laboratoire de physique statistique
laboratoire de physique statistique




MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis-regulatory module analysis - Santolini, Marc and Sakakibara, Iori and Gauthier, Morgane and Ribas-Aulinas, Francesc and Takahashi, Hirotaka and Sawasaki, Tatsuya and Mouly, Vincent and Concordet, Jean-Paul and Defossez, Pierre-Antoine and Hakim, Vincent and Maire, Pascal
NUCLEIC ACIDS RESEARCH 448621-8640 (2016)

Abstract : Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF.
Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction - De Leonardis, Eleonora and Lutz, Benjamin and Ratz, Sebastian and Cocco, Simona and Monasson, Remi and Schug, Alexander and Weigt, Martin
NUCLEIC ACIDS RESEARCH 4310444-10455 (2015)

Abstract : Despite the biological importance of non-coding RNA, their structural characterization remains challenging. Making use of the rapidly growing sequence databases, we analyze nucleotide coevolution across homologous sequences via Direct-Coupling Analysis to detect nucleotide-nucleotide contacts. For a representative set of riboswitches, we show that the results of Direct-Coupling Analysis in combination with a generalized Nussinov algorithm systematically improve the results of RNA secondary structure prediction beyond traditional covariance approaches based on mutual information. Even more importantly, we show that the results of Direct-Coupling Analysis are enriched in tertiary structure contacts. By integrating these predictions into molecular modeling tools, systematically improved tertiary structure predictions can be obtained, as compared to using secondary structure information alone.
Imogene: identification of motifs and cis-regulatory modules underlying gene co-regulation - Rouault, Herve and Santolini, Marc and Schweisguth, Francois and Hakim, Vincent
NUCLEIC ACIDS RESEARCH 426128-6145 (2014)

Abstract : Cis-regulatory modules (CRMs) and motifs play a central role in tissue and condition-specific gene expression. Here we present Imogene, an ensemble of statistical tools that we have developed to facilitate their identification and implemented in a publicly available software. Starting from a small training set of mammalian or fly CRMs that drive similar gene expression profiles, Imogene determines de novo cis-regulatory motifs that underlie this co-expression. It can then predict on a genome-wide scale other CRMs with a regulatory potential similar to the training set. Imogene bypasses the need of large datasets for statistical analyses by making central use of the information provided by the sequenced genomes of multiple species, based on the developed statistical tools and explicit models for transcription factor binding site evolution. We test Imogene on characterized tissue-specific mouse developmental CRMs. Its ability to identify CRMs with the same specificity based on its de novo created motifs is comparable to that of previously evaluated `motif-blind' methods. We further show, both in flies and in mammals, that Imogene de novo generated motifs are sufficient to discriminate CRMs related to different developmental programs. Notably, purely relying on sequence data, Imogene performs as well in this discrimination task as a previously reported learning algorithm based on Chromatin Immunoprecipitation (ChIP) data for multiple transcription factors at multiple developmental stages.
Collaborative coupling between polymerase and helicase for leading-strand synthesis - Manosas, Maria and Spiering, Michelle M. and Ding, Fangyuan and Croquette, Vincent and Benkovic, Stephen J.
NUCLEIC ACIDS RESEARCH 406187-6198 (2012)

Abstract : Rapid and processive leading-strand DNA synthesis in the bacteriophage T4 system requires functional coupling between the helicase and the holoenzyme, consisting of the polymerase and trimeric clamp loaded by the clamp loader. We investigated the mechanism of this coupling on a DNA hairpin substrate manipulated by a magnetic trap. In stark contrast to the isolated enzymes, the coupled system synthesized DNA at the maximum rate without exhibiting fork regression or pauses. DNA synthesis and unwinding activities were coupled at low forces, but became uncoupled displaying separate activities at high forces or low dNTP concentration. We propose a collaborative model in which the helicase releases the fork regression pressure on the holoenzyme allowing it to adopt a processive polymerization conformation and the holoenzyme destabilizes the first few base pairs of the fork thereby increasing the efficiency of helicase unwinding. The model implies that both enzymes are localized at the fork, but does not require a specific interaction between them. The model quantitatively reproduces homologous and heterologous coupling results under various experimental conditions.
Mechanism of strand displacement synthesis by DNA replicative polymerases - Manosas, Maria and Spiering, Michelle M. and Ding, Fangyuan and Bensimon, David and Allemand, Jean-Francois and Benkovic, Stephen J. and Croquette, Vincent
NUCLEIC ACIDS RESEARCH 406174-6186 (2012)

Abstract : Replicative holoenzymes exhibit rapid and processive primer extension DNA synthesis, but inefficient strand displacement DNA synthesis. We investigated the bacteriophage T4 and T7 holoenzymes primer extension activity and strand displacement activity on a DNA hairpin substrate manipulated by a magnetic trap. Holoenzyme primer extension activity is moderately hindered by the applied force. In contrast, the strand displacement activity is strongly stimulated by the applied force; DNA polymerization is favoured at high force, while a processive exonuclease activity is triggered at low force. We propose that the DNA fork upstream of the holoenzyme generates a regression pressure which inhibits the polymerization-driven forward motion of the holoenzyme. The inhibition is generated by the distortion of the template strand within the polymerization active site thereby shifting the equilibrium to a DNA-protein exonuclease conformation. We conclude that stalling of the holoenzyme induced by the fork regression pressure is the basis for the inefficient strand displacement synthesis characteristic of replicative polymerases. The resulting processive exonuclease activity may be relevant in replisome disassembly to reset a stalled replication fork to a symmetrical situation. Our findings offer interesting applications for single-molecule DNA sequencing.
Active and passive mechanisms of helicases - Manosas, Maria and Xi, Xu Guang and Bensimon, David and Croquette, Vincent
NUCLEIC ACIDS RESEARCH 385518-5526 (2010)

Abstract : In this work, we discuss the active or passive character of helicases. In the past years, several studies have used the theoretical framework proposed by Betterton and Julicher [Betterton, M.D. and Julicher, F. (2005) Opening of nucleic-acid double strands by helicases: active versus passive opening. Phys. Rev. E, 71, 11904-11911.] to analyse the unwinding data and assess the mechanism of the helicase under study (active versus passive). However, this procedure has given rise to apparently contradictory interpretations: helicases exhibiting similar behaviour have been classified as both active and passive enzymes [Johnson, D.S., Bai, L. Smith, B.Y., Patel, S.S. and Wang, M.D. (2007) Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell, 129, 1299-1309; Lionnet, T., Spiering, M.M., Benkovic, S.J., Bensimon, D. and Croquette, V. (2007) Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism Proc. Natl Acid. Sci., 104, 19790-19795]. In this work, we show that when the helicase under study has not been previously well characterized (namely, if its step size and rate of slippage are unknown) a multi-parameter fit to the afore-mentioned model can indeed lead to contradictory interpretations. We thus propose to differentiate between active and passive helicases on the basis of the comparison between their observed translocation velocity on single-stranded nucleic acid and their unwinding rate of double-stranded nucleic acid (with various GC content and under different tensions). A threshold separating active from passive behaviour is proposed following an analysis of the reported activities of different helicases. We study and contrast the mechanism of two helicases that exemplify these two behaviours: active for the RecQ helicase and passive for the gp41 helicase.
The antiparallel loops in gal DNA - Lia, Giuseppe and Semsey, Szabolcs and Lewis, Dale E. A. and Adhya, Sankar and Bensimon, David and Dunlap, David and Finzi, Laura
NUCLEIC ACIDS RESEARCH 364204-4210 (2008)

Abstract : Interactions between proteins bound to distant sites along a DNA molecule require bending and twisting deformations in the intervening DNA. In certain systems, the sterically allowed proteinDNA and proteinprotein interactions are hypothesized to produce loops with distinct geometries that may also be thermodynamically and biologically distinct. For example, theoretical models of Gal repressor/HU-mediated DNA-looping suggest that the antiparallel DNA loops, A1 and A2, are thermodynamically quite different. They are also biologically different, since in experiments using DNA molecules engineered to form only one of the two loops, the A2 loop failed to repress in vitro transcription. Surprisingly, single molecule measurements show that both loop trajectories form and that they appear to be quite similar energetically and kinetically.