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We review some basic features of shear wave generation and energy balance for a 
2D antiplane rupture. We first study the energy balance for a flat fault, and for a fault 
that contains a single localized kink. We determine an exact expression for the parti-
tion between strain energy flow released from the elastic medium surrounding the 
fault, radiated energy flow and energy release rate. This balance depends only on the 
rupture speed and the residual stress intensity factor. When the fault contains a kink, 
the energy available for fracture is reduced so that the rupture speed is reduced. When 
rupture speed changes abruptly, the radiated energy flow also changes abruptly. As 
rupture propagates across the kink, a shear wave is emitted that has a displacement 
spectral content that decreases like w-2 at high frequencies. We then use spectral ele-
ments to model the propagation of an antiplane crack with a slip-weakening friction 
law. Since the rupture front in this case has a finite length scale, the wave emitted by 
the kink is smoothed at very high frequencies but its general behavior is similar to 
that predicted by the simple sharp crack model. A model of a crack that has several 
kinks and wanders around a mean rupture directions, shows that kinks reduce the 
rupture speed along the average rupture direction of the fault. Contrary to flat fault 
models, a fault with kinks produces high frequency waves that are emitted every time 
the rupture front turns at a kink. Finally, we discuss the applicability of the present 
results to a 3D rupture model. 

1. InTRoDuCTIon

Dozens of earthquakes have been modeled using kine-
matic or dynamic methods by the inversion of the seismic 

waves radiated by these events (see, e.g. Ide and Takeo, 
1997, olsen et al., 1997, Peyrat et al., 2001). Most of these 
inversions look for f lat source models because of either 
lack of resolution or for lack of knowledge of the geometry 
of faults. Many authors have recently used geological infor-
mation and advanced numerical methods to model rupture 
propagation on complex faults. Among others, three dimen-
sional effects were discussed by Harris and Day (1999) 
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and Harris et al. (2002) using finite differences,kame and 
Yamashita (2003), Aochi and Fukuyama (2002) and Aochi 
and Madariaga (2003) using boundary integral equations 
(BIE), and oglesby et al. (2003) and Duan and oglesby 
(2005) using finite elements (FE). In most of these studies 
the main objective was to understand rupture propaga-
tion in complex situations. In a recent study, Aochi and 
Madariaga (2003) computed the seismic wave field radi-
ated in the vicinity of the Izmit earthquake of 1999. They 
studied several models of the fault geometry for this event 
proposed by geologists, seismologists and geodesists. These 
models differed mainly in the degree of complexity of the 
fault geometry. They found that geometrical discontinuities 
have a profound effect on rupture propagation, decreasing 
rupture speed and generating strong seismic wave radia-
tion. It appears from this study that small scale geometry 
may play a significant role in energy balance and high 
frequency radiation by earthquakes. 

Recently, in an effort to understand how ruptures interact 
with fault kinks of arbitrary angles, Polyakov et al. (2002) 
and kame et al. (2003) studied in detail the effects of 
kinks of different angles on the rupture propagation of 2D 
faults. In a series of experiments Rosakis et al. (1999) and 
Rousseau and Rosakis (2003) studied ruptures propagating 
along flat and kinked interfaces at sub Rayleigh and inter-
sonic speeds. What is still lacking in some of these studies 
is a detailed analysis of seismic wave radiation and energy 
balance. In a series of recent papers (Adda-Bedia and Arias, 
2003, Adda-Bedia, 2004 and Adda-Bedia and Madariaga, 
2006) solved the problem of the propagation of an antiplane 
rupture on a fault with a kink (see Figure 1). 

The aim of the present paper is to study a simple 2D 
model of antiplane rupture and analyze its energy balance 
and seismic radiation. We first recall some well-estab-
lished results about seismic energy balance of crack prop-
agation and seismic wave radiation. We show that strong 
radiation of the w-2 type occurs when rupture changes 
velocity abruptly, whether a change in rupture speed 
on f lat faults or a change in rupture direction at kinks 
or other discontinuities. These results are established 
analytically for a sharp antiplane crack model turning 
along a single kink but they can be extended to 3D using 
ray methods (Madariaga, 1977, Bernard and Madariaga, 
1984). In particular, we derive the exact energy balance 
for this model in terms of energy density per unit crack 
advance, extending the results of Husseini and Randall 
(1976). We then introduce a numerical model of a fault 
kink with slip-weakening friction solved by the spectral 
element method proposed by komatisch et al. (1998) and 
Ampuero (2002). We verify that most of the features pre-
dicted by the simple crack model appear in the numerical 

model, most notably the existence of a kink wave emitted 
when the rupture front turns at the kink. Finally we model 
with spectral elements a rupture that propagates along 
a fault containing a series of kinks with the purpose of 
simulating a fault that possesses small scale geometrical 
complexity. 

2. RADIATIon FRoM kInEMATIC AnD DYnAMIC 
RuPTuRE MoDElS: DISloCATIonS AnD CRACkS

The most frequently used model of seismic radiation 
from earthquakes is a dislocation of variable amplitude 
that propagates at more or less constant rupture speed. 
This model, usually called kinematic, has the advantage of 
simplicity and provides a simple way to pose the inverse 
problem of finding the rupture process of an earthquake 
as a function of time. In general, unfortunately, kinematic 
models contain a potentially serious problem: unless slip 
is properly tapered, stresses near the rupture front will be 
arbitrarily singular and even the continuity of matter may 
be violated. let us briefly explain the difficulty: consider 
a simple dislocation that propagates at constant speed with 
constant slip. The material on both sides of the fault is 
homogeneous. We assume that slip as a function of position 
x and time t is given by 

 D x y t D H x H x L H t X vi r( ) [ ( ) ( )] ( ), = , = − − − /0 0  (1)

where i indicates the in-plane (i = x) or anti-plane (i = z) 
component of slip and H denotes the Heaviside step func-
tion. This is a constant slip that extends at time t  from x = 
0 to x = vrt. Radiation from this running dislocation model 
can be fully computed using classical representation theorem 
techniques (see e.g. chapter 10 of Aki and Richards, 2002). 
unfortunately this dislocation model has fundamental flaw: 

Figure 1. Geometry of the antiplane fault model with a kink. At 
x = 0 the fault changes direction to an angle ψ. We discuss radiation 
from the kink, and the energy balance of the rupture front.
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the amount of energy that flows into the rupture front per 
unit advance of the dislocation is unbounded. The reason 
is that slip is discontinuous at the rupture front. This pro-
duces interpenetration of matter at the rupture front and is 
mechanically inadmissible. This of course does not invali-
date their use at lower frequencies where energy balance is 
a secondary consideration. 

A better model that avoids interpenetration is to assume 
that near the rupture front slip is continuous. Very general 
consideration about energy balance discussed by kostrov 
(1964) and Eshelby (1969) among many others show that if 
slip has a discontinuity of the type 

 D x y t v t x H v t xi r r( ) ( ) ( ), = , − −0 

λ  (2)

behind the rupture front, the energy f low into the crack 
front is infinite for λ < /1 2  and zero for λ < /1 2 . Finite 
energy flow into the rupture front occurs only for the very 
particular value of λ=1/2. This choice fully defines the form 
of the singularities of stresses and particle velocities near 
the rupture front, and as a consequence the energy release 
rate. Actual rupture fronts are of course not truly singular as 
expected from (2) because the singularity will be distributed 
by the friction law that controls slip between the two walls of 
the fault. The approximation (2) is expected to be valid for 
wavelengths that are longer than the size of the end zone, or 
cohesive zone, behind the rupture front. 

2.1. Rupture Dynamics of a Flat Fault and its Seismic 
Radiation 

let us recall a few well established results about 2D earth-
quake dynamics. The radiated field from an antiplane crack 
moving arbitrarily at subshear speed along a flat fault was 
solved exactly by Madariaga (1983). Without loss of gener-
ality we consider the simpler problem of an antiplane crack 
running at constant speed vr along the fault. Ahead of the 
crack front, located at position x = vrt at time t, stresses have 
an inverse square root singularity of the form 

 σ
πzy
d

r
rx y t

K
x v t

for x v t( ), = , =
−

>0
2

1
 (3)

where Kd is the dynamic stress intensity factor, a quantity 
with dimensions of stress times the square root of a length 
that measures the driving stress that makes the crack move. 
The dynamic stress intensity factor can always be factored 
into the two terms: 

 Kd = k(vr)K* (4)

where k v vr r( ) = − /1 β . The second term (K*) is the resid-
ual stress intensity factor, that is the stress intensity that 
would prevail on the crack tip if the rupture speed vr were 
to suddenly drop to zero. In the most of the problems we are 
going to consider in the following K* = Ko, the static stress 
intensity factor. 

Associated with the singular stress field ahead of the crack 
front, there is a slip velocity singularity of the same order 
behind the rupture front: 

  (5)

and zero otherwise. Slip has the typical square root behavior 
behind the crack tip: 

  (6)

and is zero outside the crack (x > vrt). 
The full particle velocity field produced by an antiplane 

rupture front moving at constant speed is very well known, 
see e.g. chapter 10 of Aki and Richards (2002). For an 
observer at position (x, y, t) the antiplane particle velocity 
is given by 
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(7)

where γ β= − /1 2 2vr  is the lorenz contraction factor. This 
expression can not be used directly to study energy balance 
because the it does not explicitly identify the point on the 
fault that emits the radiation that reaches the observer at 
time t. We can find that point using ray tracing. let us call 
retarded time t the instant of time when the crack emits the 
wave (7). As follows from Figure 2, at time t the rupture 
front is located at x = vrt, where t is the solution of 

 β τ τ( ) ( )t x v yr− = − +2 2  (8)

We can solve this equation and find 

 β τ
β γ γ

γ( ) ( )t
v x v t

x v t yr r
r− =

−
± − +2 2

2 2 21
 (9)

using this expression we can rewrite (7) in the more usual 
form: 

Fig. 2Fig. 2
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Where r x v yr= − +( )τ 2 2  and θ are the cylindrical coordi-
nates drawn around the rupture front as shown in figure 2. 

2.2. Energy Balance During Crack Propagation

We can now easily compute the energy radiated by a fault 
element situated at point vrt on the fault. For this purpose we 
compute the energy that crosses a circle of arbitrary radius r 
centered on this point of the fault (see Figure 2). 

 
dE x

dx
e x u r dt

dx
r dR

R
( )

( ) ( )= = ,∫0

2 2π
ρβ θ θ


 

Following Adda-Bedia and Madariaga (2006), this integral is 
independent of the radius r and it can be computed exactly: 

 e x
K

A vR r( ) [ ( )]= −∗
2

2
1

µ
 (11)

where the factor 

 A v
v
vr

r

r
( ) =

− /
+ /

1
1

β
β

 (12)

is the effect of directivity on energy absorption. K* is the 
residual stress intensity defined in (4). In (11) we used the 

standard convention that energy densities are represented 
by lower case letters. let us remark that in computing (11) 
we did not use any of the classical integral expressions for 
energy balance due to kostrov (1964) and others. The radi-
ated energy density eR was computed here for a crack running 
at constant rupture speed. It is valid however for arbitrary 
rupture histories as long as the local rupture velocity vr is 
known. (11) shows that radiated energy depends only on the 
residual stress intensity factor and the instantaneous rupture 
speed. The history of rupture appears through K*. 

The radiated energy (11) must be compared with the 
energy absorbed per unit length of crack advance, energy 
release rate, that is given by: 

 G v
K

A vr r( ) ( )= ∗
2

2µ
 (13)

From simple energy balance considerations, the radiated 
energy per unit crack advance must be the difference between 
the elastic strain energy released by the body and the energy 
release rate required to propagate the rupture front by a unit 
length. There are no other sources nor sinks of energy in 
this problem. It is well known from Griffith theory in static 
crack problems that the total energy release per unit crack 
extension is just the energy release rate for a crack that grows 
infinitely slowly, i.e. with vr → 0 : 

 e
K

T = ∗
2

2µ
 (14)

which is independent of the current rupture speed. We 
observe that according to classical fracture mechanics the 
strain energy release density is just the quasistatic energy 
release (i.e. as vr → 0 ): 

 e G vT r= =( )0  (15)

Thus we can write the fundamental energy balance equation 

 e v e G v G G vR r T r r( ) ( ) ( ) ( )= − = −0  (16)

using (13) we verify that the radiated energy density 
is the same as that computed directly from the radiated 
field (11). 

This surprisingly simple expression is exact for our prob-
lem where the process zone at the rupture front reduces to a 
point and there is no healing behind the rupture. Compared 
to the more general energy balance equation proposed by 
kostrov (1974), we have neglected the term due to radia-

Figure 2. Radiation from a moving antiplane rupture front. The 
velocity field and the energy flow observed at point (x, y) at time t 
comes from a well defined fault element. The posiiton of this ele-
ment can be computed by the retarded time equation (8).  
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tion pressure sometimes called the kostrov term. Equation 
(16) was first derived by Husseini and Randall (1976) in an 
integral form over the entire fault plane. Here we derived it 
as the local balance of energy flow. 

The energy balance equation ( 16) was determined for the 
particular case of a semi-infinite crack where the residual rup-
ture speed stress intensity factor K* was considered a constant. 
The equation is much more general as long as K* is computed 
exactly for more general rupture histories. Several properties 
of equation (16) are interesting for understanding energy bal-
ance in earthquakes. Most authors, like Rivera and kanamori 
(2005) write an energy balance equation for the entire fault 
as did Husseini and Randall (1976). our expression (16) pro-
vides a detailed balance of energy flow as the rupture front 
advances with speed vr. There is no contradiction between the 
two ways of looking at energy balance, because the residual 
stress intensity factor K* contains non-local information about 
stress drop at other places on the fault. Actually the energy 
release density eT knows about stress drop at all already broken 
parts of the fault. 

2.3. High Frequency Radiation From a Rupture Velocity 
Jump

The energy balance equation (16) is strictly valid for a 
rupture propagating at a steady rate. It does not yet explain 
high frequency radiation because if the rupture moves at 
constant speed it produces a smooth elastodynamic field. 
In order to apply it to high frequency radiation we have to 
generalize the expression (10) to rapid changes in rupture 
speed. We can do this very easily because, as shown initially 
by Eshelby (1969) and proved later in a more general way 
by Madariaga (1983), equation (10) completely describes the 
field radiated by a crack propagating at variable speed. The 
only change that is required is to interpret ( )t v tr=  as the 
retarded position on the fault of the point that is illuminating 
the current position (x, y, t) in space and time. This point can 
easily be found using ray theory. 

let us assume that the rupture speed changes abruptly 
at position x = 0 and time t = 0, jumping from a speed v1 
to another speed v2. Clearly the field radiated before the 
change in speed is given by (10) replacing vr = v1. When 
rupture velocity changes to v2, the particle velocity field 
adjust immediately and is now given by the same equation 
(10), but with vr = v2. The sudden change in particle velocity 
field occurs at the wave front r x z t= + =2 2 β  emitted from 
the point where rupture speed changed abruptly. Across 
the wave front the particle velocity has an abrupt change in 
amplitude that is given exactly by 

 (17)

where r,θ are cylindrical coordinates centered at the origin 
of coordinates. In the frequency domain, this velocity jump 
appears as a velocity spectrum decreasing like w-1 or a dis-
placement spectrum decreasing like w-2. This is the behavior 
predicted by Brune’s model of radiation. The velocity change 
phases behave just like the stopping phases that are known 
to produce the w-2 radiation from a circular crack model. 
let us remark that there can be no higher order radiation 
from a dynamic earthquake model. The w-2 behavior in 
frequency (velocity jump in time domain) is the strongest 
high frequency phase that can be radiated. 

3. RuPTuRE FRonT DYnAMICS FoR An 
AnTIPlAnE FAulT WITH A kInk

The flat fault model provides a simple explanation for 
the origin of velocity jump pulses that have the typical w-2 
decay of the displacement spectrum. For a flat fault such 
waves can be generated when the crack starts or suddenly 
stops, or when it abruptly changes rupture velocity as it hits 
obstacles along the fault. We propose that a simple origin for 
such obstacles is the geometry of the fault. Fault step-overs, 
discontinuities and kinks are typical obstacles that may 
produce strong seismic radiation. In this section we study 
the effect of a single kink on an antiplane fault. We expect, 
that with moderate change, the effect of other geometrical 
features on rupture will be very similar to those of kinks. 
Rupture propagation across a kink was solved analytically 
by Adda-Bedia and Arias (2003), and Adda-Bedia (2004). 
Adda-Bedia and Madariaga (2006) who computed the full 
elastodynamic field around the crack. Here we discuss the 
principal results which can be understood without reference 
to the details of the method used to find the full solution. 

let us consider as in Figure 1 an antiplane fault that has 
a kink of angle ψ = λπ at the origin (x = 0, y = 0). As for 
the flat fault, the elastic medium surrounding the fault is 
uniform. Before reaching the kink at time t = 0, the fault 
was running at constant rupture speed v1. The particle veloc-
ity field radiated by the crack before it reaches the kink is 
given by (7) with vr = v1. once the crack reaches the kink, 
its rupture velocity suddenly changes to v2 because the stress 
intensity seen by the kink is less than the stress intensity 
along the initial fault. 

As shown by Adda-Bedia (2004), when the rupture front 
turns at the kink the dynamic stress intensity factor changes 
abruptly to 

 K v k v H v Kd ( ) ( ) ( )ψ ψ, ≡ , ∗2 2 33 2  (18)

where K* is the residual stress intensity of the rupture 
front before it hits the kink, and H v33 2( )ψ,  is a factor that 

FIRST FIG. 1 REFERENCEFIRST FIG. 1 REFERENCE
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depends only on the kink angle and the rupture velocity after 
the kink, v2. It is quite complex, but it can be computed by 
the methods proposed by Adda-Bedia and Madariaga (2006). 
It is convenient to express H33 in terms of its static value 
H33 0( )ψ, . This factor is known from the static solution for 
an antiplane kink (Sih, 1965), 

 H v33 2 0
2

( )ψ
π ψ
π ψ

ψ
π

, → =
−
+







.  (19)

In Fig. 3, the function H v Hr33 33 0( ) ( )ψ β ψ, / / ,  is plotted as 
a function of the kink angle λ ψ π= / , for several values of 
the rupture speed vr. We observe that for low rupture speeds, 
(19) provides a very good approximation for H33. H33(ψ, 0) is 
equal to 1 for ψ = 0, and it is a decreasing function of ψ. For 
small kink angles we can approximate H33

2 20 1( )ψ ψ π, − /  
so that, as could be expected for symmetry reasons, the reduc-
tion in stress intensity is quadratic in angle ψ. Thus, at least for 
relatively low rupture speeds, we expect that the stress inten-
sity factor drops instantly when rupture turns at the kink. 

The energy release rate can be computed from the dynamic 
stress intensity factor (18) 

 G v A v
K

H vr r r( ) ( ) ( )= ,∗
2

33
2

2µ
ψ  (20)

where A(vr) is the universal function given in (12). This expres-
sion should be compared to that of the energy release rate before 
the kink (13). Thus the energy release rate after the kink depends 
both on the intrinsic factor H33, which itself depend mildly on 
rupture speed as shown in Fig. 3, and on the rupture velocity 
factor A(vr) which decreases from 1 at vr = 0 to 0 when vr → 

β. It is clear from (18) that when rupture crosses the kink, the 
energy release rate will in general change abruptly, which will 
produce a concomitant jump in rupture speed. The only case in 
which rupture velocity may not change, occurs when the energy 
absorbed by rupture on both sides of the kink perfectly matches 
the change in energy release rate (18). 

3.1. Seismic Waves Radiated by the Kink

The full particle velocity field radiated by the kink was 
computed semi-analytically by Adda-Bedia and Madariaga 
(2006). Just like high frequency radiation from a sudden 
jump in rupture propagation can be computed as the dif-
ference between a starting and a stopping phase, the high 
frequency waves radiated by the kink can be computed by 
the difference of two terms: a first term due to radiation 
from the starting phase of the kink and a second term due 
to the stopping phase produced by a sudden arrest of the 
fault. When the crack propagating along the negative x axis 
with speed v1 reaches the kink, it emits a strong stopping 
phase: 

	 zu r t
K

r
v

v
H t r


( ) sin( )

( ) cos
( ), , = −

/
− /

− / .∗θ
µ π

θ
β θ

β
2

2
11

1
 (21)

This stopping phase is immediately followed by a starting 
phase due to propagation along the kink. This wave has 
the same wavefront r = βt as the previous wave (21) but its 
amplitude quite complex. Adda-Bedia and Madariaga (2006) 
showed that the shear wave emitted when the crack starts to 
move along the kink is: 

 zu r t
K

r
v R v H t r


( ) ( ) ( ), , = , , − /∗θ

µ π
θ ψ β

2 2 2  (22)

where v2 is the rupture speed after the rupture front interacts 
with the kink, R v( )θ ψ, , 2  is a radiation pattern that replaces 
the sin θ/2  and the directivity terms in (21) Because the two 
phases (21) and (22) have different amplitudes, the rupture 
front has a jump in particle velocity. Its time Fourier trans-
form has the same form as (22), except that H t r( )− /β  is 
replaced by ( ) ( )i exp i rω ω β− − /1 . The corresponding displace-
ment has the typical w-2 high frequency behavior. Thus radi-
ation from a kink behaves just like a stopping phase and may 
explain radiation from earthquakes (Madariaga, 1977). 

3.2. Energy Balance at the Kink

The problem of energy balance can be also be solved 
exactly for the antiplane fault with a kink in the same way as 

Fig. 3Fig. 3

Figure 3. Plot of the function H v Hr33 33 0( ) ( )λ β λ, / / ,  as a function 
of the kink angle for some values of the crack tip speed just after 
the kink. note that for λ → 0  , H33 reduces to the corresponding 
elastostatic result given by Eq. (19).
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it was solved earlier for a flat fault. Before the crack reaches 
the kink it emits seismic wave energy at a rate given by 

 e A v
K

R
1

1

2
1

2
= − ∗( ( ))

µ
 (23)

and once it moves into the kink the radiated energy per unit 
crack advance changes to 

 e A v
K

H vR
2

2

2

33
2

21
2

= − ,∗[ ( )] ( )
µ

ψ  (24)

where H33 was defined earlier (18), see Figure 4. It is impor-
tant to realize that the radiated energy after the rupture has 
turned at the kink is not determined only by the factor (1 - 
A(vr))  as in flat cracks, but also by a factor H33 that depends 
on rupture speed and angle. For small rupture speeds we 
expect that H33 becomes independent of rupture speed. 

4. nuMERICAl MoDElInG oF FAulT kInkS

In the previous sections we established a detailed energy 
balance equation for a sharp crack running at variable 
speed along a fault that contains a kink. We also examined 
the waves radiated by the kink We will now examine the 
properties of a kink on a fault where rupture is controlled 
by a friction law that contains a finite process zone. let 
us consider for that purpose the kink shown in Figure 1. 
Seismic wave propagation with frictional boundary con-
ditions was modeled using the spectral element method 
proposed by komatisch and Vilotte (1998) with the split-
node crack boundary conditions developed by Ampuero 
(2002), following Andrews (1999). Details of the numerical 
technique can be found in those publications, the particu-
lar program we used is publicly available in Ampuero’s 
(2005) web site. For the numerical computation we divide 
the rectangular elastic medium into a mesh of structured 
quadrangular elements as shown in Figure 5. The elastic 
displacement field inside each quadrangular element was Fig. 5Fig. 5

Figure 4. Variation of radiated energy flow as a function of position along the fault. Before and after the kink the fault 
generates constant energy fluxes labelled e1 and e2, respectively. When rupture turns at the kink it produces a wave 
front that separates an external region where radiated energy comes from the flat segment of the fault from the stippled 
region where energy flux comes from the tilted segment of the fault. High frequency radiation occurs because energy 
flow changes abruptly across the wave front emitted from the kink, this is what we call a kink phase. 
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interpolated by a degree 7 lagrange polynomial and inte-
gration was computed at 8x8 Gauss-lobato points inside 
each element. The elastic medium was assumed to be uni-
form with elastic properties (r = 2670 kg/m3, β = 3464 
km/s). The fault contains a kink of angle ψ. We chose 20 
degrees for the particular example of Figure 5. The total 
size of the grid is 20x20 km, with a grid spacing of 800 m in 
the horizontal direction and variable spacing in the vertical 
one. The maximum distance between Gauss-lobato points 
was 276.2 m and the minimum was 35.79 m. The spectral 
element equations were solved by a predictor corrector time 
marching scheme based on the newmark’s method. In our 
simulations we used a = 1, β = 1/2 and γ = 1 as suggested 
by Festa and Vilotte (personal communication, 2006). The 
time step was chosen so that the maximum value of the 
CFl parameter for the simulation was exactly 0.5. For the 
particular case of the mesh shown in Fig. 5 the time step 
was Dt = 0.005167 s. 

The boundary conditions on the fault are as follows. Before 
the rupture starts we assume that a uniform antiplane stress 
field σyz = 70 MPa acts on the entire elastic medium. This is 
the initial stress on the flat part of the fault; along the kink 
the initial shear stress is σ σ ψyt yt

0 65 52= ∗ = .cos  MPa. on 
the fault we apply a uniform slip weakening friction law: 

 σ yt d u d
c

cT T T D
D

for D D= + − <( )  (25)

 = Td  for  D > Dc (26)

once the fault begins to slip. Since antiplane faults do not 
produce changes in normal stress there is no coupling 
between normal and tangential stresses. In the compu-
tations shown here we assumed Tu = 80 MPa, Td = 63 
MPa,  Dc = 0.5 m. Thus, complete stress drop on the 
horizontal segment of the fault is ∆ =σ 7  MPa and 2.52 
MPa on the kinked segment. In order to start rupture 
we introduce a small zone of the fault where the initial 
stress σ yt

0
 was increased to 88 MPa, that is larger than 

Tu. These numerical values were taken from the SCEC 
blind test for earthquake dynamics codes (Harris and 
Archuleta, 2004). 

4.1. Results of Numerical Modeling for a Single Kink

In Plate 1 we show the elastodynamic field around the 
fault produced by the propagation of rupture. Each row 
in this Figure shows particle velocities and stresses at 
regular intervals in time. The columns show, from the 
left, particle velocities and the two relevant components of 
stress. Before the rupture hits the kink the elastodynamic 
field shows all the usual features expected for antiplane 
cracks. Stress σzy is the shear stress acting on the fault. It 
drops from its initial value to the kinematic friction level 
on a broad zone around the fault. Particle velocity on the 
first row is clearly divided into an upper positive zone 

zu  above the fault and a negative one below it. Velocity 
and shear stress concentrations are clearly visible near 
the rupture front. Finally shear stress on vertical planes, 
σzx shows a typical quadrantal distribution centered on 
the initial asperity. 

once the rupture hits the corner of the kink, the velocity 
and stress fields change substantially. The most important 
feature is the cylindrical (we are in 2D) wave front that 
propagates away from the corner at the shear wave speed. 
This wave front is clearly observed in both particle veloci-
ties and stress components as predicted by our analytical 
approximation of a sharp crack without slip weakening. 
Thus in spite of the smoothing produced by the slip weak-
ening friction law we observe a clear shear wave. near the 
rupture front along the kink, we observe the white spots 
that represent the strong velocity and stress concentrations 
that drive the fault along this segment. We conclude that 
a numerical model of the kink produces results that are 
in broad qualitative agreement with the sharp shear crack 
model studied by Adda-Bedia and Madariaga (2006). 
Direct comparison between numerical and analytical 
models is not possible because we can not model a sharp 
crack numerically. 

Plate 1Plate 1

Figure 5. The spectral element grid used to model rupture propa-
gation along a fault containing a kink at the origin. The fault is 
figured by the thick continuous line. Rupture propagates spontane-
ously under the control of a slip weakening friction law. 
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Plate 1. numerical simulation of rupture propagation along the fault shown in Figure 5. The Figure shows velocity zu  
(left) and the stress fields σzy and σzx (middle and right) at three successive instants of time. on the top line the elasto-
dynamic fields at the instant when rupture reaches the kink. The following rows show the fields at two instants of time 
after the rupture propagated beyond the kink.  
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5. A FAulT MoDEl WITH A GEoMETRICAllY 
CoMPlEx FAulT

The initial motivation for the present work was the obser-
vation by Aochi and Madariaga (2003) that a simple modi-
fication of the fault geometry of the Izmit earthquake could 
produce vastly different ruptures. If the fault was modeled 
with a single smooth fault surface, rupture propagated very 
rapidly along the fault reaching super-shear speeds. Adding 
a small amount of geometrical discontinuities (kinks) to the 
fault, as suggested by many geological and geodetic studies 
of the Izmit earthquake, reduced rupture speed substantially, 
but the most curious phenomenon we observed was that 
kinks generated seismic waves that looked like seismic noise. 
The Izmit model studied by Aochi and Madariaga (2003) was 
a 3D fault solved using a combination of boundary integral 
equations for modeling the rupture process and finite differ-
ences for the computation of the wave field around the fault. 
In this section we study a less ambitious model, an antiplane 
fault with the geometry shown in Fig. 6. The fault is flat from 
a long wavelength perspective, but it is geometrically com-
plex at the smaller scale. We envision this model as a generic 
model for more geometrical complexities in faults. 

In Fig. 6 we show the geometry of the fault embedded in a 
uniform isotropic elastic medium that we study numerically 
by the spectral element method. The rectangular box is 30 

by 20 km long and the grid used to simulate wave propaga-
tion with spectral elements is highly structured with equal 
griding of 800 m in the horizontal direction and variable grid 
spacing in the vertical one. All elements are quadangular 
and, contrary to most automatic mesh generators all corners 
of the grid have exactly four neighboring elements. This is 
essential for accurate modeling of the fault dynamics. All 
other parameters are the same as for the single kink. As 
before, a uniform initial shear stress field σ zy = 70  MPa 
was assumed. The initial shear stress on every segment of 
the fault was computed by projection of this stress field using 
σ σ ψzt zy i= cos , where ψ i  is the angle with respect to the 
horizontal of each of the fault segments. 

Plate 2 shows the field radiated by the complex fault at 
three equally spaced instants of time. Each row represents 
an instant of time and the columns are, particle velocity ( zu ) 
and stresses (σzy and σzx). The kink phases emitted from the 
fault each time that the rupture front turns at a kink are clearly 
observed in all three field components. Although these kink 
phases are smoothed by the slip weakening friction law with 
respect to those computed earlier for the sharp fault, they still 
are characterized by a sharp change in particle velocity and 
shear stresses. Such waves behave at high frequencies as step 
functions in velocity and, therefore, as w-2 in displacement 
spectra. Thus as the rupture advances it intermittently emits 
kink phases that contribute to seismic radiation at high fre-

Fig. 6Fig. 6

Plate 2Plate 2

Figure 6. The spectral element grid used to model antiplane rupture propagation along a fault containing several kinks. The 
fault is figured by the thick continuous line. The seismograms shown in Figure 7 were computed along the receiver line.
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quencies. This is clear in the synthetic seismograms plotted 
in Figure 7. These seismograms were computed along a line 
parallel to the average strike of the fault, situated 10 km away 
from it as shown in Figure 6. The seismograms are dominated 
by the kink phases emitted by the propagation of the rupture 
front along the complex fault. Each of these phases has the 
velocity jump predicted from the simple kink model of previ-
ous section. The jumps are smoothed by the finite slip-weak-
ening distance of the friction law used in the simulation. 

Another important feature of this model is that the kinks 
along the fault produce a significant drop in apparent rupture 
speed. In plate 3 we plot slip and shear stress on the fault as 
a function of horizontal distance along the centerline of the 
fault. The rupture front slowness observed in both figures 
increases rapidly once the rupture front enters the zone with 
kinks. This increase in slowness, means that the apparent 
rupture speed in the direction of the axis x has decreased 
due to energy loss due to the combined effect of a decrease 
in stress concentration that occurs when the crack turns at 
the kink, but also by the energy radiated by kink waves. The 
reduction in true speed, the rupture front speed along each 
segment of the fault, is even more pronounced. Thus, as 
noticed by Aochi and Madariaga (2003) in their simulations 
of the Izmit earthquake, the combined effect of geometrical 
discontinuities is to reduce rupture speed and produced 
enhanced seismic radiation. 

6. DISCuSSIon AnD ConCluSIonS

We have established a detailed energy balance equation 
for an antiplane crack containing either barriers or geo-
metrical obstacles like a simple kink. The results can be 
extended to more complex faults containing large numbers 
of kinks, barriers and other geometrical discontinuities. In 
this simple 2D model the ratio of radiated energy to energy 
release rate is entirely determined by the local rupture 
velocity and the residual stress concentration K*. This may 
appear as an apparent violation of Rivera and kanamori 
(2005), but it is not because K* contains information about 
strain energy release in the rest of the elastic body. We 
emphasize again that our statements concern energy flow 
not total radiated energy. 

The energy balance equation (16) can be extended to 
flat faults in mode II for ruptures running at sub-Rayleigh 
speeds. The expressions for the effects of rupture veloc-
ity are slightly more involved than in the present case, 
because A(vr) (see, e.g. Freund, 1990 chapter 5) is very 
complex. For mode II cracks running at supershear speeds 
we expect that the energy balance will be very complex 
and needs to be investigated. For kinks in mode II there is 
no theoretical results similar to those of Adda Bedia and 
Madariaga (2006). We expect however that a running mode 
II fault hitting a kink will produce mixed mode ruptures 

Fig. 7Fig. 7

Plate 3Plate 3

Figure 7. Seismograms computed along the receiver line shown in Figure 6. These seismograms show particle velocity 
as a function of position along the receiver line and time. We observe multiple kink phases emitted from each of the 
corners of the fault of Figure 6. 
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Plate 2. numerical simulation of rupture propagation along the fault shown in Figure 6. The Figure shows velocity zu  
(right) and the stress fields σzy and σzy (middle and left ) at three successive instants of time.  

Plate 3. numerical simulation of rupture propagation along the fault shown in Figure 6. The Figure on the top shows 
slip as a function of position along the fault and time. The bottom pircture shows the corresponding stress field. The 
short yellow line shows the slope of a wave propagating at the shear wave speed. Rupture speed reduces significantly 
once the fault propagates beyond the beginning of zone of complex geometry.  
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unless the confining stresses are large enough as shown 
by preliminary results by Festa and Vilotte (personal com-
munication, 2006). 

For 3D problems the equation of energy flow balance (16) 
still applies locally as long as the curvature of the rupture 
front is small. From simple geometrical arguments pre-
sented by Madariaga (1977) we expect that a local energy 
balance equation can be established in 3D for a rupture 
front that stops, or changes speed, synchronously in its 
entire length. In that case the velocity field (10) will be 
multiplied by a factor 

 
R

R R
κ

κ+
 (27)

where R is the distance to the rupture front and Rk is the radius 
of curvature of the rupture front. For small distances, less that 
Rk, the factor tends to 1 and we have basically a 2D problem. 
For large R, on the other hand, the factor tends to R Rκ / , so 
that geometrical spreading in (10) will become of order R-1 
as expected for three dimensional sources. For more general 
rupture problems where the rupture front has a different cur-
vature from the barrier, it is still possible to get simple expres-
sions for radiation using the isochrone method of Bernard 
and Madariaga (1984). It is very likely, however, that in three 
dimensional problems, the assumption that friction remains 
constant behind the rupture front is no longer valid. Healing, 
either spontaneous or due to the effect of lateral boundaries of 
the fault will reduce the available strain energy. 

We showed that for 2D faulting, high frequency radiation 
is intimately connected to detailed energy balance, the way 
energy is partitioned near the rupture front as it propagates 
along preexisting faults. We found that for an antiplane fault 
the high frequency waves are emitted by changes in rupture 
speed. Either changes in speed for flat faults, or changes in 
the direction of rupture propagation for faults that contain 
kinks and other discontinuities. When faults contain kinks, 
energy balance and rupture velocity adjusts instantaneously 
as the rupture crosses the cusp of the kink. At the same time 
cylindrical shear wave is emitted. This wave front produces 
a jump in particle velocity, with a concomitant change in 
radial stresses. Such waves have a spectral decay of w-1 in 
particle velocity, or w-2 in displacement. The agreement 
with observed spectra of many earthquakes is interesting. 
This is then a potential candidate for the origin of high fre-
quency seismic waves radiated by earthquakes. Even if it is 
not possible at present to establish full 3D energy balance 
equations, it is very likely that kinks in 3D will also produce 
w-2-like radiation. This is because the rupture front will very 
likely interact with kinks such that the apparent rupture 
speed of the crack will very often be supersonic along the 

edge of the kink producing again w-2 waves as discussed by 
Bernard and Madariaga (1984). numerical modeling in 3D 
is currently in progress in order to better understand energy 
balance in 3D. 

We also modeled numerically a fault containing a series of 
geometrical discontinuities (kinks). The main effect of the 
kinks is to slow down rupture significantly. Although we 
still have to do more general models of fault complexity and 
analyze them statistically, our results indicate that apparent 
rupture speed for complex faults must be carefully inter-
preted. In particular, estimates of energy release rate made 
from flat fault models and constant rupture speed, may be 
contaminated by the effects of energy lost as radiated waves. 
our results also show that as ruptures propagate crossing 
kinks and other geometrical discontinuities, they emit high 
frequency waves that may be very difficult to model with 
deterministic models. 
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