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We present a systematic study of thermal diffusivity in the nematic liquid crystalline phase of 4-4' -di-(n­
alkoxy) azoxy benzenes and several other materials. The data allow to separate the respective contributions of 
the rigid central core and of the flexible aliphatic chains. For the component of the diffusivity tensor parallel 
to the long molecular axis, it is found that they differ by as much as a factor of 6 in favor of the core 
contribution. Combining the present observations with our earlier results, we are now able to draw general 
conclusions on the thermal diffusivity in a nematic and smetic A, B, and C phases. We have also developed 
two semiquantitative models based, one on a static network of distributed resistances, and the other on an 
extension of the Eyring kinetic model for the thermal conductivity of simple liquids. Only the dynamic model 
yields a satisfactory description of our data. The distance over which the thermal energy is not transferred 
instantaneously upon collision between two neighboring molecules is found to correspond to the aliphatic 
chain length (calculated for a freely rotating chain). Using this formalism, a priori calculations of the thermal 
diffusivities can be performed, to better than 20%, for any rodlike liquid crystalline material. 

I. INTRODUCTION 

Much less experimental work has been devoted to 
thermal conductivity than to the other transport proper­
ties of liquid crystalline (LC) materials, e. g., mass 
diffusion, viscosity, or sound velocity. This is due to 
the absence of a microscopic theory to describe ther­
mal transport and also to the lack of a convenient ex­
perimental method applicable to these anisotropic meso­
phases. The only well-established result1,2 is that the 
thermal conductivity of nematic phases is greater 
parallel than perpendicular to the mean direction of mo­
lecular alignment-D,,> DJ.' In that context, the intro­
duction by Eichler et al. 3 of a novel optical technique 
to measure thermal properties in ordinary liquids has 
raised considerable interest. 4 The name of forced 
Rayleigh light scattering (FRS) has later been coined by 
Pohl and Irniger5 to this elegant, contact-free method. 
In two earlier papers, 6 we have presented the first ther­
mal measurements using FRS in the nematic and in the 
various smectic phases. These experimental data have 
indicated that the thermal conductivity anisotropy in LC 
is independent of the long range positional ordering of 
the center of mass of the molecules. It has, therefore, 
been suggested6

(b) that the origin of the anisotropy is re­
lated to the elongated geometrical structure of the con­
stituting molecules. 

In order to thoroughly investigate this last point, we 
present here a systematic investigation of the thermal 
diffusivity in the series of 4 -4'-di-(n-alkoxy) azoxyben­
zenes and in several other materials. The propor­
tionality of the thermal diffusivity anisotropy ~D =D" 
- D J. to the orientational order parameter S 7 is first 
checked. The present investigations allow then to sepa­
rate the relative contributions of the molecular rigid 
core and of the flexible chains to the thermal conduc­
tivity. In a second part, two different microscopic 
models are described and their relevance to the aniso­
tropic thermal conductivity in LC phases is critically 
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discussed. Only the kinetic model provides a satisfac­
tory description of our experimental data. 

II. EXPERIMENTAL 

The experimental setup has been described in detailS 
elsewhere. 8,9 The basic idea of FRS is to induce in the 
sample a spatially periodic fluctuation of temperature 
and to observe its subsequent relaxation by thermal dif­
fusion. 

In semitransparent samples, this transient thermal 
grating is produced by illuminating the sample with an 
optical interference pattern. A sinusoidal modulation 
is achieved by crossing two beams issued from the 
same Ar+ laser under an angular separation l/!. For 
l/! = 20 mrad the resulting fringe spaCing is i = 25 /-Lm 
(Fig. 1). 

At LASER 

FIG. 1. Experimental setup. The argon laser (Spectra Phy­
sics model 165) is used to create the temperature pattern by 
light absorption in the sample at AO = 5 145 A. The He-Ne laser 
(Spectra Physics model 133) is used for monitoring the time 
decay of the induced thermal grating. The Dove prism permits 
to rotate the fringe orientation relative to the sample axes. 
The phototube is a 56 TVP from Radiotechnique-Compelec. Its 
output is fed through a pulse amplifier to a multichannel analy­
zer BM 25 from Intertechnique used in the multiBcaler mode. 
The calculator is a Hewlett-Packard 9825 and allows on-line 
treatment of the data. 
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FIG. 2. Polar diagram of the thermal diffusivity coefficient in 
the nematic phase of di-(4-n-decyloxybenzall-chloro-1-4-pheny­
lene diamine at 114°C. The measurements have been made by 
rotating the fringe orientation relative to the sample optical axis 
n in a stepwise manner. The solid line is the best fit to the 
function D(9) =D" cosl 6 +Dl sin2 e, where e is the angle between 
n and the heat flow D,,=24.8xI0-4 cm2 s-I , D1=7.8xIO-4 cm2 s-1• 

In our experiments, a mechanical chopper provided 
light pulses of 100 jJ. s duration and the laser power was 
always lower than 200 mW. Suitable absorption of the 
writing laser beam in the sample was obtained by adding 
5 x 10-4 g/g of methyl red (Merck, Darmstadt, Ger­
many). In all cases, the temperature increase was less 
than 10 mK and the associated periodic change of refrac­
tive index was of the order of 10-5_10-6• This small 
change was nevertheless sufficient for the sample to 
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FIG. 3. Temperature dependence of the thermal diffusivity 
coefficients respectively parallel (e) and perpendicular (x) to 
the mean orientation axis in the nematic phase of p-cyano­
benzili-dene-p-octyloxyaniline. 
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FIG. 4. Same as Fig. 2, but in the nematic phase of 4-n-pentyl-
4-cyanobiphenyl. 

behave as a transient optical (phase) grating and to dif­
fract the beam of a 2 mW He-Ne probing laser. The 
characteristic decay time 7 of the first order diffracted 
dot is directly related to the thermal diffusivity coeffi­
cient D by 

7-1 =Dq2 , 

where q = 21T/i is the grating wave vector. 

The signal was. detected with a photomultiplier used 
in the photon counting mode and averaged over 100 mea­
surements with a multichannel analyzer. Typical ac­
curacy was 2% while overall reproducibility was 3%. 
The planar alignment in our 150-200 }..tm thick samples 
was obtained by an SiD deposition under oblique inci­
dencelO and checked optically by conoscopy and also by 
observation with collimated light between crossed polar­
izers. The samples were heated in a Mettler hot stage 
controlled to within 0.1 K and in which temperature 
gradients were less than 0.4 K/cm. 

III. RESULTS 

For all compounds studied, the measurements have 
been performed in the nematic phase exclusively. This 
does not represent a serious limitation since we have 
shown in Ref. 6(a) that the thermal diffusivity does not 
depend on the long-range positional ordering. On the 
other hand, it is shown in Fig. 2 that the thermal diffu­
sivity strongly depends on the direction of the heat flow 
relative to the mean molecular alignment described by 
the director n. The temperature variation of the com­
ponent of the thermal diffusivity tensor parallel D" (per­
pendicular D 1 ) to n is displayed in Figs. 3-5 for p­
cyanobenzilidene-p-octyloxyanilin (CBOOA for short), 
4-n-pentyl-4-cyanobiphenyl (PCB) and seven compounds 
of the 4-4' -di-(n-alkoxy) azoxybenzene series (PAAI to 
PAA9). In all cases, the variation IS qualitatively the 
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FIG. 5. (a)-(g) Same as Fig. 2, but in the nematic phase of 
the various homologs of the 4-4' -di-In-alkoxy) azoxybenzene 
series. 
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FIG. 6. Temperature dependences of the thermal diffusivity 
coefficients D" • D ~. (left axis) and of the diamagnetic ansio­
tropy 6.X (right axis) in the nematic phase of p-cyanobenzilidene­
p-octyloxyaniline. The 6.X data have been taken from Ref. 11. 

same. The ratio D"ID~ is larger than one throughout 
the nematic temperature range and decreases contin­
uously as the temperature T approaches the nematic­
isotropic liquid transition temperature TNI • In the iso­
tropic phase, D,rlD~ is equal to unity. It should be re­
marked that no anomalous behavior is observed at the 
nematic to smectic C transition which occurs at low 
temperature for the higher members of the 4-4' -di-
(n -alkoxy) azoxy benzene series [Figs. 5 (a) - (g) J. This 
is fully consistent with our earlier observations at the 
nematic-smectic A transition. 6 Ca) 

IV. DISCUSSION 

A. Temperature dependence of thermal diffusivities 

It is interesting to compare the variations with tem­
perature of the thermal diffusivity anisotropy 6.D = D" 
- D ~ and of the orientational order parameter S. 7 By 
definition 

S = t(3 cos2 II - 1> , 

where II is the angle between the local optical axis n 
and the long axis of the rodlike molecules. S describes 
the degree of molecular alignment parallel to n. S:; 1 
for perfect alignment (corresponding to 11=0 or 1T), 
while S = 0 for random orientation (corresponding to 
(cos2 e> = 1/3). 

It is generally agreed that S is proportional to the 
diamagnetic anisotropy 6.X = X" - X~. 7 The temperature 
dependence of this latter quantity has been measured by 
Hardouin et al. 11 in the nematic phase of CBOOA, which 
allows an easy comparison with our own measurements. 
This is done in Fig. 6 in which we have simultaneously 
plotted the temperature dependences of D", D~ and 6.X. 
D,,(T) follows exactly 6.X, while D~(T) stays approxi­
mately constant. Therefore, we can say that 6.D =D" 
- D~ and ~X have identical temperature variations and 
that the thermal diffusivity anisotropy is directly pro-

portional to the orientational order parameter S. To 
permit quantitative comparison between the various 
compounds, the measured thermal diffusivities, which 
are, in fact, thermal average values obtained for S < 1, 
must be normalized to a unique S value. The normaliza­
tion procedure to S = 1 is shown in Appendix A. The 
standardized values IY are written as 

DS _ D,,(2 +S) - 2D~(1 -S) 
,,- 3S 

and (1) 

where S is the order parameter value at the tempera­
ture of measurement T. Its exact temperature varia­
tion is not known for all the compounds studied here. 
However, if we consider that molecular interactions are 
temperature independent, the Maier-Saupe theory holds 
and S is, therefore, a universal function of TIT NI 

which has been tabulated. 7 The standardized data cal­
culated using Eq. (1) have been reported in Table 1. 

B. Comparison of the standardized data 

1. Perpendicular component of the diffusivity 

It is clear that m does not vary dramatically with 
molecular length. For instance, the D~ variation is 
less than 15% in the 4-4'-di-(n-alkoxy) benzene series 
even though the aliphatic chain length is multiplied by 
nine (if we except PAA-8 whose values seem abnor­
mally high). 

On the contrary, m increases with the width of the 
central part of the molecule. This is best Observed by 
comparing the D~ values of DOBCP and PCB to the 
mean values of 4-4' -di-(n-alkoxy) azoxybenzenes and 
4-n-pentyl-4 cyanoterphenyl (PCT), respectively. For 
the former compounds, the central part is quite wide. 
It comes from the fact that, in DOBCP, the three ben­
zene rings are in trans configuration (Fig. 8) and that 
in PCB the molecules form dimers, the width of which 
is 1. 4 times larger than the PCT single molecular 
width12 (there is no evidence of dimer formation for 
PCT molecules). This explains why the Df value of 
7.2 X 10-4 cm2 S-1 for DOBCP is 50% larger than those of 

4-4' -di-(n-alkoxy) azoxybenzenes and why the m value 
for PCB is 40% larger than that of the PCT. In the first 
approximation, m is thus observed to be proportional 
to the molecular width. 

2. Parallel component of the diffusivity tensor 

a. Dependence on aliphatic chain length La. We have 
plotted in Fig. 7 the dependence of D~ versus the num­
ber N of carbons atoms in the aliphatic chain of 4-4'­
di-(n-alkoxy) azoxybenzenes. The variation is approxi­
mately linear and the data can be fitted to an empirical 
function 

D~(N) =A + BN (2) 

withA=(12.8±1)x10-4 cm2s-1 and B=(0.54±0.2) 
x 10-4 cm2 s-1 (C-C bondrl • 
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TABLE I. Thermal diffusivity results for the various liquid crystalline compounds investigated. The acronyms names are de­
tailed below. M is the molar mass, T is the temperature of measurement, T NI is the measured temperature of transition between 
the nematic and isotropic phases, S is the order parameter value at T, DII and DJ. are the thermal diffusivity coefficients measured 
at T. D,~ and Dt are the diffusivity data normalized to S = 1. d ll is the calculated length of the low thermally conducting regions as 
derived from the D~ and D~ values using Eqs. (7) and (8) of the resistance model. L is the molecular length with the chains in all 
trans configurations. Do is derived from Df using Eqs. (7) and the calculated d ll value. The computation of d ll and Do has been 
done with a ~ 5 A, R = 2. 08 A, and 0/ = 1. 43. PAAI to PAA 9 stands for 4-4' -di( -p-alkoxyl) azoxy benzenes with the number of carbon 
atoms in the aliphatic chain ranging from 1-9. MBBA is for p-methoxy benzilidene-d-n-butyl aniline, BBOA is for p-butoxy 
benzilidene-p -n - octyl aniline, C BBOA P -eyanobenz ilidene -p -octyl-oxyaniline, PC B 4 -n -penty 1-4 -cyanobiphenyl, PC T 4 -n - penty 1-
4-cyanoterphenyl, OOBCP di-(4-n-decyloxybenzal)-2-chloro-1-4-phenylene diamine. 

Name 

PAAI 
PAA4 
PAA5 
PAA6 
PAA7 
PAA8 
PAA9 
MBBA 
BBOA 
CBOOA 
PCB 
PCT 
DOBCP 

M 
g 

258 
342 
370 
398 
426 
454 
482 
267 
365 
334 
249 
325 
631 

121.6 
117.6 
110.0 
113.6 
111.6 
116.0 
117.0 
34.0 
70.0 
88.0 
25.0 

163.0 
114.0 

135.0 
131.7 
123.0 
129.0 
124.0 
126.0 
122.0 
45.0 
79.0 

108.0 
34.0 

229.0 
165.5 

T!TNI 

0.967 
0.965 
0.967 
0.962 
0.969 
0.975 
0.987 
0.965 
0.974 
0.948 
0.971 
0.869 
0.881 

S 

0.57 
0.57 
0.57 
0.57 
0.56 
0.54 
0.50 
0.57 
0.54 
0.60 
0.55 
0.70 
0.90 

Adding one methyl group to the aliphatic chain corre­
sponds to a length increase of 1. 25 A (projected onto the 
long molecular axis). Taking into account the fact that 
the compounds of the 4-4' -di-(n-alkoxy) azoxybenzene 
series are symmetric molecules, Eq. (2) can be con­
verted to a mean diffusivity increase per unit length: 

~D~/ ~La = (0. 2 ± 0.08) x 10-4 cm2 s-1 A-I. (3) 

b. Dependence on core length Le. For all members 
of the 4-4'-di-(n-alkoxy) azoxybenzenes, the core 
length is the same, Le""13 A. We can first estimate 
its contribution (per unit length) to the diffusivity from 
the A value in Eq. (2) 

(4) 

The Df, dependence on Le can also be deduced by com­
paring the Df, value measured for DOBCP and that cal­
culated for 4-4' -di-n-decyloxy azoxybenzene using Eq. 
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FIG. 7. Standardized (see the text) thermal diffusivity coeffi­
cient parallel to the mean direction of molecular alignment, 
D~, as a function of the number N of carbon atoms in the ali­
phatic chains. N = 1-9 in the series of 4-4' di (n -alkoxy) azoxy 
benzenes. 

DII DJ. D,f 
10-4 cm2 S-I 

d" 
A 

L 
A 

II. 0 
12.0 
12.0 
13.0 
12.8 
15.4 
12.3 
13.3 
11.9 
13.5 
12.5 
13.6 
24.8 

6.5 
5.5 
6.0 
6.0 
6.0 
8.6 
6.5 
7.5 
5.5 
6.6 
7.9 
5.9 
7.8 

13.3 
15.3 
15.0 
16.5 
16.3 
19.2 
16.2 
16.2 
15.5 
16.6 
15.0 
15.8 
26.0 

5.3 
3.8 
4.5 
4.2 
4.2 
6.6 
4.6 
6.0 
3.7 
5.0 
6.6 
4.8 
7.2 

1.4 
1.2 
1.6 
1.5 
1.6 
2.3 
2.0 
1.4 
1.3 
1.5 
1.7 
1.4 
2.5 

19.3 
26.8 
29.3 
31. 8 
34.3 
36.8 
39.3 
20.6 
30.6 
27.8 
20.3 
24.9 
49.0 

1.8 
1.3 
1.5 
1.4 
1.4 
2.2 
1.5 
2.0 
1.2 
1.7 
2.2 
1.6 
2.4 

(2) with N = 10. Indeed, both compounds have the same 
number of bonds in the aliphatic flexible chains and they 
only differ by the addition of one extra chloro-substi­
tuted phenyl group (see Fig. 8). According to molecu­
lar models, this leads to a core length increase of 
5.9 A. Therefore, we obtain 

~Df,/~Le=(1.4±0.5)10-4 cm2 s-1 k 1 (5) 

in fair agreement with the above determination. From 
relations 3, 4, and 5, it comes immediately that 

D~ <Core> "" (6 ± 1)Df, (chain> • (6) 

In that respect, the weak difference ("" 5%) between 
thermal diffusivity results for PCT and PCB may look 
strange. However, it should be borne in mind that 
PCB molecules form dimers of 28 A length,12 i. e., 
close to the PCT single molecular length of 25 A. Thus, 
the thermal diffusivities of both compounds have to be 
equivalent, as experimentally observed. 

o 
Cl0H21-0-Jo''-N''L~Jf5'--o C H ~ ~ . .,.. '\::::::!/ - 10 21 

r----J.------, (PAA10) 

: ~N~CH : I ~ , 

, ' 
: CI : , ' L- ____________ J 

C 10 H21-0 iO" N" V ~ "N 0 CH~ 
N-@-O-Cl0H21 

CI (DOBCP) 

FIG. 8. Molecular structures of 4-4 '-di(n-decyloxy) azoxy 
benzene (PAA 10 for short) and di-(4-n-decyloxybenzal)-chloro-
1-4-phenylene diamine (OOBCP). Note that they only differ by 
the addition of one chlorosubstituted benzene group. 
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x 

FIG. 9. Schematic representation of the molecular arrange­
ment in a smectic B liquid crystalline phase. The hatched re­
gions represent the low thermally conducting parts of the mole­
cule. ~"(~.Ll is the average distance between two neighboring 
molecules parallel (perpendicular) to the molecular orientation 
axis n. a is the lattice parameter of this hexagonal close-com­
pact structure. 

V. MODELS OF THERMAL DIFFUSION IN LlaUID 
CRYSTALS 

Both the present experiments and our earlier results6 

support the idea that the thermal diffusivity anisotropy 
is closely related to the geometrical shape anisotropy of 
the mesogenic molecules. IncreaSing the length (width) 
leads to an increase in Df, (~). It is then tempting to 
make the analogy between the isolated molecule and the 
"box effect" observed by Biermasz and Haas in perfect 
solids around 5 K.13 At these low temperatures, the 
mean free path of the thermal phonons is limited by the 
sample size and, thus, the thermal conductivity be­
comes dependent on the geometrical dimensions. 14 In 
most liquid crystalline materials, the molecules can be 
roughly considered as cylindrical rods of length L"" 20-
40 A. Literature data quote in the very same range the 
mean free path at room temperature of the phononlike 
modes responsible for heat conduction in liquids. 15 It 
is then expected that molecular dimensions will limit 
the phonon mean free path and consequently induce the 
thermal anisotropy. 

We have developed this approach more quantitatively 
in two simple models of thermal conductivity. The first 
is a purely static model based on the calculation of the 
electrical conductance of a composite medium with re­
gions of different conductivities. The second is an ex­
tension to anisotropic media of the Eyring thermal con-

ductivity theory for simple liquids, and has been sug­
gested to us by Benguigui. 16 

A. Static model 

1. Electrical conductance model 

A LC medium can be considered as an assembly of 
cylinders of radius R and length L (Fig. 9). The dis­
continuity of the local density at the surface of the 
cylinders creates a boundary resistance which strongly 
impedes the heat flow. It is therefore convenient to 
use a biphasic description. The first phase consists of 
the central parts of the molecules and has an infinite 
conductivity. The second phase is continuous throughout 
the specimen and consists of a thin layer of thickness ~ 
(~" or ~.L depending on the direction considered) at the 
surface of each cylinder. Its conductivity is finite and 
equarto 0"0' The exact value of ~ will have to be deter­
mined experimentally. It may very well be that, in the 
direction parallel to the long molecular axiS, ~" in­
cludes a part of the flexible aliphatic chains since they 
are expected to have a lower conductivity than the rigid 
central core. This is expressed by replacing in the 
calculation ~" by a d,,> ~". For sake of simplicity, the 
model has been developed for a smectic B phase, with 
the centers of mass of the cylinders positioned on an 
hexagonal compact lattice. This is justified here be­
cause, as already stated, the results do not depend on 
the exact nature of the mesomorphic phase, either ne­
matic or smectic. 

The computation procedure has been developed in the 
Appendix B. The final results write: 

D1 = ~[aLv'3 + d,,(l -av'3)] (7) 

and 

D~ = a2Jt d" [21TR2 L + d,,(a2v'3 - 21TR2)] , (8) 

where Do is the thermal diffusivity of the homogeneous 
matrix, a the hexagonal lattice parameter, R the mo­
lecular radius, L the molecular length, and d" the dis­
tance between the infinitely conducting parts of two 
neighboring molecules along the z axis, (see Fig. 9). 
a is a parameter which depends on R and a and which 
has been represented on Fig. 10. 

2. Comparison with experimental data 

Equations (7) and (8) show that the ratio D~/D1 is in­
dependent on Do and can therefore be directly compared 
to the experimental result. On the other hand, d" can 
only be obtained by solving for each compound a second 
order equation. Reporting that d" value in the expres­
sion for D~ or Df allows then to calculate Do. 

The results are summarized in Table I. It is ob­
served that d" is nearly constant and much smaller than 
the molecular length L for aU the compounds investi­
gated. Its value of 1. 6 ± O. 4 A is comparable to the 
1.2 A intermolecular distance measured by x rays. 11 

The fact that d" does not vary Significantly with the 
aliphatic chain length La is very surprising. It all looks 
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FIG. 10. Dependence of the parameters a andA, introduced 
in the calculations of the static model, as a function of the 
molecular diameter R. (see also Appendix B). The lattice 
parameter a is fixed at 5 'A. 

as if most of the molecule was infinitely conducting with 
a region of finite resistance limited to a very small do­
main. 18 This result is in clear contradiction with our 
experimental observation of a widely different thermal 
conductivity for the aliphatic chains and the rigid mo­
lecular core respectively. Therefore, the applicability 
of the static model is extremely doubtful. 

For the sake of completeness, we have also calculated 
the average thermal diffusivity of the low thermally 
conducting zone Do using Eq. (7). Do is found to be (1. 5 
±O. 4) x 10-4 cm2 S-1. This Do value is lower by a factor 
3 or 4, than the thermal diffusivity of most organic 
liquids. 19 This is not unreasonable since it does not 
represent the bulk diffusivity, but only that of the bound­
ary layer between the molecules. 

B. Convective theory 

1. Background 

According to the kinetic theory arguments, the ther­
mal diffusivity in a monoatomic gas is 

(9) 

where Os ... = (8kT /1Tm)1/2 is the atomic velocity, m the 
atomic mass and 1 the mean free path. This expression 
has been later extended by Eyring to isotropic fluids by 
supposing that, upon molecular collision, the energy is 
transferred instantaneously from the center of one mole­
cule to the center of the other. 20 On this basis 

(10) 

Here, V is the volume occupied per molecule and V F 

the free volume. V F = V - V m, where vm is the molecu­
lar volume (as measured from molecular models). The 
distance over which the energy is transported between 

two collisions is readily expressed as 1 = V1I3 • This 
crude argument leads to the following expression: 

12 
D\lq = 3VV30 .. (11) 

2. Application to mesophases 

The Eyring expression can be easily adapted to the 
anisotropic, cylindrical-like, molecules of Le. 18 First, 
the free volume becomes anisotropic and V~3 has to be 
replaced by: 

-~" in the direction parallel to the long cylindrical 
axis; 

-~~ in the direction perpendicular to it. 

Secondly, in order to take into account the structural 
complexity of the molecules, we assume that, when two 
molecules collide, the energy is not transferred instan­
taneously between their centers of mass. Rather, there 
is some part of the molecule on which the energy travels 
with finite speed, comparable to that of convective trans­
fer. With this assumption, we rewrite V}/3 in the fol­
lowing manner (Fig. 11): 

d" ~~" in the direction of the long cylindrical 
V}/3 = axiS, 

d~ ~ ~~ in the perpendicular direction. 

For the direction parallel to the long molecular axis 
and since L +~" "'" L, Eq. (11) becomes 

(12) 

Similarly, we have for the direction perpendicular to 
the long molecular axis: 

(13) 

3. Comparison with experimental results 

To reduce the number of unknown parameters, we 
first assume a fixed value of a = 5 A, as suggested from 

FIG. 11. Schematic representation of the molecular arrange­
ment in a nematic liquid crystalline phase. All molecules are 
parallel to each other, but their centers of mass are at ran­
dom. All symbols have the same Signification as in Fig. 9. 
Note that here a corresponds to the mean distance between 
molecules perpendicular to their alignment axis. 
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the x-ray measurements.1? Then, the dll and dJ. values 
can be directly derived from the ~ and D1 values. The 
results are shown in Table II. dJ. stays fairly constant 
in all investigated compounds. An average value of d! 
== 1. 2 ± O. 3 A is observed, which is quite comparable to 
the lateral displacement observed by Doucet in the smectic 
B phase of terephtal bis (4-n butylaniline) (TBBA). 11 

Contrary to the static model, dll now depends on the 
molecular structure. For instance, dll varies from 8 
to 20 A when going from PAA-1 to PAA-9 in the 4-4' -di­
(n-alkoxy) azoxybenzenes series. This finding is clearly 
consistent with the observation that the aliphatic chains 
correspond to a region of lower thermal conductivity 
than the central, rigid core. We have therefore tried 
to relate this dll value to the aliphatic chain length. 

In Fig. 12, we have drawn d,,/2 as a function of the 
number N of C-C bonds in one aliphatic chain [for mole­
cules with two different chain lengths N1 and N2, we take 
N==(N1 +N2)/2j. We have also reported on the same 
figure the elongated chain length 11 in the trans configu­
ration and the length ~I of a freely rotating chain with 
fixed valence angles. ~ has been measured from mo­
lecular models while 111 can be derived from the gen­
eral expression proposed by Benoit21 : 

_ r 2 1l(1l N -1) + N(l - 1l2)]112 1Il-eo (1l-1)2 +RH , 

where 10 is the C-C length (1.54 A), Il == - cos y with 
y == 1090 28' and RH is the van der Waals radius of the 
terminal methyl group. 

The ~ and 111 curves are practically identical up to 
N ==4 and get progressively separated at higher values. 
It is immediately noticeable that our data pOints are 
better described by the 111 , than by the 110 curve. 
Therefore, our thermal conductivity seems to indicate 
that the flexible chains adopt a conformation more akin 
to a freely rotating chain than to a stretched, elongated 
chain. This is at variance from the x-ray observation 
that the trans chain configuration is the most probable. 17 

TABLE n. Calculated values for the 
lengths dll and dJ. of the low thermally con-
ducting zones as derived from D~ and Dt, 
given in Table I, using Eqs. (12) and (13) 
of the Eyring model. L is the molecular 
length. 

Name L dll dJ. 
A A A 

PAAl 19.3 8.3 1.4 
PAA4 26.8 12.0 1.6 
PAA5 29.3 13.8 1.3 
PAA6 31. 8 14.4 1.4 
PAA7 34.3 16.3 1.3 
PAA8 36.8 15.5 0.8 
PAA9 39.3 20.5 1.1 
MBBA 20.6 6.7 1.0 
BBOA 30.6 13.9 1.6 
CBOOA 27.8 11.5 1.2 
PCB 20.3 7.1 1.0 
PCT 24.9 10.8 1.4 
DOBCP 49.0 17.2 0.6 

12 

10 

8 

2 

II[ 

7/GDOBC 

{t/98 

IIOA 

CIOA 

FIG. 12. Estimated lengths 
of the low thermally conduct­
ing molecular end parts dll /2 
as a function of the number of 
C-C bonds in the aliphatic 
chains for all investigated 
compounds. The correspond­
ing lengths calculated for the 
freely rotating chains (In) and 
for elongated chains in the all­
trans configuration (ll) are al­
so given. 

However, it should be realized that thermal conduc­
tivity is a rather indirect way of determining molecular 
conformation and should not take too much in earnest. 
It can also be said that, in our description, the first 
carbon bonds of the chain should actually be incorporated 
to the rigid core. This would reduce the apparent chain 
length contributing to the low thermal conductivity zone. 
Therefore, a value lower than 11 could indeed be ex­
pected. 

At any rate, the observation of a semiquantitative 
agreement between our crude dynamic theory and the 
experimental data is already quite a satisfactory result 
in itself. Taking d! == 1. 2 A and dll == 21u, thermal dif­
fusivity data of liquid crystalline materials can now be 
predicted to better than 20%. 

VI. CONCLUSION 

Using the forced Rayleigh light scattering technique, 
we have been able to make the first systematic study of 
thermal diffusivity in liquid crystals, as a function of 
the molecular structure: 

(1) For all rodlike molecules, the diffusion is faster 
parallel to the long molecular axis than perpendicular 
to it, i. e., DII> D!. 

(2) The diffusivity values do not vary Significantly 
from one mesophase to the other and are, thus, inde­
pendent of long range order. 

(3) Contrary to the other transport phenomena, there 
is no evidence of pretransitional effects near phase 
transitions between mesophases. 

(4) The diffusivity anisotropy depends on the molec­
ular shape. At fixed molecular width, it increases with 
molecular length. 

(5) The contribution of the rigid central core to the 
thermal diffusivity is more important than that of the 
aliphatic end chains. 
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The first model is purely static and is based on the 
calculation of distributed resistances for an assembly 
of highly conducting cylinders embedded in a low con­
ductivity medium. A fit to the data leads unfortunately 
to rather unphysical results. The length of the low 
thermally conducting zone is found much too small. 
Therefore, the different contribution to thermal con­
ductivity of the aliphatic chains and of the rigid molecu­
lar core is not properly taken into account. 

A much better agreement is obtained with our second 
theoretical model based on an extension to anisotropic 
molecules of the Eyring kinetic theory of thermal con­
ductivity in liquids. It also assumes that the molecules 
are composed of one highly conducting central part and 
of two low conducting ends. However, a fit to the data 
yields estimations for the sizes of the different regions 
which are much more reasonable. In particular, the 
poorly conducting zones are found to correspond closely 
to the aliphatic chains. Using this model, values of the 
thermal diffusivities parallel and perpendicular to the 
long molecular axis can be obtained to within 20% for 
any liquid crystalline material. 

To conclude, it is fair to say that the qualitative fea­
tures of thermal transport in mesophases are now well 
understood. The next logical step would be to develop 
better theoretical approaches, but a frontal attack on 
this problem seems extremely arduous. 
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APPENDIX A 

Let us call A the tensorial quantity which relates the 
thermodynamic driving force X to the conjugated flux 
J23: J = AX. Its principal axes will be called {a j } while 
the laboratory frame will be described by {xi} [Fig. 13(a)]. 

For uniaxial media 1B.t I = all and I ~ I = I as I = aJ.. In 
the {a j } frame, the X components .. are 

X = {O!tX; 0!2X; 0!3X}, 

where 

O! j = cos(X, a j ); i = 1,2,3 . 

Therefore, 

J = {aIlO!tX; aJ.0!2X; aJ.0!3X} . 

1. Expression of A in the direction parallel to n 

In the X direction, the value of J is 

J II = [allO!~ + aJ.(O!~ + O!~)]X =AIIX • 

Taking O!t = cos e, the expression of All becomes 

AII(e) = all cos2 e + aJ. sin2 e • 

2. Expression of A in the direction perpendicular to n 

Consider Fig. 13(b) which is obtained from Fig. 13(a) 
first by a rotation of an angle cp around let and then by a 

X1 

a1 

(a) 

0 
a2 X2 

X1 

01 

(b) 

X2 

FIG. 13. (a) Referential frame used in the calculations. The 
&.j are the principal axes. The X; are the laboratory frames. 
(b) New referential frame obtained by a rotation of t/> around 
OXt followed by a rotation of 9 around &S. 

second rotation of an angle 8 around as. Let X be 
parallel to X3 for example. With as in x2 0 X3 plane, one 
can write: 

JJ. = {all sin cp sin8; aJ.sin cp cos 8, aJ. cos cp} • 

Thus, 

AJ.(8, cp) = all sin2 cpsin2 8 +aJ.(sin2 cp cos2 e +cos2cp) 

A J. must be cp independent since the molecule is sym­
metrical. Taking the average value over cp, we get 

1 J2. 
AJ.(8) = 2.". 0 AJ.(8, cp)dcp , 

AJ.(8) = Mall sin2 8 + aJ.(1 + cos2 8)] . 

3. Relationship between the microscopic and 
macroscopic A values 

The macroscopic value of A is obtained by performing 
an average around the 8 position. If j(8) is the distribu­
tion function [(l/lT) ff(e) sine d8 =1] the macroscopic 
value will be 

11' <A) = - A(e) sin e de 
.". 0 

Thus, 

<All) = all(cos2 8) + aJ.(sin2 e) 

and 

<AJ.) = tall (sin2 8) + aJ.(1 + (cos2 8» . 

<All) and <AJ can be expressed as a function of the order 
parameter S = (3(cos2 e) -1)/2 and we get, finally, 

/ A ) _ all (1 + 28) + 2a.l(1 -8) 
',1111 - 3 ' 

/ A \ _ aJ.(2 +S) + all (1 -S) 
V1v- 3 ' 

where all and aJ. are the molecular values for S'" 1 where­
as <All) and <AJ.) are the experimental data at the tem­
perature of measurement, i. e., for O<S< 1. 
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APPENDIX B 

1. Conductivity perpendicular to the long cylindrical axis 

There is a formal analogy between electrokinetic and 
electrostatic problems when the current density J is 
replaced by the electrical field E. We can thus substi­
tute the calculation of the electrical resistance R of the 
medium by the easier calculation of its capacitance C. 
Indeed it can be shown22 that 

(B1) 

where Eo is the dielectric permitivity of the medium and 
ao its electrical conductivity. 

We first calculate the unit cell capacity C. shown in 
Fig. 14. The LC medium is then generated by connect­
ing (aLr1 such cells in parallel (a-1 and L-1 in the Y and 
Z directions, respectively) and (av'3r1 such cells in 
series. The total capacity per unit length is, therefore, 

(B2) 

a. Calculation of Cu 

The unit cell consist of two capacitors C1 and C2 as­
sociated in series. The applied electric field is paral-

A' / /1 
-~ .. 

T x 

D 

D, 

_af3_ 
(a 

FIG. 14. (a) and (b) Schematic diagram of the unit cell used in 
the calculation of the capacitance. For symmetry reasons, 
the cylinder centered at Xi = YI = Z I = 0 and the Y axis are at 
zero potential and A ' A " B " B' and C ' C " D " D' are the 
equipotential surfaces. These surfaces constitute the elec­
trodes of the elementary capacitor C I_ The space between two 
smectic layers is represented by an additional capacity C2 

=EO d ll /f3. The total capacity of the unit cell is then Cu =C I +C 2• 

x 

FIG. 15. Coordinates used in the calculation of the potential 
created by a cylinder centered at distances d l from P and y. 
from the origin. 

leI to X. 

The first capacitor C1 has its electrodes figured by 
the continuous lines in Fig. 14(a). For symmetry rea­
sons, both the supraconducting cylinder, oflength l L - d" 

placed at the origin and the Y axis are zero potential. 

The second capacitor C2, which accounts for the 
poorly conducting part of the molecules and for the in­
terspace between two neighboring molecules, has its 
electrodes figured by the surfaces AAl B1B and CC 1D1D • 
These surfaces, which are separated by a distance 
= av'3, can be considered as equipotentials in first ap­
proximation if we neglect the end effects. 

b. Calculation of C 

Let us calculate the value V of the potential on the 
A 'A "B"B' surface (Fig. 14) and then derive the cor­
responding charge per unit length (l = 1) using the Gauss 
theorem 

Q=Eo!-grdVdS. (B3) 

In presence of a constant electric field E parallel to the 
X axis, the problem of an equipotential cylinder centered 
at the origin is analogous to that of a cylindrical dipole.24 

At any point P at a distance r from the origin, the 
potential V p(i) due to a cylinder placed at distances dl 

from P and rj from the origin is (Fig. 15): 

V ( ') __ ~ _~rrlcosi3j -rcose] 
p l - d

j 
cosYj - d

j 
[ d

j 

=A[G(rj, dj , I3j )J . (B4) 

For n cylinders, in a uniform field E we obtain 
+n 

V p = - rE cos e + A L G( rj, dl , 131) 
i =-n 

and in Cartesian coordinates 

+n 

=-EXp+A L ( ~; -fp )2' 
j,J=-n XI -Xp + YI - Yp 

(B5) 

Within a smectic B layer, the cylinders are centered 
at points {x/Y/}. Xj =(ia,J3)/2and YJ =a[j+(-1)1-1)/41 
with i, j E [ - n + n J. a is the lattice parameter. 
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FIG, 16. Representation of two equipotential surfaces in the 
XOY plane of the unit cell shown in Fig. 14. The equipotential 
centered at the origin is obtained by setting V P = 0 in Eq. (B5). 
For each given value of X p (0 <X P < 2) two values of Y P were ob­
tained. Only Y p> 0 is plotted here. For the cylinder centered 
atX j =a.f3/2 and Yj=a, we first calculated Vp at a specific 
point PI = (a.f3/2; 0) and then proceeds as befolre, but with V p 

= V PI in Eq. (B5). 

The A value is determined by the condition V p'" 0 for 
Xp =R and Y p = O. It is a function of R which has been 
calculated in Fig. 10 for R varying between 1. 5 and 
2.5 A. 

The numerical evaluation of the equipotentials for an 
assembly of ten cylinders has been performed numeri­
cally in one particular case (R = 2 A and a = 5 A). Fig­
ure 16 shows the equipotentials centered at XI = Y I = 0 
and XI = a.J3 /2, Yj = a/2. They are not perfectly cir­
cular' but the deviation is less than 5% and can be ne­
glected in first approximation. Then, 

(B6) 

where a is a parameter which depends on a and R. For 
R = 2 A and a = 5 A, a = 1. 507. The variation of (l vs R 
for a fixed value of a = 5 A is presented on Fig. 10. It 
is observed that a increases when R increases. For R 
higher than 2. 08 A, the A I I B' I part of the calculated 
equipotential disappears and the model proposed here 
is no longer valid. 

c. Calculation of C2 

It is readily derived that 

C2 = E od,,/.J3 , (B7) 

where d" is the distance between the two, infinitely con­
ducting cylinders along the z axis. 

d. Calculation of Cu 

Summing up these two contributions, we get the 
capacity Cu of the unit cell 

Cu=C 1 +C2 =Eo(d,,/.J3 +al) . (B8) 

Returning to the analogy between electrostatics and 
electrocinetics [Eqs. (Bl) and (B2)], we readily obtain 
the equivalent conductivity of the medium in the direc­
tion perpendicular to the cylinders 

(B9) 

2. Conductivity parallel to the long cylindrical axis 

Let us first assume that the molecules belonging to 
successive S B layers are perfectly in register. In each 
fundamental cell, the total surface of cylinders is 21TR2 
and the corresponding resistance is PI: 

~ PI = _ 2-RD2 • ao 1T 
(Bl0) 

The remaining part of the cell have a resistance P 2 

L 
P 2 = ao(a2J3' _ 21TR2) • (Bll) 

The total unit cell resistance is obtained by adding these 
two resistances in parallel 

p~1 = Pil + Pil . (B12) 

Since there are L -I such resistances associated in series 
and (a2.J3rl in parallel, the total resistance per unit 
length of the medium P T writes: 

aZ.J3 
PT=-r;-PF • (B13) 

The corresponding conductivity is 

(B14) 

3. Final expressions for the thermal diffusivities 

The analytical expressions for D" and DL can be easily 
derived from the Eqs. (B9) and (B14) for K" and KL 
using the well-known relationship D=K/pC" where p 
is the specific gravity and C, the thermal capacity. 
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