laboratoire de physique statistique
 
 
laboratoire de physique statistique

Publications

Rechercher
Martine BEN AMAR 


BIOMECHANICS AND MODELING IN MECHANOBIOLOGY 


2
P U B L I C A T I O N S

S E L E C T I O N N E R
P A R M I :



 
2015
Growth and remodelling for profound circular wounds in skin - Wu, Min and Ben Amar, Martine
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY 14357-370 (2015) 
LPS


Abstract : Wound healing studies both in vitro and in vivo have received a lot of attention recently. In vivo wound healing is a multi-step process involving physiological factors such as fibrinogen forming the clot, the infiltrated inflammatory cells, the recruited fibroblasts and the differentiated myofibroblasts as well as deposited collagens. All these actors play their roles at different times, aided by a cascade of morphogenetic agents and the result for the repair is approximatively successful but the imperfection is remained for large scars with fibrosis. Here, we want to study wound healing from the viewpoint of skin biomechanics, integrating the particular layered geometry of the skin, and the role of the neighbouring wound epidermis. After 2 days post-injury, it migrates towards the wound centre to cover the hole, the migration being coupled to proliferation at the wound border. Such a process is dominated by the skin properties which varies with ages, locations, pathologies, radiations, etc. It is also controlled by passive (actin, collagen) and active (myo-fibroblasts) fibres. We explore a growth model in finite elasticity of a bilayer surrounding a circular wound, only the interior one being proliferative and contractile. We discuss the occurrence of an irregular wound geometry generated by stresses and show quantitatively that it results from the combined effects of the stiffness, the size of the wound, eventually weakened by actin cables. Comparison of our findings is made with known observations or experiments in vivo.
 
2007
On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity - Goriely, Alain and Ben Amar, Martine
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY 6289-296 (2007) 
LPS


Abstract : In the theory of elastic growth, a growth process is modeled by a sequence of growth itself followed by an elastic relaxation ensuring integrity and compatibility of the body. The description of this process is local in time and only corresponds to an incremental step in the total growth process. As time evolves, these incremental growth steps are compounded and a natural question is the description of the overall cumulative growth and whether a continuous description of this process is possible. These ideas are discussed and further studied in the case of incompressible shells.