; one of
which favors immediate profit:

Gi =
∑

j

PijJij.

Gi is approximately the expected discounted sum of profits. The other term favors
search. To maximise the information gained during visits, buyers should maximize
the Shannon entropy6 of the distribution of search probabilities:

Si = −∑

j

PijlogPij,

The function Fi to be maximized is then a linear combination of preferences and
entropy terms:

Fi = βGi + Si. (4)

5The exponential rule has been widely used in economics and elsewhere. Several justifications
for its use are given in the discrete choice literature, see e.g. Anderson et al. (1992).

6Entropy is a measure of the disorder of a system; it is maximal (for each i) if all Pij = 1/m,
”the most random probability measure” as Brock (1993) calls it. Entropy is minimized if Pij = 1
for one j and the other Pij = 0.
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The smaller β the stronger the weight given to disorder, i.e. to information gathering
at different shops. The larger β the more important (short-run) payoff concerns.
Setting the derivatives of Fi with respect to Pij equal to zero under the constraint
that the sum of the probabilities is 1 gives equation (3).

3 Mean Field Approach

The simple model can be formally analysed within the framework of the Mean Field
approach. This consists in replacing randomly fluctuating quantities by their average,
thus neglecting fluctuations. It is only an approximation, but is often convenient to
obtain at least a qualitative understanding of the behavior of the system.7

The model is soluble in the continuous limit, when the changes of variables are
small at each time step, i.e. γ → 0. Equation (2) can be expressed as a difference
equation in τ by multiplying γ and πij(t) by τ and then rewriting it as:

Jij(t + τ)− Jij(t)

τ
= −γJij(t) + πij(t). (5)

Taking the limit for τ → 0, leads to a stochastic differential equation

dJij

dt
= −γJij + πij (6)

in πij. The Mean Field approximation consists in replacing the πij by its expect-
ed value < πij >, thereby transforming the stochastic differential equation into a
deterministic differential equation.

The time evolution of Jij is thus approximated by the following equations:

dJij

dt
= −γJij+ < πij > (7)

< πij > = Prob(qi > 0) · πij
exp(βJij)∑
j′ exp(βJij′)

; (8)

the fraction represents the probability that buyer i visits shops j; Prob(qi > 0) is the
probability that the shop still has goods to sell when the buyer comes to shop j, in
which case he gets a quantity qi resulting in profit πij. Suppose the market converges
to a stationary state in which buyers’ preference coefficients do not change. Such
a state is called an equilibrium in dynamical systems theory and it is obtained by
setting the derivatives (equation (7)) equal to zero.

7The limits of applicability of the Mean Field Theory are an advanced topic in Statistical Physics
discussed for instance in Brout (1965). Some ideas are discussed in an economics context in Aoki
(1996). Even without a full discussion (well beyond the scope of the present paper), we might expect
that the Mean Field Theory applies reasonably well to the present case with no a priori connection
structure. Anyway, even in those cases where its predictions are quantitatively inaccurate, the Mean
Field Theory is still good enough to predict the transitions and some dynamical properties in their
neighbourhood. This is sufficient for our purpose of solving a simple model to gain some insight in
the structure of the market and to calibrate the simulation results.
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Let us consider the simplest case of two shops and to further simplify computation,
let us suppose, for the moment being, that Prob(qi > 0) = 1, which happens when
buyers always find what they require at the shop they visit. (If this were always the
case, there would be no rationale for the learning and choice algorithm described in
section 2. We take here Prob(qi > 0) = 1 only as a limiting case allowing analytical
computations which are then checked against numerical simulations in section 4 with
Prob(qi > 0) ≤ 1).

3.1 The order/disorder transition for the symmetric case

To make computations easier, let us first suppose for the moment that profits in
both shops are equal to π (see the next section for unequal profits). The equilibrium
relations are in this case:

γJ1 = π
exp(βJ1)

exp(βJ1) + exp(βJ2)
, (9)

γJ2 = π
exp(βJ2)

exp(βJ1) + exp(βJ2)
. (10)

We dropped the index i referring to the buyer, and the remaining indices 1 and 2 refer
to the sellers. Subtracting equation 10 from equation 9, we see that the difference
between the two preference coefficients, ∆ = J1 − J2, obeys the following implicit
equation:

γ∆

π
=

exp(β∆)− 1

exp(β∆) + 1
. (11)

The right hand side of the equation is the hyperbolic tangent of β∆/2 . The above
equation has either one or three solutions according to the slope of the hyperbolic
tangent at the origin. If 8

β < βc =
2γ

π
(12)

there is only one stable solution ∆ = 0 and J1 = J2 = π
2γ

. The average Jj are
small and equal. A buyer visits both shops approximately half the time, switching at
random between the shops. We call such a regime disordered or disorganized.

In the opposite situation, if β > βc, the zero solution is unstable and the other two
solutions are stable and symmetric, with one preference coefficient large and the other
one small9. At the stable solutions a buyer visits one shop with high probability and
frequency (high preference coefficient) and the other shop with very low probability
and therefore rarely (low preference coefficient). We call such a regime ordered or
organized; buyers are loyal.

The transition from the disordered to the ordered regime is abrupt; the difference
between the preference coefficients ∆ stays 0 for β < βc, it changes with infinite slope

8By developing the hyperbolic tangent in series for small values of β∆/2. See appendix A for
more details.

9The ratio between the two preference coefficients is exponential in βπ/γ; see appendix A.
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at β = βc, and it increases approximately by the square root of the distance (β − βc)
(close to ∆ = 0):

∆ =

√
12(β − βc)

β3
(13)

as can be seen in figure 1 obtained by solving equation 11.

0.0       0.5       1.0       
 β 
 c 

0.0       

2.5       

5.0       

   

0.0       0.5       1.0       β   

0.0       

2.5       

5.0       

J   

Figure 1: The order/disorder transition in β. Plot of both equilibrium preference
coefficients versus the discrimination rate β. Below the transition rate
βc, preference coefficients are equal, but they rise or plummet sharply
when the discrimination rate β increases above the transition. When
profits in both shops are equal (as in this figure), either loyalty describes
the upper branch, while the other describes the lower branch. (The
figure is drawn for two shops with π = 1 and γ = 0.2 using GRIND
software, De Boer 1983).

In the case of m shops, the fixed point equations are:

Jj =
π

γ

exp(βJj)∑
k exp(βJk)

. (14)

Summing over j the fixed point equations (14) one sees that any solution J satisfies

∑

j

Jj =
π

γ
. (15)
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Obviously, the symmetric fixed point

Jj =
π

mγ
j = 1, ..., N (16)

satisfies equation (14). The symmetric fixed point is an attractor if and only if the
right hand side of equation (14) has a slope smaller than one. This condition is easily
checked since the derivative of the denominator of the HRS of equation (14) is zero
at the symmetric point, due to equation (15) and equality of the derivatives with
respect to the Jk. We thus obtain:

βc =
mγ

π
. (17)

In this case, there is either one stable stationary point (if β < βc), where the
customer visits all shops with equal likelihood, or there are m stable stationary points
(if β > βc), where a buyer is loyal to one of the m shops10.

The above analysis shows that as long as the mean field approximation remains
valid, the qualitative behavior of the dynamics, ordered or disordered, only depends
on the ratio between β and βc. As long as β/βc is kept constant, changing the original
parameters m, β, and π, only changes the scale of equilibrium variables such as actual
profits of the buyers or the fraction of unsold endowments. The time scale of learning
depends on γ: order, when achieved, is reached faster for larger values of γ.

Within the approximations made in this section, buyer dynamics are uncoupled:
each buyer behaves independently of other buyers. As a result, if we now consider a
set of buyers with a distribution of π, β and γ parameters, we expect to observe two
distinct classes of buyers within the same market: loyal buyers with β > βc, who visit
the same shop most of the time, and searchers with β < βc, who wander from shop to
shop. Indeed, precisely this sort of ”division of labour” is observed on the Marseille
fish market which was the empirical starting point for this paper and which will be
discussed in section 6. Furthermore, because of the sharp transition in behavior when
β goes across the transition, the distribution of behavior is expected to be bimodal
even if the distribution of the characteristics π, β and γ is unimodal.

We can now compare the predictions of our model where agents learn individ-
ually from their past experience with those of models where agents imitate each
others’ behavior through social interactions (Föllmer (1974), Arthur/Lane (1993),
Brock/Durlauf (1995), Orléan (1995)). Both types of models exhibit an abrupt phase
transition between order for large β values and disorder for small β values. Two main
differences exist.

• In the ordered regime, in the case of imitation, all agents make the same choice
(at least when interactions among all agents are a priori possible11); in our

10In total there are 2m − 1 equilibria for the differential equations associated with equation (17),
however, 2m − 1−m of these equilibria are not stable.

11Imitation favors uniformity, but according to whether one uses a mean field approach (all inter-
actions being possible) as in Arthur/Lane (1993), Brock/Durlauf (1995), Orléan (1995), or Markov
random fields (interactions restricted to some neighborhood) as in Föllmer (1974), one observes
global or local order. All agents make the same choice in the first case. Different choices can be
made in the second case, with local patches of agents making the same choice.



3 MEAN FIELD APPROACH 10

model different agents are loyal to different shops. Imitation and positive social
interactions favor uniformity, while decisions based on agents’ memory favor
diversity.

• In our model heterogeneity of buyer parameters results in having two classes of
behavior, searchers and loyal buyers. Order is a property of buyers, not of the
market. In imitation models, the market as a whole is organised or disorganised,
even in the presence of heterogeneity of agents12.

3.2 Shops offering different profits and hysteresis

Up to this point we have considered a situation in which sellers propose the same
prices, resulting in equal profits for buyers and we now we have to check whether
similar results apply when profits differ. Let us come back once more to the simple
case of two shops 1 and 2, and now suppose that they offer different prices and hence
different profits π1 and π2. Replacing profit π in equations 9 and 10 by respectively
π1 and π2, equation 11 becomes:

γ∆

(π1 + π2)/2
− π1 − π2

π1 + π2

=
exp(β∆)− 1

exp(β∆) + 1
(18)

The equation in ∆ has once more either one or three solutions, depending now
on the value of two reduced parameters, the relative profit difference r = π1−π2

π1+π2
and

the ratio between β and βc = 4γ
(π1+π2)

. The geometric interpretation of equation 18 in

∆ is still the intersection of a straight line (the left hand-side of equation 18) with
the hyperbolic tangent (its right hand-side). Equation (18) amounts to shifting the
left-hand side of equation (11) by (π1 − π2)/(π1 + π2) and by replacing the uniform
profit by its average on the two shops.

If β is above13 βc, the three intersections remain as long as the difference in relative
profits r is not too large. The frontier in the two regimes, three versus one solution,
in the β, r parameter space is described by inequality:

(
3r

2
)2 < (1− βc

β
)3 (20)

in the neighborhood of β = βc
14.

12Once more, this statement applies rigorously to the mean field approach. In the case of large
heterogeneity of local interactions in Markov random fields, ordered and disordered regions might
coexist.

13If β < βc then there remains only one stable solution, in which there is a small difference in
preferences proportional to the difference in profits (if β∆ is small):

J1 − J2 ' 4(π1 − π2)
(βc − β)(π1 + π2)

. (19)

Compare with footnote 9.
14expression obtained by developing the hyperbolic tangent in series for small values of β∆/2.
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As we could have easily guessed, the existence of two regimes separated by an
abrupt phase transition does not depend upon the simplifying assumption of symme-
try between the two shops. The above analysis can be generalised to a larger number
of shops and exhibit transitions in the number of solutions with respect to relative
profit differences among shops and average profit.

In the organised regime, which of the two asymmetric intersections is actually
reached by the learning dynamics depends on initial conditions. The following analysis
of the hysteresis effect can give us some clues about the consequences of changes in
the profit offered by the different sellers15.

0.0       1.0       2.0       π1     

0.0       

2.5       

5.0       

   

 J1  
 J2  

 J1  
 J2  

0.0       1.0       2.0       

0.0       

2.5       

5.0       

J     

Figure 2: Hysteresis of preference coefficients. Plot of both preference coefficients
J1 and J2 versus π1, the profit to be obtained from shop number 1
when π2 the profit to be obtained from shop number 2 is held equal
to 1. (β = 0.5 and γ = 0.2). The thick lines correspond to stable
equilibria for both preference coefficients, J1 and J2, and the thin lines
to unstable equilibria (when π1 ' π2). In the three solutions region,
if the initial conditions are such that J1 is large (and J2 is small), J1

remains large when π1 is decreased, even when π1 < π2. The stability
of this metastable attractor is lost when π1 = 0.89. In a symmetrical
manner, the high J2 attractor existing at low π1 can be maintained up
to π1 = 1.095. (the figure was drawn using GRIND software, De Boer
1983).

Figure 2 is represents the preference coefficients J1 and J2 obtained by solving
equation (18) by numerical methods (De Boer 1983) for π2 = 1, β = 0.5, γ = 0.2 and

15and hence about possible strategies for the sellers.
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π1 varying from 0 to 2. By following the evolution of preferences on the two branches
of figure 2, we can see that buyers can remain loyal to a shop asking for a higher price
(which results in a lower profit for the buyer), provided that they became attached to
this shop when it asked a lower price. When the most often frequented shop changes
its price, the loyalty to that shop describes the upper branch of the loyalty versus
profit curve (figure 2). The loyalty remains on the upper branch as long as it exists,
i.e. until the point where the slope is vertical. When profit decreases beyond that
level, a sudden and discontinuous transition to the lower branch occurs. This is the
point when customers change their fidelity and visit the other shop. But, if the first
shop reverses its high price/low buyer profit practice when loyalty is on the lower
branch, the transition to the higher branch only occurs when the slope of the lower
branch becomes vertical, i.e at a higher profit than for the downward transition.

Thus an important qualitative result of the mean field approach is the existence of
hysteresis effects: buyers might still have a strong preference for one shop that offered
good deals in the past, even though the current deals they offer are less interesting
than those now offered by other shops. A consequence of this phenomenon, is that
in order to attract customers who are loyal to another shop, a challenger has to
offer a profit significantly greater than the profit offered by the well established shop:
once preference coefficients have reached equilibrium in the ordered regime, customers
switch only for differences in profits corresponding to those where the slopes of the
curves J(π) in figure 1 are vertical (i.e. not when profits are equalised!). In other
words, economic rationality (i.e. choosing the shop offering the best deal) is not
ensured in the region where hysteresis occurs.

4 Results

4.1 Indicators of order

We next proceed to run a number of numerical simulations of our model. This first
enables us to check whether the theoretical results obtained from the mean field ap-
proximation are consistent with those obtained by running the discrete stochastic
process as described by equation (2) and (3). Second, as discussed in the next sec-
tion, it allows us to compare the simple model with more complicated, analytically
intractable versions.

Simulations generate a large number of data about individual transactions such as
which shop was visited, purchased quantities, and agents’ profits. The organization
process itself, involving the dynamics of the buyers’ Jij vectors, is harder to monitor.
We used two methods to do this.

Firstly, adapting a measure used in Derrida (1986) for instance, we define an order
parameter yi by

yi =

∑
j J2

ij

(
∑

j Jij)2
, (21)

In the organized regime, when the customer is loyal to only one shop, yi is close to
1 (all Jij except one being close to zero). On the other hand, when a buyer visits m
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shops with equal probability, yi is of order 1/m. More generally, yi can be interpreted
as the inverse number of shops visited. We usually monitor y, the average of yi over
all buyers.

Secondly, when the number of shops is small, 2 or 3, a simplex plot can be used to
monitor on-line the loyalty of every single buyer. The first three graphs of figure 3 and
4 display simplex plots of a simulation at different steps. Each agent is represented by
a small circle of a specific colour or shade, which represents the agent’s probabilistic
choice, i.e. the probability distribution over the 3 shops (corresponding to the 3
apices of the triangle). Proximity to one corner is an indication of loyalty to the shop
corresponding to that apex. Agents represented by circles close to the center search
all shops with equal probability.

4.2 A simple model

A simple model was run with 3 sellers and 30 buyers, for a large variety of parameter
configurations and initial conditions. In the simulations, time is discrete and buyers
receive equal profits when a transaction is made. Sellers’ endowments at the beginning
of each session are finite, which implies that Prob(qi > 0) does not have to be one
as in the simplest version solved analytically. The figures 3 and 4 correspond to
a memory constant γ = 0.1. The critical non-linear parameter corresponding to a
unitary profit is then βc = 0.3 (equ. 13). Initial Jij were all 0. Depending on the
value of the non-linear parameter β, the two predicted dynamic regimes, order and
disorder, are observed.

4.2.1 Disorganized behavior

For low values of the non-linear parameter β buyers never build up any loyalty. This
is observed in figure 3, which describes the dynamics obtained with β = 0.15βc. The
daily profit of buyers averaged over all buyers and over 100 days after a transition
period of 100 days, is only a fraction16 of the buyer’s profit per transaction. This
is due to all those occasions on which a buyer visited an empty shop. The daily
profit of sellers averaged over all sellers and over 100 days after a transition period of
100 days, is only a fraction of ten times the seller profit per transaction (the factor
10 corresponds to the average number of buyers per shop). This difference was also
generated indirectly by buyers who visited empty shops since, at the same time some
shops with supply were not visited resulting in losses for their owners.

As seen in the simplex plots of figure 3, even at time 50, agents are still scattered
around the barycenter of the triangle, an indication for a disordered regime without
loyalty of any agent to any shop. Similarly, the order parameter y fluctuates well
below 0.50 and thus corresponds to randomly distributed Jij. Figure 3 shows that

16The exact percentage figures depend on the specific demand and supply functions, i.e. on
the relationship between purchase and resale price for both, sellers and buyers. The simulations
presented here were done with the specific functions discussed in section 5. However, the observed
decrease in profit for buyers and sellers is generic.
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the performance of shop number 1 exhibits large fluctuations. The same is true for
the two other shops.

4.2.2 Organized behavior

In sharp contrast, the same analysis performed with β = 2βc shows a great deal of
organisation, see figure 4.

The average order parameter, y, steadily increases to 1 in 200 time steps. As seen
on the simplex plot at time 50, each customer has built up loyalty to one shop. Per-
formance of shop number one also stabilizes in time, and variations from stationarity
are not observed after 20 time steps.

The daily profit of buyers averaged over all buyers and over 100 days after a
transition period of 100 days, is very close to the profit per realised transaction.
Because buyers have not changed shops during the last 100 days, sellers learn to
purchase the exact quantity needed to satisfy all their buyers and incur no losses as
foreseen by the model.

By avoiding daily fluctuations in the number of customers visiting a shop, the
ordered regime is beneficial to both customers and sellers, that is both obtain higher
profits than in the disorganised situation. In this sense, the ordered regime is Pareto
superior to the disordered regime.

4.2.3 Heterogeneity of buyers and sellers

histograms of yi order parameters
β 0.3 0.4 0.5 0.6 0.7 0.8 0.9 y ys

0.3 29 1 0 0 0 0 0 0.35 0.35
0.6 26 1 2 0 1 0 0 0.38 0.35
0.9 24 3 1 1 1 0 0 0.39 0.35
1.2 18 5 2 1 2 1 1 0.45 0.34
1.5 8 5 2 2 1 6 6 0.63 0.34
1.8 1 3 5 1 1 7 12 0.79 0.38
2.1 1 0 0 1 2 6 20 0.90 0.36
2.4 0 0 0 0 0 6 24 0.94 0.36
2.7 0 0 0 0 0 1 29 0.98 0.47

Table 1: Histograms and averages of order parameters across the transitions.

In real markets, we expect a mix of buyers with different β and γ parameters. Thus
some buyers will be loyal to certain sellers, while others will continue to search. The
same is true for sellers who might offer different prices and thus different profits to
buyers. The genericity of the theoretically derived results was tested by numerous
simulations.

Table 1 gives a series a results obtained for a uniform distribution of γi coefficients
varying from 0.1 to 0.5 among 30 buyers; three shops offer different profits varying
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from -20 perc. to +20 perc. of the middle profit. βc = 1.56 for the median shop (γ =
0.03) and the median buyer (π = 0.057). All data were taken after the simulations run
for 500 time steps. Different lines of the table correspond to different values of β (first
column). The next 7 columns represent the histograms of buyers order parameters:
the leftmost bin correspond to 0.3 < yi < 0.4, the rightmost to 0.9 < yi < 1.0.
The two rightmost columns are average buyers order parameter y and ys an order
parameter for sellers defined by:

ys =

∑
j n2

j

(
∑

j nj)2
(22)

where nj is the number of customers in shop j. This series of simulation show that
when β increases:

• more and more buyers move across the transition towards ordered behaviour,
filling the rightmost bins of the histogram; such buyers become loyal to certain
sellers, while others continue to search;

• individual transitions remain sharp; buyers maintain either ordered or disor-
dered behavior according to the position of their βc = mπ/γi with respect to β;
note that the intermediate bins have a rather small population with respect to
the extremal bins, even for intermediate values of β;

• Since ys < 0.5, it is clear that all three shops are visited, even though one is
offering a profit 40 perc. above the lowest offered profit.

As also shown in Herreiner (1997), organized or disorganized behavior is here a prop-
erty of buyers, not a property of markets.

4.3 Beyond the mean field approximation

The results of the mean field approach were obtained from a differential equation
approximating a discrete time algorithm. They are valid when the changes at each
step of the algorithm can be considered small. γ thus has to be small, which is true
for the simulation results given in figures 2 and 3.

One of the features noticed by observing on-line the motion of individual buyers
in the ordered regime on the simplex plots is that agents sometimes move ”backward”
towards shops which are not the shops that they ”prefer”, i.e. those whose with high-
est preference coefficient. But since for most of the time they move towards preferred
shops, these moves only very infrequently make them change shops and preferences.
When variables γ is increased, these moves have more important consequences.

• Customers might change loyalty from one shop to another one. Increasing γ
results in larger steps taken by customers on the simplex, which might make
them move from one corner to another one in a few time steps. In fact the
probability of a given path on the simplex varies as the product of probabilities
of individual time steps: if fewer steps are needed the probability that the pro-
cess will generate such changes becomes higher and they are indeed sometimes
observable on-line on the simplex plots.
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• Shops offering higher profits are favored on average by these changes. The
stability of fidelity coefficients for shops offering lower profits predicted by the
mean field continuous approach becomes metastability in discrete dynamics17.

5 More complicated models and results

We now briefly discuss some generalisations of the model. Since these more realistic
variants are no longer analytically tractable we therefore had to resort to computer
simulations to compare their dynamical properties with those of the simple soluble
model and with empirical data. Full details about these simulations can be found in
Weisbuch et al.(1998). All the variants share the same fundamental mechanism by
which buyers choose sellers and the same way of updating preference coefficients as
defined in section 2.2.

It is important at this stage to specify the type of comparison that we intend to
make between the variants of the model and empirical evidence. We certainly expect
some changes to occur at the global level when modifications are introduced in the
way in which individual agents make their decisions. Nevertheless, the main point
here is to check whether the generic properties of the dynamics are still preserved
after these changes. The existence of two distinct, ordered and disordered regimes
in which individuals will find themselves, separated by a transition, is such a generic
property. On the other hand, we consider as non-generic the values of the parameters
at the transition and the values of variables in the ordered or disordered regime. Since
even the more elaborate versions of our model are so simplified in comparison with a
very complex reality, a direct numerical fit of our model to empirical data would not
be very satisfactory, if only because it would involve many parameters which are not
directly observable. The search for genericity is based on the conjecture18 that the
large set of models which share the same generic properties also includes the “true”
model of the real system itself.

The search for generic properties frees us from the necessity of having a compre-
hensive model for all the aspects of the market such as endogenous price dynamics or a
fully developed theory of sellers behaviour: as long as various exogenous price dynam-
ics and the different sellers behaviours that we have tested yield the same properties
for buyers’ behaviour, these properties would also be observed in fully comprehensive
models.

For our theoretical discussion it was enough to know the profit realised from a

17Metastability means that according to initial conditions and probabilistic events, buyers might
be attracted towards shops offering lower profit on a short time scale of order 1/γ, but that shops
offering the best deals are selected in the ultra long term (this distinction is similar to the distinction
between the long run and the ultra long run introduced in economics by Gale etal (1995). But the
times to reach an equilibrium distribution of fidelities can be extremely long depending on γ (see
Herreiner 1997 for more simulation results). Naturally, in real life, shops losing customers because
they offer lower profit have time to readjust and to improve their offers!

18This general conjecture, which is basic in the dynamic modeling of complex systems, is proven
rigorously for specific systems such as classes of universality in physics (see for instance Pfeu-
ty/Toulouse (1977)) or structural stability in mathematics (see for instance Thom (1975)).
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transaction with each firm. A first step towards a more complete model would be to
specify explicitly the origin of this profit. For example, one could define the demand
faced by the retailers who are the buyers in our model. This in turn would give the
optimal price to be set by the seller and the quantity that would be purchased by a
buyer. This was done by using a simple hyperbolic specification and assuming that
the retailers were local monopolists in order to make the simulations discussed in
section 4.

The one-session model described in section 2 is a considerable simplification of
the way buyers search for sellers. As is commonly observed in several markets with
the sort of structure we are modeling here, customers that refuse a deal with one
seller, usually shop around to find other offers. Indeed this is regarded as the main
motivation for refusal in standard search models. An alternative explanation is that
customers refuse deals now in order to induce better offers in the future. In either
case, to take this into account, we would have to consider a model in which customers
are given at least two occasions to purchase goods, with a morning and an afternoon
sessions.

This would necessitate specifying the rules by which agents make their decisions
taking into account the existence of a second session. Thus sellers would have to decide
on the prices to charge in the morning in the light of the transactions they expect to
make in the afternoon. They also have to decide on prices in the afternoon given the
quantities of goods left on their hands after the morning transactions. Buyers on the
other hand, would make a decision as to which prices to accept in the morning given
the prices and quantities they expect to be available in the afternoon.

Simulations with an afternoon session do not reveal qualitative changes in the
observed behaviour of buyers; we simply observed that when a buyer does not make a
transaction in the morning she has a much better chance of making a higher afternoon
profit with a new shop that has extra supply. This leads to a more rapid change in
the probability of switching to another buyer and to a shorter duration of loyalty.

Another feature that we mentioned previously that would enhance the model is
that of the calculation of the amount that sellers wish to supply. To do this optimally
would require that the sellers know the probability distribution of the number of
customers with which they are faced. This distribution depends on the behaviour of
the buyers and is difficult to calculate. However if it is known by the seller, then the
optimal quantity to supply is easily computed and is given in Weisbuch et al.(1998).

The last feature of our model which needs to be generalised is that of uniform
behaviour by all sellers at any point in time. The ultimate answer to this would
be to develop a complete model of sellers’ behaviour. However, since our aim in
this paper was to explain certain empirical regularities in the behaviour of buyers we
confined ourselves to examining the case in which the distribution of prices varied
over time. This would suggest that the introduction of strategic pricing behaviour
as in the models of Bergemann and Valimaki (1994) and (1996) would not affect the
qualitative behaviour of the buyers in our model.
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6 Empirical Evidence

In order to see whether there was any empirical evidence of ordered or disordered
behaviour of buyers in a market, we started from a data base for transactions on the
wholesale fish market in Marseille (M.I.N Saumaty). The data base contains concerns
237162 individual transactions between ca. 1400 buyers and 45 sellers which occurred
between 02 - 01 - 1988 to 29 - 06 - 1991. For each transaction the following information
is recorded: the name of buyer, the name of seller, the type of fish, the weight of fish,
the price, the order in seller’s transactions.

The market is organised as in our model, that is, no prices are posted, sellers start
with a stock of fish which has to be disposed of rapidly because of its perishable nature.
Buyers are either retailers or restaurant owners. Deals are made on a bilateral basis
and the market closes at a fixed time. Of course the model is an extreme simplification
of the real situation: there are different kinds of fish on the market, each species of
fish is heterogeneous, buyers demand different quantities of fish. For a buyer the
alternative to purchasing his optimal good is to purchase some inferior alternative.

Direct examination of the data file with the help of standard sorting facilities
reveals a lot of organisation in terms of prices and buyer preferences for sellers. In
particular, one observes that the most frequent buyers (those who visit the market
more than once per week) with very few exceptions visit only one seller, while less
frequent buyers visit several sellers, which is consistent with our model. The data
will be analysed in this section only in terms of market organisation. Other aspects,
such as data classification and price dynamics, which show persistent price dispersion,
were analysed in Kirman and Vignes (1991) and Härdle and Kirman (1995).

A first step in comparing our theory with empirical data is to check whether
individual buyers display ordered or disordered behaviour during those three and
a half years. Since the classical approach to agent behaviour predicts search for
the best price, and since searching behaviour implies visiting different shops, any
manifestation of order would tend to support our theoretical prediction. If we find
evidence of ordered behaviour for certain participants, a second step is then to relate
the difference in the observed behaviour of these traders to some difference between
their characteristics and those of other buyers.

market shares monthly purchase
of share bought

largest seller from one seller
1st 2nd 3rd 95% 80%

cod 43% 14% 12% 48%
whiting 27% 8% 8% 24% 53%
sole 15% 14% 14% 33% 55%

Table 2: Loyalty in Cod, Whiting, and Sole Market

For the first step, to check for loyalty of buyers, we consider statistics for cod,
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whiting and sole transactions in 198919, see table 2.
Since we are interested in loyalty issues, we concentrated on the buyers who were

present in the market for at least 8 months. As can be seen in the first three columns
of table 2, the market for cod is much more concentrated than the market for whiting
or sole. In the cod market almost half the buyers (86 of 178) buy more than 95% of
their monthly purchases from one seller only, see the fourth column of table. Also
in the whiting and sole market buyers are loyal, but to a lesser degree: more than
half of them20 buy more than 80% from one seller. Hence, there are large fractions of
loyal buyers in all three markets.

Furthermore, one key conclusion of our model which distinguishes it from a number
of other possible explanations of fidelity is that, due to the phase transition, there
will be two separate types of behaviour in the market regardless of the underlying
distribution of the exogenous variables describing individual characteristics. In other
words, even if the exogenous explanatory variables such as frequency of visits or the
amounts purchased have an unimodal distribution, the distribution of fidelity will be
bimodal.

We then tested the distributions of the dependent variable of our theory, fidelity
and of the two exogenous variables frequency of visits and monthly volume of trans-
actions for cod. The histograms are shown in figures 5,6,7. Using a test developed
by Scott (1992)21 we estimated the probability of different modes. In other words we
estimated the probability that a particular value was a local maximum of the densi-
ty. For fidelity we found that there were two modes with probabilities 0.99 and 0.83
respectively whereas the other two distributions had single modes with 0.99 probabil-
ities. This shows clearly that the two distinct groups of buyers found by examining
their fidelity could not be explained by there being two distinct groups of buyers as
far as quantities purchased or frequency of visits are concerned.

For the second step, recall that our theory relates loyalty to the parameters β
(discrimination rate) and π/γ (cumulated profit). β, the discrimination parameter is
likely to vary from buyer to buyer, but we have no direct way to test it. However, π/γ
is strongly and positively related to monthly purchases of buyers, and we therefore
use the latter as a proxy variable. Figure 8 summarises loyalty of buyers in terms
of relative frequency of visits to their favorite seller as a function of their monthly
purchase of cod on a logarithmic scale. One may observe that loyalty is high in
general and that a number of buyers visit only one seller. The fit was done using a
non-parametric adaptive smoothing algorithm called LOWESS originally developed
by Cleveland in 1979. It is an extension of the usual k nearest neighbour smoothers
since it allows k to vary as a function of the variance in the part of the data being
smoothed. It shows shows that loyalty increases with monthly purchase.

All three features are consistent with our theory, and in contradiction with a
random search behavior for all buyers.

19The statistics for other periods of comparable length are very similar.
20Whiting 124 of 229, and sole 154 of 280.
21the test developed by Scott involves the smoothed frequency polygons and is more efficient than

tests involving direct smoothing of the histogram itself.
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7 Conclusions

We have examined a simple model of a market in order to see how the ”order” that
is observed on many markets for perishable goods develops. ”Order” here means the
establishment of stable trading relationships over the periods in which the market
is open. We focused on the behaviour of buyers to explain how the sharp division
into those who are loyal to a particular seller and those who always search could
arise. A simple theoretical model yielded this division which is observed on the
Marseille fish market.The basic feature of our model is that agents learn by reinforcing
those actions, in our case choice of sellers, which proved to be more profitable in the
past. Simulations of models which incorporated more general features but which
retained the same learning mechanism, showed the same qualitative features as the
basic model. Thus what we have shown within the context of an admittedly very
simple model is that the presence of ”order” and ”organisation” in a market is very
dependent on, and very sensitive to, the way in which agents react to their previous
experience. As has been seen ”ordered behaviour” in our model is more efficient in
Pareto terms than” disorder” and it is therefore of considerable interest to be able to
identify under which conditions such ”order” emerges.
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Föllmer H. (1974) ”Random Economies with Many Interacting Agents”, Journal
of Mathematical Economics, 1/1, 51-62.

Gale J., K. Binmore and L. Samuelson (1995), ”Learning to be imperfect: The
Ultimatum Game”, Games and Economics Behavior, 8, 56-90.
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A Fix points of tanh()

Restate equation (11) as

tanh(zx) = x, z ∈ R, with x =
γ∆

π
and z =

βπ

2γ
=

β

βc

, (23)

which is known to have one solution or fix point at x = 0 if z ≤ 1; if z > 1 then there
are three solutions.

The stability of these solutions can be analyzed by the slope of tanh(zx). When
tanh(zx) > x then movement is to the right (d∆/dt > 0), and conversely:

tanh(zx) > x ⇐⇒ π · exp(βJ1)− exp(βJ2)

exp(βJ1) + exp(βJ2)
> γ(J1 − J2)

⇐⇒ π
exp(βJ1)

exp(βJ1) + exp(βJ2)
− γJ1 > π

exp(βJ2)

exp(βJ1) + exp(βJ2)
− γJ2

⇐⇒ dJ1

dt
>

dJ2

dt
⇐⇒ d∆

dt
> 0.

If tanh(zx) has one solution, then the slope of tanh(zx) is flatter than the slope of x;
the one solution is stable. If tanh(zx) has three solutions, then at x = 0 (∆ = 0) the
slope of tanh(zx) is steeper than the slope of x, i.e. the central solution is unstable,
and then two other solutions are stable.

If tanh(zx) has three solutions, then the ratio of the preference coefficients at the
outer stable solutions is approximately

J1

J2

= exp

(
βπ

γ

)
, (24)

which can be obtained from equations (9) and (10) if J2 ≈ 0 and J1 ≈ π/γ.
To determine the speed of transition between the disordered and the ordered

regime we calculate the third-order Taylor expansion of tanh(zx) at x0 = 0 (∆0 = 0):

tanh(0) = 0, tanh′(0) = z, tanh′′(0) = 0, tanh′′′(0) = −2z3.



A FIX POINTS OF TANH() 23

This yields

F (x0 = 0) = zx− (zx)3

3
= x,

solving for x (∆) leads to

x =

√
3(z − 1)

z3
and ∆ =

√
12(β − βc)

β3.
(25)
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Figure 3: Charts for the disorganized regime. (30 agents visiting 3 shops, with
γ = 0.1 and β = 0.15βc) The first three graphs monitor market organi-
zation by simplex plots taken at time 10, 22 and 50. They show that
no organization takes place. The fourth graph shows a time plot of the
order parameter y (vertical axis: [0.3, 0.5]). The order parameter stays
well below 1. The last graph gives a record of shop 1. The time charts
display the initial and the final endowment, the number of customers,
the number of customers refusing the proposed price (see section 5.2),
and the number of unsatisfied customers who did not manage to buy
anything. Fluctuations in the market do not decline over time.
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Figure 4: Charts for the organized regime (30 agents visiting 3 shops, with γ = 0.1
and β = 2βc). All charts and notation are the same as for figure 3, except
for the scale of the order parameter plot (y). In the three simplex plots,
starting from indifference between all three shops, the circles move to
the corners representing the preferred shops. Organization takes place.
The order parameter y increases steadily from 0.33 to nearly one. The
time charts show how fluctuations decrease quickly due to organization.
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Figure 5: Histogram of the number of buyers of cod as a function of how many
shops they visit on average during one month in 1990. The sample of
buyers include those visiting more than once per month, and present on
the market more than six months. The distribution is clearly bimodal,
with one peak corresponding to fidelity to one shop, and another peak
centered around visiting 4 shops on average.
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Figure 6: Histogram of the number of buyers of cod as a function of their monthly
purchase of cod (each bin corresponds to ten extra kilograms purchased).
The distribution presents only one peak.
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Figure 7: Histogram of the number of buyers of cod as a function of their average
number of monthly visits to the fish market. The distribution presents
only one peak.
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Figure 8: Each dot is an empirical evidence from the Marseilles fish market rep-
resenting buyer loyalty to his favorite seller (relative frequency of visits)
as a function of the logarithm of his monthly purchase of cod in tens
of kilograms. Low purchases correspond to infrequent buyers, who gen-
erally visit once a week, while large purchase are those of buyers who
visit nearly every day the market is open. The fit is a non-parametric
adaptive smoothing algorithm which shows that loyalty increases with
monthly purchase.


