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Abstract

The problem of a steady-state slip pulse of (nite size between dissimilar materials is studied. It
is shown that for a Coulomb friction law, there is a continuous set of possible solutions for any
slip propagation velocity and any slip length. These solutions are, however, nonphysical because
they show a singular behaviour of the slip velocity at one extremity of the pulse, which implies a
crack-like behaviour. In order to regularize these solutions, we introduce a modi(ed friction law
due to Prakash and Clifton (Experimental Techniques in the Dynamics of Deformable Solids,
Vol. AMD-165, pp. 33–48; J. Tribol. 120 (1998) 97), which consists in introducing in the
Coulomb friction law a relaxation time for the response of the shear stress to a sudden variation
of the normal stress. Then, we show that even for a slip velocity-dependent characteristic time,
the degeneracy of the solutions is not suppressed and a physical pulse is not selected. This
result shows the absence of steady state self-healing pulses within the modi(ed friction law and
is consistent with recent (nite-di;erence calculations (J. Geophys. Res. 107 (2002) 10).
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Ruptures in fault zones separating dissimilar materials may provide a naturally uni-
(ed explanation to some fundamental observations on earthquake and fault behaviour
(Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998; Ben-Zion and Huang,
2002; Cochard and Rice, 2000). E;ectively, there is a number of problems that are
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not completely explained in terms of ruptures in a homogeneous solid and that might
be related to ruptures along bi-material interfaces. The interest of bi-material studies
in seismology is reinforced by the fact that many earthquakes seem to have rise times
much shorter than would be expected from classical crack models (Heaton, 1990). Fur-
thermore, processes induced by heterogeneous fault zones allow earthquake ruptures to
propagate at shear stresses which are low compared to friction threshold. This provides
a possible explanation to the apparent lack of observed heat Fow from some major
faults (Lachenbruch and Sass, 1992). See the introduction of Andrews and Ben-Zion
(Ben-Zion and Andrews, 1998) and of Cochard and Rice (2000) for a thorough dis-
cussion of other involved issues.
Weertman (1980) has shown that a coupling between slip and normal stress exists

in a frictional interface between dissimilar materials. He concluded that a self-healing
pulse can propagate along the frictional interface between dissimilar elastic solids,
even when the remote shear stress is less than the frictional stress of the interface.
A family of steady-state pulses at a bi-material interface under Coulomb friction law
has been computed by Adams (1995, 1998, 2001). However, he has also shown that
these solutions are often linearly unstable (Adams, 1995). Ranjith and Rice (2001) have
shown a connection between the existence of the generalized Rayleigh wave speed and
the ill-posed nature of the problem. When the material pair is such that the generalized
Rayleigh wave speed is de(ned, the problem is ill-posed for any value of the friction
coeGcient, whereas when it is not de(ned the problem remains ill-posed for values of
the friction coeGcient larger than a critical value.
In a numerical study, Andrews and Ben-Zion (Andrews and Ben-Zion, 1997;

Ben-Zion and Andrews, 1998) examined wrinkle like propagation using Coulomb fric-
tion law, and encountered numerical problems. Cochard and Rice (2000) found that
the Adams instability was responsible for those numerical problems: the cases stud-
ied by Andrews and Ben-Zion fall precisely in the range in which the generalized
Rayleigh wave speed is de(ned, and are thus certainly ill-posed. In order to regularize
the problem, the Coulomb friction law has been replaced by an experimentally based
friction law due to Prakash and Clifton (Prakash and Clifton, 1993; Prakash, 1998).
This law smooths into a continuous transition with time or slip the otherwise instanta-
neous variation of shear strength that would follow from an instantaneous variation in
normal stress if the Coulomb law was used. Ranjith and Rice (2001) have shown that
this law can provide a regularization for the linear stability analysis. However, when
solving the full time-dependent problem, the di;erent numerical results (Andrews and
Ben-Zion, 1997; Ben-Zion and Andrews, 1998; Ben-Zion and Huang, 2002; Cochard
and Rice, 2000) do not all lead to a rupture generated by the propagation of steady
state self-sustained slip pulses of (nite size.
Once regularized, the physical problem is no longer exactly the same as it was

originally when the Coulomb law was used. The main purpose of this paper is to
provide a complete analytical study of this problem. In the next section, we present
the formulation of the steady state slip pulse problem. In Section 3, we show that for
a Coulomb friction law, there is a continuous set of solutions for any slip propagation
velocity and any slip length. As expected, these solutions turn out to be nonphysical.
In Section 6, we use the so-called Prakash–Clifton friction law in order to regularize
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these solutions. Then, we show that this law does not suppress the degeneracy of the
solutions and does not select a physical pulse.

2. The steady-state slip pulse problem

We consider the dynamic problem of 2D in-plane slip (plane strain deformation,
Mode II rupture) along a frictional interface on the plane Y = 0 separating two linear
isotropic elastic half-spaces (Fig. 1).
The loading, particle motion, and rupture propagation are in the X -direction and all

variables are functions of X; Y and t only. Shear and dilatational wave velocities are
csn =

√
2�n=	n and cdn =

√
(
n + 2�n)=	n, where 	n is mass density, 
n and �n are

LamJe coeGcients, and subscripts n= 1; 2 denote the top (Y ¿ 0) and bottom (Y ¡ 0)
materials, respectively. Shear and normal stresses on the fault are 
(X; t)=�xy(X; Y=0; t)
and �(X; t) = �yy(X; Y = 0; t). Applied shear stress and normal stress at the remote
boundaries are 
∞ and −�∞, such that 
∞ ¡f�∞, where f is the Coulomb dynamic
coeGcient of friction. Slip and slip velocity across the fault are �(X; t) = ux(X; Y =
0+; t)− ux(X; Y = 0−; t) and V (X; t) = 9�=9t.
Let us consider an in-plane rupture that propagates with a constant subsonic velocity

c along a material interface. Rupture propagation occurs in this problem only in one
direction, that of slip in the more compliant material. Since the problem is steady state,
the solution depends only on x = X − ct and Y . The shear and normal stress on the
fault in the solution of Weertman are (Weertman, 1980)

�(x) =−�∞ +
�∗

c
V (x); (1)


(x) = 
∞ − K�
c

∫ ∞

−∞

V (x′)
x′ − x

dx′

�
; (2)

where the integral is taken in the sense of Cauchy principal value, and

�∗ =
1
�
[(1 + b21 − 2a1b1) �2D2 − (1 + b22 − 2a2b2) �1D1]; (3)

K� =
1
�
[(1− b21) a1�2D2 + (1− b22) a2�1D1] (4)

with

an =
√
1− c2=c2dn; (5)

bn =
√
1− c2=c2sn; (6)

Dn = 4anbn − (1 + b2n)
2 (7)

and � is a known function of the propagation velocity and of the materials parameters
(Weertman, 1980), whose explicit behaviour does not inFuence the subsequent analysis.
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Fig. 1. The model problem for 2D in-plane steady-state rupture along the interface between di;erent elastic
solids.

The coeGcient K� decreases with increasing c and its zero de(nes a generalized
Rayleigh speed, cGR, for the materials pair. When the two materials are the same, cGR
reduces to the regular Rayleigh velocity. As the velocity contrast increases, the zero
intersects of K� increases and for large enough contrast K� is positive for all subsonic
values of c and cGR is not de(ned. A steady-state Weertman pulse propagating at
c = cGR, when such a speed exists, produces no changes of shear stress on the fault.
When the two materials are identical, �∗=0, and there is no coupling between slip and
changes of normal stress on the fault. However, when the two materials di;er, �∗ ¿ 0
and nonuniform slip produces a dynamic reduction of normal stress that is proportional
to the local slip velocity.
Eqs. (1) and (2) result from applying the conditions of continuity of normal dis-

placements and shear and normal stresses along the interface Y = 0. These boundary
conditions allow to write the stresses at the interface as functions of the slip velocity
only. In order to solve the slip pulse problem, one has to prescribe the slip conditions
and/or the friction law along the interface. We impose that the pulse has a (nite size
2L. Thus outside this region, the slip velocity V (x) identically vanishes,

V (x) = 0; |x|¿L: (8)

Along the pulse, a friction law which relates the shear stress to the normal loading
at the interface should be prescribed. For this, we use a simpli(ed version of the
Prakash–Clifton friction law (Prakash and Clifton, 1993; Prakash, 1998), which consists
on introducing in the Coulomb friction law a slip velocity dependent relaxation time
t0(V ) for the response of the shear stress to a sudden variation of the normal stress

− t0(V )
d
dt


(x) ≡ L0(V )
d
dx


(x) = 
(x) + f�(x); |x|¡L; (9)
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where L0 ≡ ct0 is a characteristic length scale. A thorough discussion of the Prakash–
Clifton law can be found in (Cochard and Rice, 2000; Ranjith and Rice, 2001). Note
that if renewal of the asperity contact population is the underlying mechanism leading
to loss of frictional “memory” of prior strength, then one expects that t0(V ) should
vary inversely with V at high slip rates, basically as L∗=|V |, where L∗ is a characteristic
sliding distance to renew the contact population. In order to match the behaviour at
high slip rates without introducing singular behaviour at low slip rates, the Prakash–
Clifton law used in the previous studies (Ben-Zion and Huang, 2002; Cochard and
Rice, 2000; Ranjith and Rice, 2001) replaces the characteristic time scale t0(V ) by a
slip velocity dependent function L∗=(V ∗ + |V (x)|), where L∗ and V ∗ are characteristic
length and velocity scales.
The slip velocity can now be determined from Eqs. (1), (2), (8) and (9). Let us

take L as the length scale, and de(ne a nondimensioned slip velocity S(x) by

V (x) =
(f�∞ − 
∞)c

�∗f
S(x): (10)

Note that for similar materials the scaling (10) is not adequate, since �∗ vanishes in
this case. Using Eqs. (1) and (2), conditions (8) and (9) become

S(x) = 0; |x|¿ 1; (11)

S(x) = 1 + K
(
1− �(S)

d
dx

)∫ 1

−1

S(x′)
x′ − x

dx′

�
; |x|¡ 1; (12)

where �(S) and K are the pertinent parameters of the present problem. They are de(ned
by

�(S) =
L0
L

; (13)

K(c) =
�(c)

f�∗(c)
: (14)

The function �(S) can be seen as the inverse of the pulse size in units of the charac-
teristic length scale L0. The inFuence of the elastic parameters of the two materials are
embedded in the parameter K(c), whose behaviour is shown in Fig. 2. When the gener-
alized Rayleigh speed is not de(ned, K(c) is always positive. On the other hand, when
the generalized Rayleigh speed exists, K(c) is positive for a wide range of propagation
velocities 0¡c¡cGR, and it takes (nite negative values for propagation velocities
cGR ¡c6 cs1.
The main equations of this section are well known. They have been used for stability

studies of homogeneous slips along the interface between di;erent materials (Adams,
1995, 1998, 2001; Ranjith and Rice, 2001). In contrast, our goal consists in (nding
the properties of inhomogeneous slips along the interface, by introducing a slip length
which is di;erent from the fault size. Of course, the (nal goal would be to relate
the properties of the self-sustained slip pulses to the self-healing pulses deduced by
Heaton from geological observations (Heaton, 1990). Indeed, recent numerical studies
(Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998; Ben-Zion and Huang,



1854 M. Adda-Bedia, M. Ben Amar / J. Mech. Phys. Solids 51 (2003) 1849–1861

0.0 0.2 0.4 0.6 0.8 1.0
c/cs1

0

10

20

30

f K
(c

) 0.9 1.0
-2

-1

0

1

2

1.1

1.2

1.4

Fig. 2. The behaviour of K(c), de(ned by Eq. (14), as a function of the subsonic propagation speed
c, for ratios of cs2=cs1 equal to 1.1, 1.2, and 1.4. The other materials coeGcients are taken such that
�1 = �2; cd1 =

√
3cs1; cd2 =

√
3cs2. The inset is a close-up of the curves in the region 0:9cs16 c6 cs1.

2002; Cochard and Rice, 2000) have been controversial about the conditions of exis-
tence of steady-state self-sustained slip pulses of (nite size. It was found in (Ben-Zion
and Huang, 2002) that the self-sharpening and divergent behaviour found earlier by
Cochard and Rice (2000) with Coulomb friction law exists also with regularized friction
for large enough propagation distance, or equivalently for long times. The parameters
of the regularized friction law had to be (ne tuned to produce apparent stability for a
given propagation distance. However, eventually, the pulse always dies or diverges.
When the material pair is such that the generalized Rayleigh wave speed is de(ned,

Adams (1998) has shown that in the framework of the classical Coulomb friction
law, there exists a continuous family of steady-state pulses at a bi-material interface
propagating at c = cGR. However, Ranjith and Rice (2001) have shown that these
solutions are linearly unstable for any value of the friction coeGcient. In the following,
we look for possible steady-state solutions by focussing on the cases when K(c) �= 0.
We study the singular integro-di;erential Eqs. (11) and (12), using a pure Coulomb
friction law (�=0), and the Prakash–Clifton law (� �= 0) for two model cases: �(S)=
�0; �(S)=�0 +�1S, where �0 and �1 are constants. We also point out that the use of a
more general form of �(S) give similar results to the latter cases. Note, however, that
the possible solutions of Eqs. (11) and (12) always coexist with the trivial solution
S(x) = 0 for all x, since we prescribed 
∞ ¡f�∞. Then, the absence of solutions for
these equations implies an absence of slipping along the whole interface.

3. The Coulomb friction law (� = 0)

For this case, Eq. (12) is reduced to

S(x) = 1 + K
∫ 1

−1

S(x′)
x′ − x

dx′

�
; |x|¡ 1: (15)
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Using usual techniques of singular integral equations (Muskhelishvili, 1953), the solu-
tion of Eq. (15) is straightforward. De(ne a complex function F(z); z = x + iy; such
that

F(z) =
∫ 1

−1

S(x)
x − z

dx
2i�

; (16)

whose behaviour for |z| → ∞ is readily given by

F(z) ∼ − 1
2i�z

∫ 1

−1
S(x) dx: (17)

The function F(z) is holomorphic everywhere except on the interval [ − 1; 1] of the
real axis, where it satis(es

F(x + i0)− F(x − i0) = S(x); (18)

F(x + i0) + F(x − i0) =
∫ 1

0

S(x′)
x′ − x

dx′

i�
: (19)

Then combining these two conditions with Eq. (15) yields

e−i! F(x + i0)− ei! F(x − i0) = cos !; (20)

where the parameter ! is related to K by

tan != K; −�=2¡!¡�=2: (21)

The holomorphic function that satis(es the jump condition (20) and the asymptotic
behaviour (17) is readily given by (Muskhelishvili, 1953)

F(z) =
i

2 tan !

[
1−

(
z − 1
z + 1

)!=�
]

(22)

and the solution S(x) follows directly from Eq. (18)

S(x) = cos !
(
1− x
1 + x

)!=�

; |x|¡ 1: (23)

Therefore, a Coulomb friction law leads to a continuous set of solutions, where neither
the length of the pulse nor its propagation velocity are selected. For each value of
the parameter !, corresponding to a given value of K , there exists a “mathematical”
solution S(x) satisfying the Coulomb friction law. However, these solutions are clearly
nonphysical ones, since S(x) diverges near x=−1 (resp. x=1) for !¿ 0 (resp. !¡ 0).
Moreover, as seen in Fig. 3, due to the singularity of the slip velocity, the normal stress
changes its sign, which induces an opening loading, and thus a crack-like behaviour, in
a certain region of the pulse. This clearly violates the boundary condition of continuity
of the normal displacement embedded in the solution of Weertman (1980). Therefore,
a pure Coulomb friction law is inconsistent with a condition of slip without opening.
Moreover, when the material pair is such that the generalized Rayleigh wave speed

is de(ned, one has ! = 0. For this special case, Eq. (23) shows that S(x) = 1 for
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Fig. 3. The behaviour of the slip velocity S(x), the normal and shear stress �(x) and 
(x) at the interface.
The values are taken such that ! = �=4; 
∞ = �∞=3 and f = 0:5.

|x|¡ 1 and it is discontinuous at x =±1. The corresponding solutions do not contain
in(nities of the normal stress or slip rate. Such discontinuities are acceptable since
they propagate at the relevant wave speed. Therefore, there exists a continuous family
of steady-state pulses at a bi-material interface propagating at c = cGR (Adams, 1998;
Rice, 1997). However, Ranjith and Rice (2001) have shown that these solutions are
linearly unstable for any value of the friction coeGcient.
In the following section, we will use the Prakash–Clifton friction law as a possible

regularizing procedure of the simple Coulomb friction law. However, we will see that
even when using a slip velocity-dependent characteristic time, the degeneracy of the
solutions, found for �= 0, is not suppressed and a physical pulse cannot be selected.

4. The Prakash–Clifton friction law (� �= 0)

The presence in Eq. (12) of the di;erential operator, 9=9x, introduces an additional
degree of freedom in the problem, since one has to (x a constant of integration; this
operator does not appear in the case of the Coulomb friction law (� = 0). These two
ingredients together are a signature of a possible eigenvalue problem, where in the case
of the existence of solutions, the parameter K should be determined as a function of �.
For � �= 0, we assume that the propagation speed does not coincide with cGR,

and thus K(c) �= 0. Moreover, we do not explore solutions which allow loss of contact
along the interface, since we are interested in studying the Weertman pulse (Weertman,
1980) for which the normal displacement is continuous. Since Eq. (11) imposes that
the slip velocity vanishes outside the rupture region, one expects continuous matching
of S(x) at the rupture edges. Indeed, the slip rate S(x), which by de(nition is always
positive, should not diverge at x=±1, since it leads to an opening loading �(x), which
violates the boundary condition of continuity of the normal displacement. Moreover, if
S(±1) �= 0, the integral part of Eq. (11) induces a singular logarithmic behaviour in
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the vicinity of the rupture edges. Therefore, necessary conditions for physical solutions
are given by

S(±1) = 0: (24)

These conditions will be used to (x the integration constant of Eq. (30), and the pa-
rameter K as functions of �. Therefore, if physical solutions exist, the pulse size would
be selected as a function of its propagation speed and of the physical parameters. This
is in contrast with the case �=0, where K was undetermined and the continuity condi-
tions of the slip velocity could not be satis(ed simultaneously at the two rupture edges.
This problem is similar to the so-called Sa;man–Taylor problem (McLean and Sa;man,
1981), where a Fuid penetrates into a thin cell that contains a more viscous liquid.
The introduction of a nonzero � in the present problem is similar to the introduction
of capillary e;ects in the Sa;man–Taylor problem, which suppresses the degeneracy
of the solutions found at vanishing capillary number (McLean and Sa;man, 1981).
Let us (rst (x the asymptotic behaviour of S(x) in the vicinity of the endpoints

x =±1. Conditions (24) impose to S(x) to behave as

S(x) ∼ (1 + x)"0 ; x → −1; (25)

S(x) ∼ (1− x)"1 ; x → 1; (26)

where "0 and "1 are real positive constants. Without loss of generality, we can prescribe
that 0¡"0¡ 1 and 0¡"1¡ 1. Let us also note the following results:∫ 1

−1

(1− x′)"1

x′ − x
dx′ =−2

"1

"1
+ �(1− x)"1 cot �"1 − 2("1−1)(1− x)

"1 − 1
+O((1− x)2); (27)

for x → 1, and∫ 1

−1

(1 + x′)"0

x′ − x
dx′ =

2"0

"0
− �(1 + x)"0 cot �"0 +

2("0−1)(1 + x)
"0 − 1

+O((1 + x)2); (28)

for x → −1. Using Eq. (30), one can determine the values of the constants "0 and
"1. For this, one has to (x the form of �(S). In the following, we will study some
particular cases.

4.1. Case �(S) = �0

For this simple case, Eq. (11) is transformed into

S(x) = 1 + K(c)
(
1− �0

d
dx

)∫ 1

−1

S(x′)
x′ − x

dx′

�
; |x|¡ 1: (29)

It is easy to verify that whatever are the values of "0 and "1, Eq. (29) cannot be full(led
in the vicinity of the endpoints x =±1. This is due to the presence of the di;erential
operator which gives the highest-order singular contribution that is not balanced by any
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other term in Eq. (29). Therefore, one concludes that a constant �(S) in the Prakash–
Clifton law does not allow physical solutions with the appropriate asymptotic behaviour
imposed by conditions (24). In the following, we modify slightly the Prakash–Clifton
law by introducing a weak nonlinearity in �(S).

4.2. Case �(S) = �0 + �1S

Then, Eq. (11) is transformed into

S(x) = 1 + K(c)
(
1− (�0 + �1S(x))

d
dx

)∫ 1

−1

S(x′)
x′ − x

dx′

�
; |x|¡ 1; (30)

Using identities (27) and (28), one (nds that Eq. (30) may admit solutions that satisfy
conditions (24) if and only if

"0 = "1 = 1
2 ; (31)

which leads to a square root behaviour of the slip velocity at the rupture edges. Since
the function S(x) is de(ned in the interval [−1; 1], one can decompose the slip velocity
in terms of Chebyshev polynomials by writing

S(x) =
√
1− x2

∞∑
n=0

anUn(x); (32)

where Un(x) are the Chebyshev polynomials of the second kind. Let us recall the
following Hilbert transform property of this class of polynomials∫ 1

−1

√
1− x′2Un(x′)

x′ − x
dx′

�
=−Tn+1(x); (33)

where Tn are Chebyshev polynomials of the (rst kind. Using decomposition (32) and
identity (33), Eq. (30) becomes

√
1− x2

∞∑
m=0

amUm(x)

[
1− K�1

∞∑
n=0

anT ′
n+1(x)

]

=1− K
∞∑
n=0

anTn+1(x) + K�0
∞∑
n=0

anT ′
n+1(x): (34)

Isolating the square-root behaviour from the integer power behaviour in Eq. (34) leads
to the following identities:

K�1
∞∑
n=0

anT ′
n+1(x) ≡ K�1

∞∑
n=0

(n+ 1)anUn(x) = 1; (35)

K
∞∑
n=0

anTn+1(x)− K�0
∞∑
n=0

(n+ 1)anUn(x) = 1: (36)
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Eq. (35) admits the unique solution K�1a0 =1, and an=0 for all n¿ 0. However, this
solution is not satis(ed by Eq. (36). Therefore, a weak nonlinearity in the friction law
as given above is not suGcient for regularizing the slip pulse solution at the endpoints
x ± 1. Since the form �(S) = �0 + �1S can be seen as an expansion of any nonlinear
behaviour one can wonder if the absence of physical solutions persists when one takes
into account a more general friction law.

4.3. Case of a general �(S)

It is rather unlikely that the nonlinear integrodi;erential equation (11) has a solution
with enough regular endpoints. As an example, let us write

�(S) = �0 + �1S(x)F(S(x)); (37)

where �0 and �1 are arbitrary constants, and F is any function of S(x) that satis(es
F(S(±1)) ≡ F(0) = 1. The asymptotic analysis in the vicinity of x =±1 is similar to
the case where F(S(x)) = 1 and Eqs. (35) and (36) are transformed into

K�1F(S(x))
∞∑
n=0

anT ′
n+1(x) = 1; (38)

K
∞∑
n=0

anTn+1(x)− K�0
∞∑
n=0

anT ′
n+1(x) = 1: (39)

Introducing the function de(ned for |x|¡ 1:

Q(x) =
∞∑
n=0

anTn+1(x): (40)

Eq. (39) is then a linear di;erential equation of (rst order for Q(x) which has an
explicit solution

Q(x) =
1
K
[1− exp(x=�0)]: (41)

Therefore, the coeGcients in the series expansion following Eq. (40) can be determined,
and so the function S(x). On the other hand, Eq. (38) gives

F(S(x)) =−�0
�1
exp(−x=�0): (42)

At x=±1, Eq. (42) gives F(S(±1)) =−(�0=�1)exp(∓1=�0), which is in contradiction
with the condition F(S(±1)) ≡ F(0) = 1. Therefore, we conclude that even within a
general nonlinear friction law, solutions of (nite size steady-state slip pulses are not
allowed.
Finally, whatever the nonlinearities included in the friction law (we also checked a

law of the form �(S)= �0=S), excluding some peculiar and probably unphysical cases,
it seems hopeless to (nd a regular solution to the steady-state slip pulse.
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5. Discussion

We have studied the problem of the existence of solutions for steady-state slip pulse
of (nite size between dissimilar materials. We have shown that for a Coulomb fric-
tion law, there is a continuous set of solutions that are however nonphysical because
they show a singular behaviour of the slip velocity. We have shown that even within
the Prakash–Clifton friction law, the degeneracy of the solutions is not suppressed
and a physical pulse is not selected. This analytical result is consistent with recent
(nite-di;erence calculations (Ben-Zion and Huang, 2002). Of course, when the mate-
rial pair is such that the generalized Rayleigh wave speed is de(ned, there exists a
family of steady-state pulses at a bi-material interface propagating at c= cGR (Adams,
1998; Rice, 1997). However, these solutions are nonphysical within a Coulomb friction
law because they are linearly unstable (Ranjith and Rice, 2001).
When the two materials on each side of a planar fault are identical, unstable slip is

impossible if the interface is governed by the classical Coulomb friction law; it requires
more elaborate friction laws for which, under constant normal stress, the friction stress
at some point decreases as the slip displacement or slip velocity increases (Perrin et al.,
1995). A simple argument of the crack-like behaviour can be found in the steady-state
slip pulse solution between similar materials. Using a pure Coulomb friction law, one
can easily show that these solutions are given by

V (x)˙
1√
1− x2

(43)

and the use of the Prakash–Clifton law will not regularize the problem. The presence of
the square root singularity reFects such a crack-like behaviour, which means that once
the slip pulse exceeds a critical length, it will propagate through the whole fault plane.
Thus, such models cannot produce complexity since they introduce one characteristic
length scale only; the nucleation size.
Our main conclusion is that the dissimilarity between the materials on each side

of the planar fault is not suGcient to produce steady state self-sustained slip pulses
of (nite size, because it does not introduce an additional length scale against which
the pulse size can be scaled. Two recent approaches have been proposed in order to
explain the existence of self-healing slip pulses, by adding a new length scale in their
models. The (rst approach assumes that rupture occurs within an interface between a
compliant fault zone layer and a sti;er surrounding solid (Ben-Zion and Huang, 2002).
The additional length scale in this approach being the thickness of the layer. The second
approach does not impose a priori the continuity of the normal displacement in the
rupture region (Gerde and Marder, 2001). This allows the rupture to occur by opening
in certain regions and slipping in others.
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