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Experimentalists who measure the rupture force of a single molecular bond usually pull on that bond at a
constant speed, keeping the loading rate r= df

dt constant. The challenge is to extract the energy landscape of the
interaction between the two molecules involved from the experimental rupture force distribution under several
loading rates. This analysis requires the use of a model for the shape of this energy landscape. Several barriers
can compose the landscape, though molecular bonds with a single barrier are often observed. The Bell model
is commonly used for the analysis of rupture force measurements with bonds displaying a single barrier. It
provides an analytical expression of the most likely rupture force which makes it very simple to use. However,
in principle, it can only be applied to landscapes with extrema whose positions do not vary under force. Here,
we evaluate the general relevance of the Bell model by comparing it with another analytical model for which
the landscape is harmonic in the vicinity of its extrema. Similar shapes of force distributions are obtained with
both models, making it difficult to confirm the validity of the Bell model for a given set of experimental data.
Nevertheless, we show that the analysis of rupture force experiments on such harmonic landscapes with the
Bell model provides excellent results in most cases. However, numerical computation of the distributions of the
rupture forces on piecewise-linear energy landscapes indicates that the blind use of any model such as the Bell
model may be risky, since there often exist several landscapes compatible with a given set of experimental
data. Finally, we derive a universal relation between the range and energy of the bond and the force spectrum.
This relation does not depend on the shape of the energy landscape and can thus be used to characterize
unambiguously any one-barrier landscape from experiments. All the results are illustrated with the streptavidin-
biotin bond.
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I. INTRODUCTION

The cohesion of any type of biological matter is ensured
by covalent and noncovalent bonds. The first ones are re-
sponsible for the cohesion of the backbone of biomolecular
structures while the second ones are intrinsically transient
and provide the various mechanical and dynamic properties
of biological objects. In recent years, many have undertaken
the challenge of probing single noncovalent molecular
bonds. Many such bonds have been investigated by means of
flow chambers �1,2�, atomic force microscopes �3,4�,
biomembrane force probes �5–8�, optical tweezers �9,10�,
and other techniques �11�.

One of the difficulties in measuring the rupture forces of
single molecular bonds is that, unlike macroscopic adhe-
sions, they are very sensitive to thermal fluctuations. There-
fore only a distribution of rupture forces can be obtained for
each measurement condition. The simplest experimental con-
ditions consist of disrupting a bond by pulling on it with a
spring at a constant speed. The bond is thus submitted to an
external force that increases at a constant rate r, also called
the loading rate. The external force f at time t is then f =rt.

The analysis of the rupture-force distributions at different
loading rates makes it possible to extract intrinsic properties
of the bond. However, this analysis requires a model for the
dynamics of the bond.

It is commonly agreed that these dynamics are well-
described by models inspired from Kramers’ theory �12,13�.
In that scheme, the bond is approximated by a one-
dimensional energy landscape in which the two bound mol-
ecules are trapped. During the separation process at a specific
loading rate, the energy landscape is tilted by the increasing
pulling force �14�. At any given time, the dynamics of the
bond can be equivalently described by Langevin or by
Smoluchowski equations, and formation as well as dissocia-
tion rates can be computed between successive metastable
states �15�. Consequently, this theory allows a direct deduc-
tion of the rupture-force distribution when the energy land-
scape of the bond is known. More precisely, in order to apply
Kramers’ theory, one needs to know the height and curvature
of any extremum in the landscape for any given pulling force
exerted on the bond. Experimentalists have to go the other
way around by deducing the energy landscape from the mea-
sured distributions of rupture forces. While it is clearly im-
possible to accurately obtain the overall energy landscape, its
main features can nonetheless be extracted. For this purpose,
a shape of the energy landscape has to be assumed.

In this paper, we focus on the case where the energy land-
scape under zero force displays a single barrier with a given
height and position. We discuss the influence of the shape of
the landscape on the analysis of rupture-force experiments.
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First �Sec. II�, we describe the well-known model introduced
by Bell �16�, which was adapted by Evans �15� for the case
of rupture-force measurements. We introduce another model,
the harmonic model, in which we postulate a shape of the
energy landscape that enables us, like in the Bell model, to
analytically solve the time evolution equation of the system.
We compare the solution of this equation obtained with both
models, and show that, by analyzing rupture-force measure-
ments, one deduces parameters defining the energy land-
scape, i.e., the height and the position of the barrier, which
depend on the chosen model. Nevertheless, both models lead
to parameters sufficiently close to claim that their predictive
power is comparable. Hence we conclude that in general, the
simplest model, i.e., the Bell model, should be used for the
analysis of rupture-force experiments.

One could also hope to deduce the whole shape of the
landscape from the experimental data. Unfortunately, we also
predict that whatever the analyzed data is, it is almost im-
possible to experimentally differentiate between different
types of landscape shapes from rupture-force measurements.
This means that one can only hope to obtain the height and
the position of the barrier but not the detailed shape of the
energy landscape.

Finally, since these two models do not describe all the
possible shapes of energy landscape, we broadened our study
by numerically solving the time evolution equation applied
on a piecewise-linear energy landscape. Such landscape pro-
vides a good approximation of any one-barrier landscape
�Sec. III�. Even though rupture force distributions display a
great diversity—and within this diversity several cases where
both the Bell and the harmonic models break down—their
analysis leads to a “universal” law relating the force spec-
trum to the height and the position of the barrier. This rela-
tion can be used to characterize unambiguously any one-
barrier energy landscape from experiments. All these results
are applied to experimental data obtained on the well-known
streptavidin-biotin bond �8�.

II. TWO MODELS LEADING TO ANALYTICAL
SOLUTIONS OF THE TIME EVOLUTION EQUATION

A. Notations

In this paper we consider a one-dimensional energy land-
scape E�x� of the bond where x is the reaction coordinate
during the rupture of the bond. In the absence of any applied
force, E�x� exhibits a minimum �zero-valued by conve-
nience� at x=0 and a maximum at x=xb: E�0�=0 and E�xb�
=Eb�0. Under an applied force f , the energy landscape is
tilted so that the energy becomes E�x�− fx. This energy has a
minimum located at xm�f� and a maximum located at xb�f�;
xm�f� and xb�f� depend a priori on the applied force. We call,
respectively, �E�f�, �x�f�=xb�f�−xm�f�, �m�f�, and �b�f� the
positive energy difference between the barrier and the mini-
mum, the positive distance between the barrier and the mini-
mum, the curvature near the minimum and the curvature near
the barrier �in pN nm−1�. Following these definitions:
�E�f�= �E(xb�f�)− fxb�f��− �E(xm�f�)− fxm�f��, so that
�E�f�=E(xb�f�)−E(xm�f�)− f�x�f�.

Finally, when the applied force is larger than the largest
slope of the landscape, the resulting tilted landscape is con-
tinuously decreasing, meaning that there is no more barrier
to pass for the bond to dissociate. This largest slope of the
landscape is called the critical force.

B. Master equation

In a widely used approach for modeling the dynamics of a
single bond submitted to a constant loading rate r �i.e., f
=rt� �15�, the probability P�f� for the bond to remain intact
under an applied force f follows the time evolution equation,
or master equation:

dP�f�
df

= −
kof f�f�

r
P�f� , �1�

where kof f�f� �expressed in s−1� is the off-rate, or rate of
rupture of a single bond under an applied force f . We point
out that in this model any rebinding events after dissociation
are neglected, following the assumption made by Evans in
Ref. �14�. Rebinding events are very rare because, when a
force is applied, it tilts the landscape, which pushes the mol-
ecules to separate quickly far away once the top of the bar-
rier is reached. Other authors �17,18� investigated the influ-
ence of these rebinding events.

Furthermore, kof f�f� can be written as

kof f�f� =
1

tD�f�
exp�−

�E�f�
kBT

� , �2�

where tD�f� is the inverse attempt frequency. Equation �2�
shows that the same kof f�f� can be obtained by a simulta-
neous shift in tD�f� and �E�f�. Applying Kramers’ theory
�12,13�, one can write

tD�f� =
2��

��m�f��b�f�
. �3�

Here, � is the damping coefficient which stands in the range
�2–5��10−8 pN s nm−1 and is dependent on the effective
viscosity of the surrounding medium �15,19–21� and pos-
sible hydrodynamic effects. The distribution of the rupture
force, or the probability density, p�f� �expressed in pN−1� is
given by

p�f� = −
dP�f�

df
. �4�

By definition, p�f�df is the probability that the bond will
break between forces f and f +df .

When the shape of the energy landscape—which appears
through the explicit expression of �E�f�, �m�f�, and
�b�f�—and � are known, Eqs. �1�–�4� are sufficient for de-
ducing a general expression for p�f�:

p�f� =
kof f�f�

r
exp�− �

0

f kof f���
r

d�� . �5�

In order to obtain an analytical expression of p�f�, the inte-
gral in Eq. �5� has to be computed. According to Kramers’
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theory, Eqs. �1�–�5� are only valid for f corresponding to
�E�f� which are larger than the thermal energy kBT.

C. Force spectrum and nondimensional variables

When the loading rate r is sufficiently high, p�f� pos-
sesses a maximum at f* which increases with r. f* is the
most likely rupture force. The differentiation of Eq. �5� gives
�see Refs. �22,23� for other similar derivations�

2 ln�kof f�f*�� = ln�r� + ln�dkof f

df
�f*�� . �6�

In all the models considered in this paper, tD will not depend
on f . It is then convenient to use dimensionless variables for

f*, �E, r, and p�f�, noted f̃*, �Ẽ �and Ẽb�, r̃, and p̃� f̃�,
respectively. We define those variable as follows: f̃ = f

Eb/xb
,

Ẽb=
Eb

kBT , r̃= r
Eb/xbtD

, and p̃� f̃�=
Eb

xb
p� Eb

xb
f̃�. Further below, nondi-

mensional variables will always be written with the super-

script .̃ With these variables, Eq. �6� becomes

ln�r̃� + ln�−
d�E

df̃
� f̃*�� + �Ẽ� f̃*� = 0. �7�

The plot of f* vs ln r is called the force spectrum of the bond
�as introduced in the dynamic force spectroscopy theory
�24��.

D. Bell model

The most commonly used model for analyzing single-
molecule force measurements has been introduced in the
seminal work by Bell �16�, and further developed by Evans
�15�. It essentially makes two implicit assumptions: �i� the
relative position of the barrier and minimum of the energy
landscape is constant during the bond rupture process; and
�ii� tD�f� has to be imposed since the curvatures are not de-
fined and tD�f� does not vary with f . In this case, kof f�f�
= 1

tD
exp�− Eb−fxb

kBT
�; p�f� can be derived analytically from Eq.

�5� and one obtains

p�f� =

exp�− Eb

kBT
�

tDr
exp	 fxb

kBT
+

kBT exp�− Eb

kBT
�

xbtDr

�
1 − exp� fxb

kBT
��� . �8�

It is worth noting that for the Bell model to be valid at all
forces where Eqs. �1�–�5� hold, the landscape is implicitly
completely equivalent to a linear increasing function of the
reaction coordinate x, so that the extrema’s locations are in-
dependent of the force.

We will not discuss other approaches based on reconstruc-
tion methods that use Jarzynsky’s equality �25–27�, nor other
analysis that include the energy landscape’s roughness �28�.
Furthermore, in this paper we only treat the case of so-called
slip bonds, for which the off-rate is an increasing function of

the applied force. When studying other types of specific
bonds, like catch bonds, for which the off-rate is a nonmo-
notonous function of the applied force, other groups
�5,29–32� have used multiple-pathways dissociation
schemes, or different one-dimensional �1D� models �see Ref.
�33�, where a description of recent models for catch bonds
can also be found�, which we do not consider here. Finally,
other approaches on slip bonds are discussed in Ref. �34�.

E. Harmonic model

Other shapes of energy landscapes have been considered
in the large number of single-bond force measurements stud-
ies, e.g., a minimum given by a harmonic potential �33,35�.
However, analytical expressions of the rupture force distri-
butions are rarely found in literature, although some interest-
ing results have been obtained in Refs. �17–19,36,37� and
very recently in Refs. �38,39�. Here, we propose a shape that
combines the advantages of giving a full analytical descrip-
tion and representing a large panel of energy landscapes. In
this model, the potential is supposed to be harmonic in the
vicinity of both the minimum and the barrier. In other terms:

E�x� =
1

2
�mx2 ∀ x, 0 � x � xc,

E�x� = Eb −
1

2
�b�x − xb�2 ∀ x, xc � x � xb, �9�

where xc is the location where the two harmonic components
are tangentially connected �i.e., dE

dx �x� is continuous; Fig. 1
shows examples of such landscapes�. The curvatures �m and
�b are independent of the force �hence the force-independent
notations�. Equation �3� shows that, like in the Bell model,
the inverse attempt frequency tD�f� does not depend on f .
Because of the tangential connection at x=xc, the curvatures
are linked by

xb

Eb

E(
x)

0
0

x

FIG. 1. Plot of the energy landscapes E�x� �under zero force� vs
the reaction coordinate x, for a given barrier position xb and a given
barrier height Eb. The solid lines represent the energy landscapes
treated by the harmonic model. Two parabolas �dashed curves� limit
these possible energy landscapes. The thick solid line represents the
landscape obtained when the curvatures at the minimum and at the

top of the energy barrier are equal: �m=�b=
4Eb

xb
2 . The straight dashed

line represents a landscape that corresponds to the Bell model.
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�m�b

�m + �b
=

2Eb

xb
2 . �10�

�E�f� is then independent of the curvatures:

�E�f� =
�Eb −

fxb

2
�2

Eb
. �11�

As a result, given a certain height and position of the barrier,
all the energy landscapes presented in Fig. 1 can be treated
simultaneously �only tD is different, following Eq. �3��.
These energy landscapes correspond to a curvature �m vary-
ing from

2Eb

xb
2 to infinity, whereas in accordance with Eq. �10�,

�b varies from infinity down to
2Eb

xb
2 . Out of this range, a

tangential connection between both harmonic potentials
around the minimum and the top of the barrier is not pos-
sible. For a value of �b approaching infinity, our model
brings us back to energy landscape shapes similar to those
studied in Refs. �36,37�. In the other limiting case, we de-
scribe a barrier with a cusp placed at the minimum, and a
harmonic potential around the barrier.

The advantage of the tangential connection between both
harmonic potentials is that it allows the simultaneous treat-
ment of the whole family of smooth landscapes shown in
Fig. 1 and leads to analytic solutions for kof f�f� and p�f� from
Eqs. �2�, �5�, and �11�:

kof f�f� =
1

tD
exp
− 	Eb −

fxb

2
�kBTEb

�
2

� , �12�

p�f� =
1

rtD
exp�− 	Eb −

fxb

2
�kBTEb

�
2

+
��kBTEb

rtDxb

�
erf	Eb −
fxb

2
�kBTEb

� − erf� Eb

�kBTEb
��� , �13�

where the error function erf is defined as

erf�x� = 2
���

0

x

exp�− z2�dz .

Note that the harmonic model reduces to the Bell model
�with tD which is fully determined by the shape of the land-
scape� when the force is sufficiently small. Quantitatively,
this occurs when the second order term in Eq. �11� can be
neglected against the first order one, i.e., for

fxb

4Eb
	0.1. For

xb=0.5 nm, Eb=20kBT this corresponds to f	16 pN.

F. Comparison of the force spectrum of the Bell and harmonic
models

The most likely rupture force f* can be deduced from Eq.
�6� for both models. In the case of the Bell model, it has long
been recognized �24� that f* varies linearly with ln r accord-
ing to

f* =
kBT

xb

ln� rtDxb

kBT
� +

Eb

kBT
� . �14�

Therefore the force spectrum is a straight line that provides a
complete description of the energy landscape: the position
and height of the barrier are deduced from the slope and the
value of f* for ln� rtDxb

kBT
�=0, respectively, provided that tD is

known. For dimensionless variables, Eq. �14� becomes

f̃* =
1

Ẽb

ln r̃ + �1 +
ln Ẽb

Ẽb

� . �15�

For the harmonic model, f* is given by

f* =
2Eb

xb
	1 −�kBT plog� 2EbkBT

�xbtDr�2�
2Eb

� , �16�

where plog��� is the product logarithm, the solution of equa-
tion �=plog���exp�plog����. Equation �16� can be rewritten
as

f̃* = 2	1 −�plog� 2

r̃2Ẽb
�

2Ẽb

� . �17�

For a given xb, the Bell and the harmonic models predict
different values for f*, and this difference is a function of Eb.

We also note that the expression of f̃* given by the harmonic
model, i.e., Eq. �17�, can be approximated by a more explicit

expression f̃*�2�1−
−1+�1−4Ẽb�ln r̃+ln Ẽb−1�

2Ẽb
� which is, as Eq.

�17�, a nonlinear function of ln r̃ �in opposition to Eq. �15��.
As a consequence, it could seem possible to distinguish the
two models from the experimental data. However, technical
limitations in the experimental setups currently used make it
a lot more complicated. The accessible loading rates cover
six orders of magnitude: from 0.1 pN /s to 0.1 
N /s. The
normalizing factor for the loading rates,

Eb

xbtD
, will always be

bounded by values whose order of magnitude is
Eb

xbtD

=
35kBT

0.1 nm�10−11 s
�1014 pN /s and

Eb

xbtD
=

10kBT

3 nm�10−9 s
�1010 pN /s,

so that r̃ can vary between r̃= 0.1 pN/s
1014 pN/s =10−15 and r̃= 105 pN/s

1010 pN/s
=10−5. In this range of loading rates, Fig. 2 shows that f̃*

varies almost linearly with ln r̃ for the harmonic model.
At higher loading rates, the force spectrum is not linear

anymore. However, these values of loading rates are much
too high to be experimentally accessible and correspond to
applied forces close to the critical one, meaning that Kram-
er’s theory �Eqs. �1�–�5�� is not valid anymore. Hence these
high loading rates are of little interest for the experimentalist.
For recent developments concerning the force spectroscopy
of a single bond close to the critical force and the predicted
nonlinearity of the force spectrum, see Refs. �38–40�. Thus
both models lead in practice to a linear force spectrum and
cannot be distinguished by studying only the force spectrum.
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It is worth noting that this result means that, contrarily to the
common belief, a linear force spectrum is not evidence of the
validity of the Bell model.

In order to estimate the error made by using the inappro-
priate shape of the landscape, a linear approximation of the
force spectrum given by the harmonic model �Eq. �17�� over
the experimentally relevant loading rates can be computed

for each value of Ẽb. This approximation leads to

f̃* = P1�Ẽb�
ln r̃

Ẽb

+ P2�Ẽb��1 +
ln Ẽb

Ẽb

� , �18�

where P1�Ẽb� and P2�Ẽb� constrained to be linear

functions of Ẽb: P1�Ẽb��7.92�10−1+1.17�10−2Ẽb and

P2�Ẽb��8.20�10−1+1.02�10−2Ẽb were obtained numeri-

cally. The resulting slope and intercept �functions of Ẽb�,

were then approximated by the a priori form
P1�Ẽb�

Ẽb
and

P2�Ẽb��1+
ln Ẽb

Ẽb
�, respectively. We note that, strictly speaking,

P1�Ẽb� and P2�Ẽb� also depend on xb and tD because the
experimentally accessible range—over which the fit with Eq.
�17� is evaluated—does.

As a result, although actually linear, the force spectrum
given by the harmonic model has a different slope and inter-
cept with the ln r̃=0 axis. For a given common value of

Eb

xb
,

and hence a comparable value of f̃* in the nondimensional
equations �15� and �17�, the relative difference between the
slope and the intercept of the force spectrum given by both

models is a function of Ẽb: it is directly given by the func-

tions P1�Ẽb� and P2�Ẽb�, which reach up to 15–20% for high
barriers �e.g., �30kBT�, xb=0.31 nm and tD=2.1�10−11 s.
Conversely, for a given tD, one can also determine different
energy landscapes referring to each model. This view is im-
portant for the experimentalist who wants to fit a �dimen-
sional� force spectrum f*�ln r�, and who will obtain model
dependant energy landscapes. To obtain the parameters
�Eb

Bell ,xb
Bell� and �Eb

harm ,xb
harm� corresponding to the energy

landscape given by the Bell and the harmonic models, re-
spectively, one can equate

f* =
Eb

Bell

xb
Bell 
 1

Ẽb
Bell

ln
r

Eb
Bell

xb
BelltD

+ �1 +
ln Ẽb

Bell

Ẽb
Bell

��
and

f* =
Eb

harm

xb
harm 
P1�Ẽb

harm�

Ẽb
harm

ln
r

Eb
harm

xb
harmtD

+ P2�Ẽb
harm��1 +

ln Ẽb
harm

Ẽb
harm

�� .

This leads to

x̃b
harm / x̃b

Bell = P1�Ẽb
harm� and

Eb
harm

Eb
Bell =

P1�Ẽb
harm�/P2�Ẽb

harm�

1 + �1 − P1�Ẽb
harm�/P2�Ẽb

harm���ln Ẽb
harm/Ẽb

harm� + �P1�Ẽb
harm�/P2�Ẽb

harm���ln P1�Ẽb
harm�/�Ẽb

harm��
,

hence the relative errors
xb

harm−xb
Bell

xb
Bell and

Eb
harm−Eb

Bell

Eb
Bell . Figure 3 shows a plot of these relative errors, for two sets of values

�xb=0.31 nm; tD=2.1�10−11 s� and �xb=0.5 nm;

-36 -32 -28 -24 -20 -16 -12 -8 -4 0

0.5

0

1

1.5

2

f*~

lnr~

Eb = 6
~

Eb = 34
~

Eb = 16
~

Eb = 34
~

-32 -30 -28 -26 -24 -22 -20
0

0.2

0.4

0.6

f*~

lnr~

(a)

(b)

FIG. 2. Plots of f̃* vs ln r̃ obtained with the Bell model and the

harmonic model, for different values of Ẽb. �a� For very wide varia-
tion of ln r̃, the force spectra are nonlinear with the harmonic model
�gray lines� whereas they are straight lines with the Bell model

�black lines�. Ẽb varies from 6 to 34, with a increase of 2 between
successive spectra. The dotted lines limit the experimentally acces-
sible region. �b� In this experimentally accessible region, the har-
monic model gives almost linear spectra �gray lines�, which are

superimposed with linear fits �gray lines�.Ẽb varies from 16 to 34,
with a increase of 2 between successive spectra.
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tD=10−9 s�. As shown in Fig. 3, these relative errors become
on the order of 30% for high energy barriers ��30kBT�. Thus
if such errors are acceptable for the experimentalist, the Bell
model will provide a sufficiently good approximation of the
landscape. Therefore the Bell model can be used to analyze
experiments on bonds whose landscapes are harmonic and
vice versa, the harmonic model can be used to analyze bonds
whose landscape is fully described by the Bell model. If a
better description of the landscape is required, one may hope
that a detailed study of the whole set of rupture-force distri-
butions may help differentiating the two models.

G. Rupture force distributions and influence
of the experimental error

An example of rupture-force distribution p�f� obtained
with the harmonic model for several loading rates is given in
Fig. 4�a� �solid line�. These distributions are experimentally
relevant since they are obtained with the parameters that we
extracted from the analysis of our experimental data on the
streptavidin-biotin bond �namely xb=0.31 nm, Eb=32kBT,
and tD=2.1�10−11 s; see Ref. �8� for details�. For compari-
son, the distributions that would be obtained with the Bell
approach are also given in Fig. 4�a� �dotted line�. With both
models, energy landscapes with the same parameters �i.e.,
the same xb, Eb, and tD� do not give exactly the same distri-
butions. Thus the set of experimental distributions may indi-
cate the shape of the energy landscape that has to be used for
the analysis. The previous discussion shows that linear force
spectra are always predicted. Thus f* will not allow differ-
entiating between the models. In addition to f*, a few rel-
evant parameters are sufficient to describe the main features
of the distributions: the maximum of the distribution, p�f*�,
the average force �f�, and the width of the force distribution
w. The expressions of these parameters are given in Appen-
dix A. As an example, Fig. 5 shows a plot of f* and �f�,

while Fig. 6 shows a plot of w and p�f*�—for both models
and in the case of the streptavidin-biotin bond. As expected
from Sec. II F, f* does not significantly differ between the
two models. In contrast, the variations of �f� and p�f*� with
ln r seem sufficiently different in order to discriminate be-
tween the two models. However, these theoretical consider-
ations do not correspond to the experimental reality where
errors always exist.

The experimental error can be included in the analysis by
changing a given rupture force probability density p�f� to an
effective rupture force probability density pef f�f� by using
the relationship

pef f�f� = �
0

+�

p���exp�−
�� − f�2

2
�f�2 �d� , �19�

where the Gaussian error has a width 
�f�, which is inspired
by the experiments. Briefly, in a quite general case the ex-
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FIG. 4. Plot of rupture force distributions p�f� vs the applied
force f , for xb=0.31 nm, Eb=32kBT, and tD=2.1�10−11 s. �a� p�f�
obtained with the Bell model �dashed curves� and with the har-
monic model �solid curves�. The loading rate varies from 0.1 to
�3�104 pN /s. �b� Effective distributions pef f�f� obtained from the
theoretical distributions p�f� by taking into account the experimen-
tal error modelized as Gaussian of width 
�f� �see text for details�.
The same values for xb and Eb were used in the harmonic model to
calculate pef f�f�, whereas new values xb

Bell and Eb
Bell where calcu-

lated following the procedure explained in Sec. II F so that the most
probable rupture force f* obtained by both models would match.
The effective distributions pef f�f� were obtained from these p�f�
with coinciding f* �dashed curves for the Bell model, solid curves
for the harmonic model�, and it appears clearly that after taking into
account the experimental error, no difference can be observed be-
tween the rupture force distributions given by both models.
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erted force f is equal to kx, where k is the spring constant and
x the spring extension. Therefore df =kdx+xdk=kdx+ f dk

k . dx
is a constant due to the thermal fluctuations and the accuracy
on the detection of the position of the bead in a single-
molecule experiment. In our case �8�, we performed experi-
ments with a biomembrane force probe, and thus kdx is of
the order of 100 pN /
m�10 nm=1 pN. The error on k, in
the case of a biomembrane force probe, is mainly due to the

poor accuracy on various length measurements �inner diam-
eter of the pipette, diameter of the red blood cell, and diam-
eter of the contact between the red cell and the bead, all of
the order of 1 
m�; this error can be estimated to be between
10 and 30%. Following these constraints, we chose 
�f�
=Max�1,0.2f� �in pN�. Using this expression for 
�f�, we
computed the effective experimental distributions pef f�f�
�Fig. 2�b��. Once shifted in order to compare distributions
with a common f*, pef f�f� given by both models almost per-
fectly overlap �Fig. 4�b��. The corresponding values for f*,
�f�, and p�f*� are given in Figs. 5 and 6. Thus the experi-
mental error does not change the force spectrum but erases
the differences between the two models for �f�, p�f*�, and
w*. As a result, neither the average force nor the width of the
distribution or the value at its maximum can be easily used to
deduce the shape of the energy landscape from experimental
rupture forces.

To summarize this part, we have shown that experimental
errors make it difficult to derive information on the energy
landscape from the force distribution. Experimentally, the
limited amount of data points that will be available makes it
even more complicated. The influence of the experimental
error on the shape of the distribution has also been discussed
elsewhere with a different approach �41�. Hence, ultimately,
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FIG. 5. Average and most probable rupture forces obtained with
the Bell model and the harmonic model, for xb=0.31 nm, Eb

=32kBT, and tD=2.1�10−11 s. �a� The Bell model. The most prob-
able rupture force f*, before �thin solid line� and after �thin
medium-dashed line� taking experimental error into account �i.e.,
maxima of p�f� and pef f�f�, respectively� are very close, while the
averaged force �f� before �thin short-dashed line� and after �thin
large-dashed line� taking the experimental error into account show a
marked difference. �b� Similar conclusion for the harmonic model.
Most probable rupture force before f* before �thick solid line� and
after �thick medium-dashed line� taking experimental error into ac-
count; averaged force �f� before �short-dashed thin line� and after
�thick large-dashed line� taking the experimental error into account
�large-dashed thin line� show a marked difference. �c� Superposition
of the most probable and average rupture force before and after
taking the experimental error into account for both models �same
line symbols as in �a� and �b��.
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FIG. 6. Plot of the width w of the rupture force distributions and
maximum probability density p�f*� vs ln r for the Bell model and
the harmonic model. The parameters xb=0.31 nm, Eb=32kBT, and
tD=2.1�10−11 s are used in both models. �a� w before �thin solid
line for the Bell model, thick solid line for the harmonic model� and
after �thin dashed line for the Bell model, thick dashed line for the
harmonic model� taking the experimental error into account.
Clearly, by taking it into account, the width of the distribution
greatly increases for both models. �b� p�f*� before �thin solid line
for the Bell model, thick solid line for the harmonic model� and
after �thin dashed line for the Bell model, thick dashed line for the
harmonic model� taking the experimental error into account.
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only the most likely force, i.e., the force spectrum, is relevant
for the analysis of experiments. This shows that it is not
possible to deduce the exact shape of the landscape from the
whole set of rupture-force distributions. In this situation,
where the exact shape is unknown, tD is also unknown. Then,
Eqs. �2� and �11� indicate that, in both the Bell and harmonic
models, tD and Eb are coupled and that it will therefore be
impossible to uncouple them. Therefore the height and posi-
tion of the barrier are the only features of the energy land-
scape that can be found, provided that tD can be well-
estimated. Finally, our study shows that the Bell and
harmonic models cannot be distinguished. Since the Bell
model is simpler, it is usually more appropriate to use it.

III. PIECEWISE-LINEAR ENERGY LANDSCAPE
MODEL

The harmonic model does not have more predictive power
than the Bell model. The latter being simpler to handle, it is
reasonable to use it to analyze experiments with single en-
ergy barriers. In Sec. II, we concluded that the use of the Bell
model to analyze force rupture measurements would lead to
a landscape within a 30% error of any landscape presented in
Fig. 1. However, in this family of landscapes, the tangential
connection leading to Eq. �10� limits the extent of landscapes
taken into account. Energy landscapes with “steep slopes,”
i.e., with a critical force larger than 2Eb /xb, are not included
in this family. In this section we numerically solve the time
evolution equation with piecewise-linear energy landscapes
in order to significantly widen the studied shapes.

A. Model

Let us consider a reaction coordinate x which is divided
into N segments �xi ,xi+1� with i=0¯N−1 of equal length.
Over each of these N segments, the energy landscape is sup-
posed to be a linear nondecreasing function of x. At each xi,
the energy is constrained to take a value Ei�� i

NEb ,
i=0¯N−1�. Furthermore, the energy landscape is imposed
to be continuous, with the additional constraints E�x=0�=0
and E�x=xb�=Eb. In this piecewise-linear model, the zero-
force situation is always one with a single energy barrier
located at x=xb with an energy minimum located at x=0.
This model is a generalization of the Bell model since the
particular case N=1 exactly leads to Bell’s results. For sim-
plicity we consider a common value of tD over the whole
reaction coordinate. As we previously noted, following Eq.
�2� a change of tD is equivalent to a translation on the energy
scale. For the calculation of the off-rate kof f�f� at a given
force f , the Bell model is applied to the barrier with the
actual minimum location for this force f . For each N, there
are 1

2
� 2N

N
� associated energy landscapes. As an example, the

ten landscapes corresponding to N=3 are displayed in Fig. 7.
Because the time evolution equation was numerically solved
in this case, we chose to focus on the force spectrum and we
did not investigate any other parameter such as the average
rupture force or the distribution width, which strongly de-
pend on the experimental error �see Sec. II�. The solution of
the time evolution equation was obtained with MATHEMATICA

�the corresponding program is available upon request�.

B. Consequences of the shift of the position of the minimum
and maximum of the energy landscape

One main difference between the harmonic and the Bell
model is that in the first one, the barrier location on the
reaction coordinate axis evolves with the increasing applied
force. In the piecewise-linear model, as soon as N�2, the
minimum and maximum’s location on the reaction coordi-
nate axis can vary as well as a function of force. The latter
situation can arise where the minimum location shifts from
x=0 to a new value x=xm�0 when the applied force reaches
a threshold value. In an equivalent manner the position of the
energy maximum may shift from x=xb to x=xb2	xb. Figure
8�a� shows an example with N=5 and Eb=32kBT, where the
position of the minimum shifts from x=0 to xm= 4

5xb as soon
as f �0. The resulting force spectrum has a slope which is

kBT

xb−xm
which in this example is five times higher than the

slope
kBT

xb−0 of the force spectrum that is obtained when apply-
ing the Bell model to the energy landscape.

We are now tackling a profound difficulty that could al-
ready be suspected from the study of the two models in Sec.
II: differences in slopes as high as an order of magnitude can
be found from one energy landscape to another with the
same height and position of the barrier. That is to say that the
prediction obtained with the Bell model �or any other model
such as the harmonic model� is significantly inaccurate in
that case. In the example given in Fig. 8�a�, the Bell model
would predict a value for xb five times smaller than the actual
one. Similarly, the harmonic model would predict wrong pa-
rameters with a similar error.

C. Single energy barrier giving rise to multiple barriers under
force: Varying slopes, plateaus, and linearity of the force

spectrum

Regarding the force spectrum, the piecewise-linear model
predicts even richer features than a different slope from the

Eb

xb
0
0

E(
x)

x

Eb

xb
0
0

E(
x)

x

Eb

xb
0
0

E(
x)

x
Eb

xb
0
0

E(
x)

x

Eb

xb
0
0

E(
x)

x

Eb

xb
0
0

E(
x)

x
Eb

xb
0
0

E(
x)

x

Eb

xb
0
0

E(
x)

x

Eb

xb
0
0

E(
x)

x
Eb

xb
0
0

E(
x)

x

FIG. 7. Plots of the ten piecewise-linear energy landscapes
treated by the model described in Sec. III for N=3.
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Bell model. As we saw previously, in some cases the shape
of E�x� is such that the energy-minimum position or the
energy-maximum position �or both� shifts from x=0 to a new
value x=xm �or from x=xb to a new value x=xb2� after a
certain force level is reached. In these cases the single bar-
rier, by performing the shift under force, behaves as if two
different energy barriers of a complex energy landscape were
successively probed under force. The study of complex
bonds �14,15,24,42� exhibiting different main energy barriers
has been introduced and studied in depth by Evans et al.
since the 1990s; and as explained by the authors in Ref. �14�,
the signature of the dynamic force spectroscopy of such a
complex bond is a force spectrum exhibiting several linear
regimes, with increasing slopes.

What we observe here with the piecewise-linear model
describing a single-barrier energy landscape is very similar:
the force spectrum exhibits different linear regimes when the
loading rate increases �see Fig. 8�c��. But this model follows
a new and striking behavior: in between two linear regimes,

the force spectrum can exhibit a plateau of the most likely
rupture force. Such a behavior can be explained when look-
ing at the probability distribution of rupture force p�f�. In-
deed, if we name the force at which the shift of one energy
extremum happens fs, then the distribution p�f� can be writ-
ten as

p�f� = p1�f� if f � fs,

p�f� = p2�f� if f � fs, �20�

where p1�f� is the distribution given by the Bell model ap-
plied to the barrier before the shift, whereas p2�f� is the
distribution given by the Bell model applied to the barrier
after the shift �see Fig. 8�d��.

Thus a bond described by a single-barrier energy land-
scape can lead to a force spectrum with various linear re-
gimes and with a plateau in between them. The fraction of
landscapes exhibiting such behavior is not negligible �a few
tens of percent�. However, the width of the plateau in all the
studied landscapes never covered more than one order of
magnitude for the loading rate, making it very difficult, if not
impossible, to be experimentally observed. Similarly, in most
cases, the presence of the plateau makes it unlikely for the
two linear regimes to be experimentally observed. In the ma-
jority of the cases, the force spectrum will appear to be a
single regime with a slope in between the ones of the two
regimes.

In conclusion, even though the predicted force spectrum
can display very unusual features, it will almost always ex-
perimentally seem to be linear. Thus the slope and the inter-
cept with the y axis fully define the corresponding force
spectrum.

D. Average over all landscapes and universal relation between
Eb, xb, and the force spectrum

In this paragraph, we used the normalized variables in
order to obtain the distributions for all the landscapes corre-
sponding to Eb ranging from 5kBT to 40kBT. For a computer-
time consuming reason we chose not to go further than N
=8, which gives already a good approximation of any energy
landscape with xb smaller than a few nm �accuracy of
�0.06�xb in distance and �Eb /16 in energy�. We also lim-
ited the loading rates to realistic experimental values �be-
tween 0.1 pN /s and 0.1 
N /s for xb=1 nm� for Eb�15kBT.
For smaller values of Eb, loading rates between 0.1 
N /s
and 10 mN /s had to be taken in order to obtain a nonzero
most likely rupture force f*. As mentioned in the previous
paragraph, only two parameters are required in order to de-
scribe the experimentally linear force spectrum: the slope, s̃,

and the intercept with the y axis, f̃0. For the Bell model, s̃

= 1

Ẽb
and f̃0=1+

ln Ẽb

Ẽb
.

For a given energy, we considered all the landscapes ob-
tained with N ranging from 2 to 8 �i.e., a total of 8787 land-
scapes per energy value�. Then for each energy value, we

plot f̃0 vs s̃, i.e., 8787 points of coordinates �s̃ , f̃0�. Figure 9
shows the cases Eb=15kBT, 20kBT and 32kBT. The expected
values for the Bell and harmonic models �i.e., two particular
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FIG. 8. �a� Energy landscape obtained with N=5 in the model
described in Sec. III. The position of the energy minimum shifts
from x=0 to xm= 4

5xb as soon as the applied force f �0. �b� Other
piecewise-linear energy landscape obtained with N=5, for which
position of the energy minimum shifts from x=0 to xm= 4

5xb as soon
as the applied force f is higher than a nonzero threshold fs �in this

particular case fs= 1
2

Eb

xb
�. Ẽb is set equal to 32. �c� The force spec-

trum obtained with the energy landscape plotted in �a� is plotted in
a medium-thickness solid line. As the position of the minimum
shifts as soon as f �0, the force spectrum has a slope much higher
than the one that would have been predicted by the Bell model �in
a thin solid line�. The force spectrum obtained with the energy
landscape plotted in �b� is plotted in a thick solid line. It exhibits
two different linear regimes when the loading rate increases, and a
plateau between these two regimes. The dashed line represents a
linear fit to this force spectrum. �d� Rupture force distributions cor-

responding to the energy landscape plotted in �b�. The force f̃ = 1
2 at

which the shift of the energy minimum occurs is shown by a verti-
cal line.
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points� are also inserted on the graphs. In good approxima-
tion, all the �s̃ , f̃0� points coming from the various landscapes
belong to a single line. This could be expected for some
landscapes in which the minimum and the maximum con-
tinuously shift and will display a force spectrum following
the Bell model with a smaller xb. However, this was not easy
to predict for most landscapes, including those with a plateau
in their force spectrum. This linear behavior was observed

for all studied Eb values. The plot of f̃0 vs s̃ has a slope that
we note 
1, and an intercept with the y axis that we note 
2,
which are a priori functions of Eb. They are given in Fig. 10.

2 is almost constant and equal to 0.21. Below 40kBT, a good

approximation of 
1 is given by 
1=−0.01Ẽb
2+1.2Ẽb. An ap-

proximated relation between s̃ and f̃0 can then be obtained:

f̃0 = �− 0.01Ẽb
2 + 1.2Ẽb�s̃ + 0.21. �21�

Thus for the nondimensional variables, a given set �s̃ , f̃0� is

sufficient to obtain Ẽb. The subsequent average and standard

deviation of Ẽb are given in Table I �the values �s̃ , f̃0� ob-FIG. 9. Plots of the intercept f̃0 of force spectra with the ln r̃
=0 vs their slope s̃. For three different energy values, all the land-
scapes obtained with N ranging from 2 to 8 were considered, as
well as the landscapes treated by the Bell model and the harmonic
model. The different figures correspond to different values of Eb. At
a given energy, the solid line is a linear fit to the points. �a� Eb

=15kBT, �b� Eb=20kBT, and �c� Eb=32kBT.

N=8
N=7
N=5

~Eb

σ 1
σ 2

~Eb

(a)

(b)
N=8
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FIG. 10. �a� Plot of 
1 vs Ẽb obtained for N=5, 7, and 8. The

solid line is a parabolic fit to these points: 
1�−0.01Ẽb+1.2Ẽb. �b�
Plot of 
2 vs Ẽb obtained for N=5, 7, and 8. By fitting 
2 with a
constant value �solid line�, one gets 
2�0.21.

TABLE I. Each value of Ẽb from the first column was injected

in Eq. �21�, then the set of values �s̃ , f̃0� obtained for each
piecewise-linear energy landscape with N�8 gave the average

value extracted from Eq. �21� for Ẽb �second column�, and its

spread �third column�. By injecting the two particular couples �s̃ , f̃0�
corresponding to the Bell model and the harmonic model at Ẽb

equal to the value in the first column, we obtained the value pre-
dicted by Eq. �21� �fourth and fifth column, respectively�.

Eb

�units of
kBT�

�Eb�
�units of

kBT�


Eb
�units of

kBT�
Eb

Bell

�units of kBT�

Eb
harm

�units of
kBT�

20 19.1 0.6 18.5 19.3

25 24.6 1.1 23.9 26.8

32 33.0 2.8 33.6 34.4

JULIEN HUSSON AND FRÉDÉRIC PINCET PHYSICAL REVIEW E 77, 026108 �2008�

026108-10



tained for each landscape were injected in Eq. �21� and a

corresponding value of Ẽb was calculated�.
The remaining problem is that a prerequisite to derive

dimensionless data is to know xb, before even performing the
measurements. If this is not the case, only a “universal” re-
lation between xb, Eb, and the force spectrum can be obtained
by switching back to physically measurable variables:

s ln� Eb

xbtDr0
� + f0 = 
− 0.01� Eb

kBT
�2

+ 1.2
Eb

kBT
�s + 0.21

Eb

xb
,

�22�

where r0 is such that the y axis is defined by ln r=ln r0 �with
r0 a fixed arbitrary value, 1 pN /s for instance�. Note that f0
is the intercept with the y axis obtained directly from the
experimental plot of f* vs ln r. Then f0 is not simply equal to
Eb

xb
f̃0 but to

Eb

xb
f̃0+s ln� r0

Eb/xbtD
�. Table I shows that Eq. �22� is

valid with a good approximation for any shape of the energy
landscape. In the next section we will show how it can be
applied to actual experimental measurements.

IV. EXPERIMENTAL DATA ANALYZED BY DIFFERENT
MODELS

We applied both the Bell and the harmonic models to the
streptavidin-biotin interaction. Our previous work on this
ligand-receptor-type interaction �8� showed that the energy
landscape of the bond is complex in the sense that it exhibits
three main energy barriers. However, when pulling the bond
once it had sufficient time to relax to the deepest energy
minimum, the energy landscape of the bond can be modeled
as having a single energy barrier �xb=0.31 nm, Eb=32kBT�,
because the other intermediate barriers are never expected to
be the highest at any force. As expected in these experimen-
tal conditions, the force spectrum, displayed in Fig. 11, is
linear. We applied both models to fit the linear force spec-
trum, and then extracted the resulting parameters for the
main energy barrier dominating the kinetics of the bond un-
der these initial conditions, and for this loading rate range.
With the Bell model, we obtained the values xb=0.30 nm
and Eb=30.7kBT, with a value for the microscopic time
which we set equal to the one used in the harmonic model,
i.e., tD=2.1�10−11 s. With the harmonic model, we had ad-
ditional constraints over the energy landscape curvatures in
order to fit experimental data �8�, and they led to a value of

tD=2.1�10−11 s, xb=0.31 nm, and Eb=32kBT. Fitting the
force spectrum while relaxing the constraints on Eb taken
into account in Ref. �8� leads to Eb=31.1kBT. The error over
Eb and xb is thus of only a few percents: as expected from the
results in Sec. II, the Bell model and the harmonic model are
in close agreement, provided that a common tD is taken.

We used Eq. �22� by injecting the values s=13.6 pN and
f0=437 pN �with a y axis defined by r0=1N /s� obtained by
fitting the experimental force spectrum. In addition, we in-
jected in the relation the value of xb obtained with the Bell
model and the harmonic model, respectively. The “universal”
relation gives the value Eb=32.3kBT with xb=0.30 nm de-
rived from the Bell model �thus a 5% error�, and Eb
=29.3kBT with xb=0.31 nm derived from the harmonic
model �thus a 6% error�. Both energy values obtained by
injecting the value of xb in Eq. �22� are thus very close to the
value obtained by each respective model. Now by inserting
the energy values obtained by both models into Eq. �22�, one
can obtain in return values for xb. Inserting Eb=30.7kBT ob-
tained with the Bell model gives xb=0.25 nm; by inserting
Eb=31.1kBT and Eb=32kBT obtained with the harmonic
model depending on the additional constraints, one gets xb
=0.26 and 0.29 nm, respectively �i.e., a 16% and 6% error,
respectively�.

In this example of the streptavidin-biotin bond, the Bell
model and the harmonic model predict values for xb and Eb
in close agreement. In Appendix B, we give another
example—but in this case of experiments performed under
constant applied force—where both models are in close
agreement. We point out that if both models are in close
agreement here, this does not mean that the values for xb and
Eb are correct: there could be, for instance, as explained in
Sec. III, a shift in the energy minimum position during the
pulling process, leading to a xb much shorter than the real
one. But in this particular study of the streptavidin-biotin
bond, supplementary studies provided us with constraints ex-
cluding these particular cases �8�.

V. CONCLUSION

The analyses of the Bell and harmonic models have
shown that the Bell approximation is acceptable in most
cases. Usually, it leads to parameters xb and Eb from single-
molecule rupture forces in close agreement with the ones
predicted by the harmonic model, which encompasses a
broader class of energy landscape shapes. Nevertheless, if no
supplementary information is available about the studied
bond, a value for tD has to be postulated, otherwise the ab-
solute value of Eb is not known.

By taking the experimental error into account, we showed
that force spectrum of a single bond, i.e., f* vs ln r, is the
most important input for the analysis of experimental data.
An analysis based on other variables like the average rupture
force, the width, or maximum value of the rupture-force dis-
tribution is risky because they are highly dependent on ex-
perimental error, whose precise form is very difficult to mea-
sure independently.

Our study of a piecewise-linear energy landscape showed
that there are some cases for which the Bell model and the

ln [r (pN/s)]

f
(p
N
)

FIG. 11. Force spectrum measured for deepest minimum of the
streptavidin-biotin energy landscape �8�. The solid line is a linear fit
to the data.
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harmonic model break down simultaneously, with unaccept-
able error levels. These cases form a class of energy land-
scape shapes where essentially the current analysis of single-
molecule rupture forces loses any predictive power.
However, we showed that, whatever its shape, a single bar-
rier can be partly described by applying a universal law to
the force spectrum. This analysis provides a relation between
the force spectrum and parameters xb and Eb, the latter de-
pending on the value of tD. Any complementary information,
be it experimentally or from computer simulations, providing
one of the parameters xb or Eb, is sufficient to determine the
remaining one through the universal relation.

This study was restricted to single-barrier energy land-
scapes, but it already exhibited a great variety of features and
there is still some progress to make in the analysis of these
“simple” landscapes. Complex energy landscapes with more
than one energy barrier, or even more than one reaction path-
way are already included in recent models and will certainly
prove to be even richer in surprising and unusual features.
They have to be carefully studied in the near future.
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APPENDIX A: EXPRESSIONS OF w, Šf̃‹, AND p„f*
… FOR

THE BELL AND THE HARMONIC MODELS

1. Width of the rupture force distribution, w*

For the Bell model and the harmonic model, the integral
in Eq. �5� can be handled and has an analytical result. With
the Bell model, one gets

p̃� f̃� =
1

r̃
exp�Ẽb� f̃ − 1� +

e−Ẽb

r̃Ẽb

�1 − ef̃Ẽb�� , �A1�

which is useful to put under the form

p̃� f̃� = p̃� f̃*�exp�Ẽb� f̃ − f̃*� − e� f̃− f̃*�Ẽb + 1� , �A2�

whereas with the harmonic model:

p̃� f̃� = exp�1

r̃
� �

Ẽb

�erf
�Ẽb�1 −
f̃

2
�� − erf��Ẽb��� ,

�A3�

which likewise can be written under a more suitable form:

p̃� f̃� = p̃� f̃*�exp�Ẽb�1 −
f̃*

2
�2

− Ẽb�1 −
f̃

2
�2

+
1

r̃
� �

Ẽb

�erf
�Ẽb�1 −
f̃

2
��

− erf
�Ẽb�1 −
f̃*

2
���� . �A4�

Both models give distributions that exhibit the following fea-
tures.

�i� Below a certain minimal �nondimensional� loading rate

r̃m=
exp�−Ẽb�

Ẽb
, f̃*=0, that is to say that p̃� f̃� is a decreasing

function of f̃ .

�ii� Above the minimal loading rate r̃m, p̃� f̃� is a bell-
shaped distribution, whose width can be determined from
Eqs. �20� and �22�. In the region r̃� r̃m, for a sufficiently

high loading rate, the equation
p̃� f̃�

p̃� f̃*�
=e−1/2 has two positive

solutions, whose difference gives the width of the distribu-
tion. One finds for the Bell model w̃� 1.028

Ẽb
, whereas for the

harmonic model, one can derive from Eq. �22�, expanding

erf��Ẽb
�1− f̃

2
�� in the vicinity of erf��Ẽb

�1− f̃*

2
�� as a func-

tion of �=erf��Ẽb
� f̃− f̃*

2
��, the approximation

w̃ �
1

�Ẽb

2
+ Ẽb

2�1 −
f̃*

2
�2

. �A5�

Each model therefore shows a different behavior regarding

the evolution of its width as a function of Ẽb. Moreover,

according to the conservation of the integral of p̃� f̃�, p̃� f̃�
obtained by the harmonic model broadens compared to p̃� f̃�
obtained by the Bell model. While the difference in behavior
between the two models could suggest that it is possible to
discriminate between them in order to choose the most suit-
able model for analyzing experimental data, we showed in
Sec. II that this theoretical difference gets blurred when ac-
counting for the presence of experimental error in the ana-
lyzed measurements.

2. Average force Šf̃‹

When analyzing single-bond force measurements, some
authors �11� consider the mean rupture force rather than the

most likely. We have calculated the average force � f̃� in both
the Bell model and the harmonic model in order to compare

it to f̃*. In the Bell model, it is easy to compute the differ-

ence � f̃�− f̃*:

� f̃� − f̃* =
p̃� f̃*�

Ẽb
2
�

−Ẽb f̃*

+�

� exp�� − e� + 1�d� . �A6�

Hence using Eq. �A1� which gives p̃� f̃�, and provided that f̃*

is sufficiently high and that r̃� r̃m �where r̃m is the loading

rate below which f̃*=0�, one obtains

� f̃� − f̃* � −
�

Ẽb

� −
0.577

Ẽb

, �A7�

where � is the Euler-Mascheroni constant. Considering vari-
ables with dimensions, one gets a difference which is inde-
pendent of the barrier height:
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�f� − f* � −
Eb

xb

�

Eb

kBT

� − 0.577
kBT

xb
. �A8�

That is to say that for the above-mentioned conditions � f̃*

and r̃ sufficiently high�, the difference between �f� and f* is
independent of the loading rate. As an example, for a typical
value xb=0.5 nm, one gets �f�− f*�−5 pN. In the case of

the harmonic model, we computed numerically � f̃� as a func-
tion of the loading rate for different energy barrier heights; in
this model the difference is the mean and the most likely
rupture force is a slowly varying function of ln r̃, and, with-

out details of the numerical study of its dependency of Ẽb, it
led us to the conclusion that it could be reasonably consid-
ered as constant from an experimental point of view. As for
w, the experimental error will modify the measured value of

� f̃� and make it difficult to obtain information on the energy
landscape with this parameter.

3. Maximum of the rupture force distribution, p„f*
…

The Bell model and the harmonic model exhibit a differ-
ent evolution of p�f*� as a function of the loading rate. By

using Eq. �A1� and the expression r̃m=
exp�−Ẽb�

Ẽb
, one obtains

for the Bell model �with nondimensional variables�

p̃� f̃*� = Ẽb exp� r̃m

r̃
− 1� , �A9�

which tends to a constant value 1
e Ẽb as the loading rate tends

towards infinity �back to dimensional variables, p�f*� tends

toward 1
e

xb

kBT as r tends towards infinity�.
For the harmonic model, by injecting in the nondimen-

sional version of Eq. �6� the explicit expression of kof f� f̃*�,

one obtains 1
r̃ exp�−Ẽb

�1− f̃*

2
�2�= Ẽb

�1− f̃*

2
�. Using this equal-

ity in the expression of p̃� f̃*� that is obtained from Eq. �A3�,
one obtains

p̃� f̃*� = Ẽb�1 −
f̃*

2
�exp���Ẽb�1 −

f̃*

2
�exp
Ẽb�1 −

f̃*

2
�2�

��erf
�Ẽb�1 −
f̃*

2
�� − erf��Ẽb��� . �A10�

For r̃ sufficiently high, the exponential factor in the above
expression tends towards a constant value, and p̃� f̃*�
�0.4Ẽb

�1− f̃*

2
�, that is to say that p̃� f̃*� is linearly decreasing

with ln r̃, for sufficiently high r̃ �with dimensional values,
p�f*� will as a result be linearly decreasing with ln r, for
sufficiently high r�. These two different behaviors are illus-
trated in the example in Fig. 4�a�.

APPENDIX B: EXPERIMENTS UNDER CONSTANT
FORCE: EXAMPLE OF THE INTERACTION BETWEEN

THE L-SELECTIN AND ITS LIGAND

Chen and Springer �1� compared several models describ-
ing the unbinding rate kof f�f� of a single bond under a con-
stant force f . The study was performed on the bond between
L-selectin and its ligand. When considering a constant force
f applied to a bond, the probability of the �slip-�bond to
survive up to a time t is exponentially decreasing with t. The
time constant of the decrease is the lifetime of the bond
under force f , ��f�= 1

kof f�f� .

In Ref. �1�, the authors compared five models and con-
cluded that among them, the Bell model fit the data signifi-
cantly the best. By now using the harmonic model to fit their
experimental data, we obtained a very close result to the one
obtained with the Bell model, and close parameters for the
energy barrier �see Fig. 12�. Generally, these parameters de-
pend on the value of tD, so we considered values ranging
from 10−11 to 10−9 s. They are shown in Table II. The rela-
tive error between both models is lower than 7% for xb, and
lower that 1% for Eb. This confirms that, as expected from
Sec. II, both the Bell and harmonic models can be equiva-
lently used and lead to similar results.

TABLE II. Parameters obtained for the Bell and the harmonic
models by fitting data from Chen and Springer �1� after having set
a value for tD in the first column.

tD

�s�
xb

Bell

�nm�
xb

harm

�nm�
Eb

Bell

�units of kBT�
Eb

harm

�units of kBT�

10−11 6.6�10−2 7.0�10−2 25.4 25.5

10−10 6.6�10−2 7.0�10−2 23.1 23.2

10−9 6.6�10−2 7.1�10−2 20.8 20.9

[
]

FIG. 12. Plot of the logarithm of the off-rate vs the applied force
on a single bond between a single selectin and its ligand. Solid
circles are taken from �1�. The solid line represents ln kof f fitted to
the Bell model. The open squares represent ln kof f fitted to the har-
monic model. Both fits are in excellent agreement, as well as the
obtained parameters �see Table II�.
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