laboratoire de physique statistique
 
 
laboratoire de physique statistique

Publications

Rechercher
2012 


Jean-François ALLEMAND 


5
P U B L I C A T I O N S



 
2012
Polymerase Exchange During Okazaki Fragment Synthesis Observed in Living Cells (Retracted, see vol 346, pg 1466, 2014) - Lia, Giuseppe and Michel, Benedicte and Allemand, Jean-Francois
SCIENCE 335328-331 (2012) 
LPS


Abstract : DNA replication machineries have been studied extensively, but the kinetics of action of their components remains largely unknown. We report a study of DNA synthesis during replication in living Escherichia coli cells. Using single-molecule microscopy, we observed repetitive fluorescence bursts of single polymerase IIIs (Pol IIIs), indicating polymerase exchange at the replication fork. Fluctuations in the amount of DNA-bound single-stranded DNA-binding protein (SSB) reflect different speeds for the leading-and lagging-strand DNA polymerases. Coincidence analyses of Pol III and SSB fluctuations show that they correspond to the lagging-strand synthesis and suggest the use of a new Pol III for each Okazaki fragment. Based on exchanges involving two Pol IIIs, we propose that the third polymerase in the replisome is involved in lagging-strand synthesis.
Single-molecule mechanical identification and sequencing - Ding, Fangyuan and Manosas, Maria and Spiering, Michelle M. and Benkovic, Stephen J. and Bensimon, David and Allemand, Jean-Francois and Croquette, Vincent
NATURE METHODS 9367-U74 (2012) 
LPS


Abstract : High-throughput, low-cost DNA sequencing has emerged as one of the challenges of the postgenomic era. Here we present the proof of concept for a single-molecule platform that allows DNA identification and sequencing. In contrast to most present methods, our scheme is not based on the detection of the fluorescent nucleotides but on DNA hairpin length. By pulling on magnetic beads tethered by a DNA hairpin to the surface, the molecule can be unzipped. In this open state it can hybridize with complementary oligonucleotides, which transiently block the hairpin rezipping when the pulling force is reduced. By measuring from the surface to the bead of a blocked hairpin, one can determine the position of the hybrid along the molecule with nearly single-base precision. Our approach can be used to identify a DNA fragment of known sequence in a mix of various fragments and to sequence an unknown DNA fragment by hybridization or ligation.
Mechanism of strand displacement synthesis by DNA replicative polymerases - Manosas, Maria and Spiering, Michelle M. and Ding, Fangyuan and Bensimon, David and Allemand, Jean-Francois and Benkovic, Stephen J. and Croquette, Vincent
NUCLEIC ACIDS RESEARCH 406174-6186 (2012) 
LPS


Abstract : Replicative holoenzymes exhibit rapid and processive primer extension DNA synthesis, but inefficient strand displacement DNA synthesis. We investigated the bacteriophage T4 and T7 holoenzymes primer extension activity and strand displacement activity on a DNA hairpin substrate manipulated by a magnetic trap. Holoenzyme primer extension activity is moderately hindered by the applied force. In contrast, the strand displacement activity is strongly stimulated by the applied force; DNA polymerization is favoured at high force, while a processive exonuclease activity is triggered at low force. We propose that the DNA fork upstream of the holoenzyme generates a regression pressure which inhibits the polymerization-driven forward motion of the holoenzyme. The inhibition is generated by the distortion of the template strand within the polymerization active site thereby shifting the equilibrium to a DNA-protein exonuclease conformation. We conclude that stalling of the holoenzyme induced by the fork regression pressure is the basis for the inefficient strand displacement synthesis characteristic of replicative polymerases. The resulting processive exonuclease activity may be relevant in replisome disassembly to reset a stalled replication fork to a symmetrical situation. Our findings offer interesting applications for single-molecule DNA sequencing.
Molecular motors for DNA translocation in prokaryotes - Allemand, Jean-Francois and Maier, Berenike and Smith, Douglas E.
CURRENT OPINION IN BIOTECHNOLOGY 23503-509 (2012) 
LPS


Abstract : DNA transport is an essential life process. From chromosome separation during cell division or sporulation, to DNA virus ejection or encapsidation, to horizontal gene transfer, it is ubiquitous in all living organisms. Directed DNA translocation is often energetically unfavorable and requires an active process that uses energy, namely the action of molecular motors. In this review we present recent advances in the understanding of three molecular motors involved in DNA transport in prokaryotes, paying special attention to recent studies using single-molecule techniques. We first discuss DNA transport during cell division, then packaging of DNA in phage capsids, and then DNA import during bacterial transformation.
Energy Propagation Through a Protometabolism Leading to the Local Emergence of Singular Stationary Concentration Profiles - Emond, Matthieu and Le Saux, Thomas and Allemand, Jean-Francois and Pelupessy, Philippe and Plasson, Raphael and Jullien, Ludovic
CHEMISTRY-A EUROPEAN JOURNAL 1814375-14383 (2012) 
LPS


Abstract : Living systems rely on chains of energy transfer from an energy source to maintain their metabolism. This task requires functionally identified components and organizations. However, propagation of a sustained energy flux through a cascade of reaction cycles has never been reproduced at a steady state in a simple chemical system. By using energy patterning and a diffusing hub reactant, we achieved the transfer of energy through an abiotic protometabolism. Patterned illumination was applied to a liquid solution of a reversible photoacid. It resulted in the local onset of a proton pump, which subsequently drove an extended reactiondiffusion cycle that involved pH-sensitive reactants. Thus, light has been used for locally setting out of chemical equilibrium a reaction involving blind reactants. The spontaneous onset of an energy-transfer chain notably drives the local generation of singular dissipative chemical structures; continuous matter fluxes are dynamically maintained at boundaries between spatially and chemically segregated zones, in the absence of any membrane or predetermined material structure.