laboratoire de physique statistique
 
 
laboratoire de physique statistique

Publications

Rechercher
NATURE COMMUNICATIONS 


10
P U B L I C A T I O N S

S E L E C T I O N N E R
P A R M I :



 
2016
Controlling molecular transport in minimal emulsions - Gruner, Philipp and Riechers, Birte and Semin, Benoit and Lim, Jiseok and Johnston, Abigail and Short, Kathleen and Baret, Jean-Christophe
NATURE COMMUNICATIONS 7 (2016)

Abstract : Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.
Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media - Lee, Thomas and Bocquet, Lyderic and Coasne, Benoit
NATURE COMMUNICATIONS 7 (2016)

Abstract : Hydrocarbon recovery from unconventional reservoirs (shale gas) is debated due to its environmental impact and uncertainties on its predictability. But a lack of scientific knowledge impedes the proposal of reliable alternatives. The requirement of hydrofracking, fast recovery decay and ultra-low permeability-inherent to their nanoporosity-are specificities of these reservoirs, which challenge existing frameworks. Here we use molecular simulation and statistical models to show that recovery is hampered by interfacial effects at the wet kerogen surface. Recovery is shown to be thermally activated with an energy barrier modelled from the interface wetting properties. We build a statistical model of the recovery kinetics with a two-regime decline that is consistent with published data: a short time decay, consistent with Darcy description, followed by a fast algebraic decay resulting from increasingly unreachable energy barriers. Replacing water by CO2 or propane eliminates the barriers, therefore raising hopes for clean/efficient recovery.
A moving contact line as a rheometer for nanometric interfacial layers - Lhermerout, Romain and Perrin, Hugo and Rolley, Etienne and Andreotti, Bruno and Davitt, Kristina
NATURE COMMUNICATIONS 7 (2016)

Abstract : How a liquid drop sits or moves depends on the physical and mechanical properties of the underlying substrate. This can be seen in the hysteresis of the contact angle made by a drop on a solid, which is known to originate from surface heterogeneities, and in the slowing of droplet motion on deformable solids. Here, we show how a moving contact line can be used to characterize a molecularly thin polymer layer on a solid. We find that the hysteresis depends on the polymerization index and can be optimized to be vanishingly small (< 0.07 degrees). The mechanical properties are quantitatively deduced from the microscopic contact angle, which is proportional to the speed of the contact line and the Rouse relaxation time divided by the layer thickness, in agreement with theory. Our work opens the prospect of measuring the properties of functionalized interfaces in microfluidic and biomedical applications that are otherwise inaccessible.
 
2015
In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa - Verchere, Alice and Dezi, Manuela and Adrien, Vladimir and Broutin, Isabelle and Picard, Martin
NATURE COMMUNICATIONS 6 (2015)

Abstract : Antibiotic resistance is a major public health issue and many bacteria responsible for human infections have now developed a variety of antibiotic resistance mechanisms. For instance, Pseudomonas aeruginosa, a disease-causing Gram-negative bacteria, is now resistant to almost every class of antibiotics. Much of this resistance is attributable to multidrug efflux pumps, which are tripartite membrane protein complexes that span both membranes and actively expel antibiotics. Here we report an in vitro procedure to monitor transport by the tripartite MexAB-OprM pump. By combining proteoliposomes containing the MexAB and OprM portions of the complex, we are able to assay energy-dependent substrate translocation in a system that mimics the dual-membrane architecture of Gram-negative bacteria. This assay facilitates the study of pump transport dynamics and could be used to screen pump inhibitors with potential clinical use in restoring therapeutic activity of old antibiotics.
Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities - Fiorini, Francesca and Bagchi, Debjani and Le Hir, Herve and Croquette, Vincent
NATURE COMMUNICATIONS 6 (2015)

Abstract : RNA helicases are implicated in most cellular RNA-dependent events. In eukaryotes however, only few have been functionally characterized. Upf1 is a RNA helicase essential for nonsense-mediated mRNA decay (NMD). Here, using magnetic tweezers and bulk assays, we observe that human Upf1 is able to translocate slowly over long single-stranded nucleic acids with a processivity >10 kb. Upf1 efficiently translocates through double-stranded structures and protein-bound sequences, demonstrating that Upf1 is an efficient ribonucleoprotein complex remodeler. Our observation of processive unwinding by an eukaryotic RNA helicase reveals that Upf1, once recruited onto NMD mRNA targets, can scan the entire transcript to irreversibly remodel the mRNP, facilitating its degradation by the NMD machinery.
Dynamical backaction cooling with free electrons - Nigues, A. and Siria, A. and Verlot, P.
NATURE COMMUNICATIONS 6 (2015)

Abstract : The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.
 
2014
Efimov-driven phase transitions of the unitary Bose gas - Piatecki, Swann and Krauth, Werner
NATURE COMMUNICATIONS 5 (2014)

Abstract : Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of `unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.
Emergence of collective modes and tri-dimensional structures from epithelial confinement - Deforet, M. and Hakim, V. and Yevick, H. G. and Duclos, G. and Silberzan, P.
NATURE COMMUNICATIONS 5 (2014)

Abstract : Many in vivo processes, including morphogenesis or tumour maturation, involve small populations of cells within a spatially restricted region. However, the basic mechanisms underlying the dynamics of confined cell assemblies remain largely to be deciphered and would greatly benefit from well-controlled in vitro experiments. Here we show that confluent epithelial cells cultured on finite population-sized domains, exhibit collective low-frequency radial displacement modes as well as stochastic global rotation reversals. A simple mathematical model, in which cells are described as persistent random walkers that adapt their motion to that of their neighbours, captures the essential characteristics of these breathing oscillations. As these epithelia mature, a tri-dimensional peripheral cell cord develops at the domain edge by differential extrusion, as a result of the additional degrees of freedom of the border cells. These results demonstrate that epithelial confinement alone can induce morphogenesis-like processes including spontaneous collective pulsations and transition from 2D to 3D.
Controlling coherence via tuning of the population imbalance in a bipartite optical lattice - Di Liberto, M. and Comparin, T. and Kock, T. and Oelschlaeger, M. and Hemmerich, A. and Smith, C. Morais
NATURE COMMUNICATIONS 5 (2014)

Abstract : The control of transport properties is a key tool at the basis of many technologically relevant effects in condensed matter. The clean and precisely controlled environment of ultracold atoms in optical lattices allows one to prepare simplified but instructive models, which can help to better understand the underlying physical mechanisms. Here we show that by tuning a structural deformation of the unit cell in a bipartite optical lattice, one can induce a phase transition from a superfluid into various Mott insulating phases forming a shell structure in the superimposed harmonic trap. The Mott shells are identified via characteristic features in the visibility of Bragg maxima in momentum spectra. The experimental findings are explained by Gutzwiller mean-field and quantum Monte Carlo calculations. Our system bears similarities with the loss of coherence in cuprate superconductors, known to be associated with the doping-induced buckling of the oxygen octahedra surrounding the copper sites.
 
2013
DOI
10
RecG and UvsW catalyse robust DNA rewinding critical for stalled DNA replication fork rescue - Manosas, Maria and Perumal, Senthil K. and Bianco, Piero and Ritort, Felix and Benkovic, Stephen J. and Croquette, Vincent
NATURE COMMUNICATIONS 4 (2013)

Abstract : Helicases that both unwind and rewind DNA have central roles in DNA repair and genetic recombination. In contrast to unwinding, DNA rewinding by helicases has proved difficult to characterize biochemically because of its thermodynamically downhill nature. Here we use single-molecule assays to mechanically destabilize a DNA molecule and follow, in real time, unwinding and rewinding by two DNA repair helicases, bacteriophage T4 UvsW and Escherichia coli RecG. We find that both enzymes are robust rewinding enzymes, which can work against opposing forces as large as 35 pN, revealing their active character. The generation of work during the rewinding reaction allows them to couple rewinding to DNA unwinding and/or protein displacement reactions central to the rescue of stalled DNA replication forks. The overall results support a general mechanism for monomeric rewinding enzymes.