Morphogenesis of growing soft tissues - Dervaux, Julien and Ben Amar, Martine

PHYSICAL REVIEW LETTERS 101, (2008)

Abstract : Recently, much attention has been given to a noteworthy property of some soft tissues: their ability to grow. Many attempts have been made to model this behavior in biology, chemistry, and physics. Using the theory of finite elasticity, Rodriguez has postulated a multiplicative decomposition of the geometric deformation gradient into a growth-induced part and an elastic one needed to ensure compatibility of the body. In order to fully explore the consequences of this hypothesis, the equations describing thin elastic objects under finite growth are derived. Under appropriate scaling assumptions for the growth rates, the proposed model is of the Foppl-von Karman type. As an illustration, the circumferential growth of a free hyperelastic disk is studied.

PHYSICAL REVIEW LETTERS 101, (2008)

LPS

Abstract : Recently, much attention has been given to a noteworthy property of some soft tissues: their ability to grow. Many attempts have been made to model this behavior in biology, chemistry, and physics. Using the theory of finite elasticity, Rodriguez has postulated a multiplicative decomposition of the geometric deformation gradient into a growth-induced part and an elastic one needed to ensure compatibility of the body. In order to fully explore the consequences of this hypothesis, the equations describing thin elastic objects under finite growth are derived. Under appropriate scaling assumptions for the growth rates, the proposed model is of the Foppl-von Karman type. As an illustration, the circumferential growth of a free hyperelastic disk is studied.