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We study the undulatory instability of a straight crack front generated by peeling a
flexible elastic plate from a thin elastomeric adhesive film. We show that there is a
threshold for the onset of the instability that is dependent on the ratio of two length-
scales that arise naturally in the problem: the thickness of the film and an elastic length
defined by the stiffness of the plate and that of the film. A linear stability analysis
predicts that the wavelength of the instability scales linearly with the film thickness. Our
results are qualitatively and quantitatively consistent with recent experiments, and show
how crack fronts may lose stability due to a competition between bulk and surface effects
in the presence of multiple length scales.
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1. Introduction

The problem of peeling a thin plate from a soft confined adhesive film arises
repeatedly in a number of scientific and technological applications, ranging from
the ubiquitous band-aid to insect foot-pads. In these systems, peeling separates
the joined solids and failure occurs via the loss of adhesion at one of the surfaces
attached to the adhesive. When the intercalating adhesive material between the
plate and the substrate is a fluid or viscoelastic solid, early studies on peeling
(McEwan & Taylor 1966; Fields & Ashby 1976; Conley et al. 1992) drew an
analogy to the Saffman–Taylor problem (Saffman & Taylor 1958) for the
dynamics of an interface between two fluids in a confined geometry. Recent
experiments with purely elastic intercalating materials (Ghatak et al. 2000;
Monch & Herminghaus 2001; Ghatak & Chaudhury 2003) have shown that static
patterns almost identical to those observed in the Saffman–Taylor problem arise
at the peeling interface. In figure 1a, we show the schematic for such an
experiment where a thin flexible cover-slip is peeled off from a soft, thin elastic
adhesive film that is itself attached firmly to a rigid substrate. Examples of
the resulting complex crack morphologies that arise are shown in figure 1b.
An important qualitative difference is that the difference between the fingering in
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Figure 1. (a) Schematic of the problem. (b)The crack front loses stability to an undulatorymodewhen
the confinement parameter aZðD=mH 3Þ1=3 is large enough. The various morphologies correspond to
increasing thicknesses of the adhesive film for a given flexural stiffness of the cover-slip. Typical
experimental parameter values are 20/ a /100, and a film thickness Hw50 mm. See Ghatak &
Chaudhury (2003) for further details. (Figure courtesy of A. Ghatak & M. Chaudhury.)
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elastomeric films shown in figure 1b and that in fluid or viscoelastic films is that
the former does not involve the transport of matter and is a purely elastic
instability that is rate independent, unlike the Saffman–Taylor instability and its
cousins which are strongly rate dependent. Recent attempts to understand these
purely elastic interfacial patterns have focused on the case of two rigid solids
separated by a thin adhesive layer (Ghatak et al. 2000; Shenoy & Sharma 2002),
and account for the detailed short-range interfacial forces using a combination of
analytical (energetic) and computational analyses. However, the simplest
occurrence of this instability in the context of an undulatory crack at peeling
front, documented by Ghatak et al. (2000) and Ghatak & Chaudhury (2003), has
not been analysed theoretically (but see Ghatak (2005)). In this paper, we
present a continuum elastic analysis of the stability of a linear crack front in a
confined elastic film. Our main result is a simple criterion for the instability of
the peeling front or crack to planar undulations and follows from the effects of
elastic confinement due to the presence of lateral boundaries. This result is
independent of the detailed microscopic interfacial interactions, and is thus very
general and applicable to a variety of different systems.

For relatively thick films in contact with soft elastic plates, the peeling front or
crack is a straight line. However, for confined films in contact with stiff plates,
the front loses the stability to an undulating geometry as can be seen in figure 1b.
To understand this, consider a plate with bending stiffness D in contact with an
elastomeric film of shear modulus m and infinite thickness. When the plate is
deformed by an amount d over a characteristic length-scale lp, the deformations
Proc. R. Soc. A (2006)



3235Crack-front instability
decay exponentially into the bulk of the elastomer with a scale lp. To determine
this, we equate the bending energy per unit width in the plate Dd2=l3p with that
in the elastomer mðd=lpÞ2l2p so that lpwðD=mÞ1=3 defines the penetration depth
of the surface deformations. For an adhesive layer of finite thickness H, this
allows us to define a ‘confinement’ parameter aZðD=mH 3Þ1=3; the larger this
parameter, the more confined the system is. Experiments (Ghatak et al. 2000;
Ghatak & Chaudhury 2003) show that the instability arises only if aOac,
independent of the nature of the loading. The wavelength of the instability is
found to be independent of all parameters and scales linearly with the film
thickness H. To understand the qualitative nature of this phenomenon we note
that when a/1, the film is unconfined and can accommodate a straight peeling
front; indeed the related analysis of a crack front in an infinite three-dimensional
solid shows that a straight crack is stable to small perturbations of its shape
(Rice 1985). However, the introduction of a length-scale via confinement changes
matters qualitatively. When a[1, the penetration depth is no longer lp, but is
instead H; this geometrical confinement induces large stresses in the
neighbourhood of the crack front which decay exponentially away from this
region. This allows the crack to explore other configurations to relieve the stored
elastic energy and possibly become unstable. The role of confinement is to favour
shear deformations over normal deformations; to accommodate the local
squeezing of the elastic film at the crack-front, the crack prefers to undulate,
since the excess cost of the undulation is more than made up by the energy
released in the adhesive film, an effect that we will quantify in some detail.

In §2, we formulate the problem for the equilibrium of the flexible plate in
partial contact with the elastomeric adhesive film. We assume that the film is an
incompressible linearly elastic solid, and that the plate is bent weakly so that the
curvature of the plate is small (and primarily in one direction). Then, we set-up
the problem for the linear stability analysis of an initially straight crack front to
small in-plane sinusoidal perturbations and determine the stress field in the film
in terms of the plate-induced boundary displacement field. In §3, we determine
the solution corresponding to the straight crack front, and in §4 we determine the
perturbed local stress field due to a wavy perturbation of the crack front. When
expressed in terms of stress intensity factors, our solution leads to a criterion for
the stability of the crack front and yields both a critical confinement threshold
and the wavelength of the perturbation. In §5, we summarize our results and put
them in the larger perspective of crack-front stability in confined systems.
2. Formulation of boundary-value problem

The geometry of peeling pertinent to our problem shown in figure 1a shows the
two length-scales in this problem: the thickness of the adhesive film H and a
characteristic dimension determined by the balance between the energy of
bending the cover-slip and the energy of stretching/shearing the adhesive
film, given by lpZðD=mÞ1=3, where m is the elastomer shear modulus and D is the

flexural rigidity of the plate. The first length-scale characterizes variations in the
vertical or z-direction while the second characterizes variations in the plane of
the crack, i.e. along the ðx; yÞ-directions. The experiments of Ghatak &
Chaudhury (2003) show that the ratio of these length-scales determines the
Proc. R. Soc. A (2006)
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onset of the instability which occurs when lpR18H . Although the vast disparity
of these two length-scales at the onset of the instability ðH/ lpÞ suggests that an
elastic lubrication approximation similar to that used in Ghatak et al. (2004)
should be sufficient for analysing the present problem, we shall see that some
aspects of the problem are closely related to the behaviour of the stress field in
the vicinity of the crack front, where the lubrication approximation clearly
breaks down. Thus, we will not use the lubrication approximation here.

To make the problem dimensionless, we scale the coordinates xi hðx; y; zÞ
using H, and scale the displacements in the adhesive film ui hðu; v;wÞ and the
deflection of the flexible cover-slip hðx; yÞ using D0, the separation between the
film and the plate at the spacer. We assume that the adhesive layer may be
modelled as a linear incompressible elastic solid, and scale the stresses in it by
mD0=H . Then, we may write the scaled constitutive equation for the adhesive
elastic layer as

sij ZKPdij C
vui
vxj

C
vuj
vxi

; ð2:1Þ

and the equilibrium equations in the film and the condition of incompressibility are

VP ZDu; ð2:2Þ
V$u Z 0: ð2:3Þ

Combining equations (2.2) and (2.3) leads to a Laplace equation for the pressure
in the layer,

DP Z 0: ð2:4Þ
To complete the formulation of the problem, we need to specify the boundary
conditions. Defining the position of the crack front to be xZ f ðyÞ, with f ðyÞZ0
corresponding to a straight front, we may write the boundary conditions as

uðx; y; 0ÞZ vðx; y; 0ÞZwðx; y; 0ÞZ 0; ð2:5Þ
sxzðx; y; 1ÞZsyzðx; y; 1ÞZ 0; ð2:6Þ
wðx; y; 1ÞZ hðx; yÞ; ð2:7Þ

szzðx; y; 1ÞZ
a3D2hðx; yÞ; x! f ðyÞ;
0; xO f ðyÞ:

(
ð2:8Þ

The conditions (2.5) reflect the attachment of the adhesive layer to the substrate
zZ0. The rest of the conditions are a consequence of the continuity of
displacement and traction at the adhesive interface between the layer and the
flexible cover-slip. In particular, conditions (2.6) follow from the assumption of a
shear-free interface between the flexible plate and the adhesive layer. From a
physical point of view, we argue that the separation between the plate and the
film of order of a ‘van der Waals’ distance (approx. 5 nm) allows the plate to
‘slip’ relative to the layer so that the shear stresses are minimal; in reality, there
is some evidence of slip, but the exact boundary condition is still a matter of
some debate (Ghatak et al. 2005). As we will see later, this choice may be
responsible for the small discrepancy between the theoretical prediction for the
critical wavelength and that observed experimentally. Equations (2.7) and (2.8)
state that the layer is in contact with the flexible plate, i.e. the cover-slip only in
Proc. R. Soc. A (2006)



3237Crack-front instability
the domain x! f ðyÞ. We note that aZðD=mH 3Þ1=3, the ratio of the two
characteristic length-scales is the only control parameter in the problem.

Far from the crack, the deflection of the elastic plate hðx; yÞ and the stress at
the interface szzðx; y; 1Þ must also satisfy the asymptotic relations

hðx; yÞZ 0 as x/KN; ð2:9Þ

szzðx; y; 1ÞZ
hðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðf ðyÞKxÞ
p CO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðyÞKx

p� �
as x/ f ðyÞK: ð2:10Þ

The condition (2.9) ensures the decay of the traction and displacements far from
the crack front, while (2.10) enforces the inverse square-root singularity of the
stress field at the crack front, with hðyÞ being the local stress intensity factor.
Finally, we note that the vertical displacement of the cover-slip hgðx; yÞ in the
region where it is free ðxO f ðyÞÞ satisfies the equation

D2hgðx; yÞZ 0; ð2:11Þ
with the boundary conditions

hgða; yÞZ 1; ð2:12Þ
Dhgðx; yÞjxZa Z 0; ð2:13Þ

where a is the dimensionless position of the spacer that lifts the cover-slip (see
figure 1a). At the crack front, xZ f ðyÞ, the following continuity conditions hold

hðx; yÞjxZf ðyÞK Z hgðx; yÞjxZf ðyÞ; ð2:14Þ
Vhðx; yÞjxZf ðyÞK ZVhgðx; yÞjxZf ðyÞ; ð2:15Þ
Dhðx; yÞjxZf ðyÞK ZDhgðx; yÞjxZf ðyÞ; ð2:16Þ

which correspond to the physical requirements that the displacement of the
cover-slip (elastic plate), its gradient and its curvature are all continuous at this
location. However, the derivative of the curvature, which is proportional to the
vertical shear force will be discontinuous at the crack front.

The use of a long wavelength plate theory for the cover-slip, embodied in (2.8)
needs to be justified, especially since we treat the adhesive film as a bulk solid,
including the effect of the singular stress distribution at the crack tip. Two facts
help us: (i) both faces of the cover-slip are free of shear stresses and thus allow it
to deform by bending, while the adhesive film, which is stuck to the substrate
and confined in the normal direction by the cover-slip can only deform
isochorically by shearing and (ii) the three-dimensional effects of the singular
stress on the cover-slip in the vicinity of the crack tip are relevant only in a
boundary layer whose size scales as the thickness of the cover-slip (Keer & Silva
1972). Experimental observations show that the critical value of the confinement
parameter for the onset of the undulatory instability awacz18 so that the
critical adhesive layer thickness HczhðEp=mÞ1=3=40, where we have used the fact
that the bending stiffness of the cover-slip DZEph

3=12ð1Kn2Þ, where Ep and n
are the Young modulus and Poisson ratio of the glass cover-slip of thickness h.
Since Epz100 GPa; mz1 MPa; nz0:25, this yields Hczh. Thus, over scales
much larger than the thickness of the cover-slip, we may use a simple plate
theory to characterize its deformations, while we must account for the complete
elastic field in the adhesive film.
Proc. R. Soc. A (2006)
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The piecewise boundary condition (2.8) suggests that we change the
coordinate system from ðx; y; zÞ to ðX hxKf ðyÞ; y; zÞ. With respect to this
system, we may then write

v

vx
Aðx; y; zÞZ v

vX
AðX ; y; zÞ; ð2:17Þ

v

vy
Aðx; y; zÞZ v

vy
Kf 0ðyÞ v

vX

� �
AðX ; y; zÞ; ð2:18Þ

DAðx;y; zÞZ ð1Cf 02ðyÞÞ v2

vX2
Kf 00ðyÞ v

vX
K2f 0ðyÞ v2

vy vX
C

v2

vy2
C

v2

vz2

� �
AðX ;y; zÞ:

ð2:19Þ
Furthermore, we assume that the perturbed crack has the form f ðyÞZe sin uy,
with jej/1. Then, anticipating a perturbation expansion in e to account for the
undulations of the crack, we introduce the following forms

AðX ; y; zÞZA0ðX ; zÞCe A1ðX ; zÞC v

vX
A0ðX ; zÞ

� �
sin uyCOðe2Þ; ð2:20Þ

BðX ; y; zÞZ eB1ðX ; zÞcos uyCOðe2Þ: ð2:21Þ
Here Ahu, w, h, hg, P, sxx , szz , sxz , syy, while Bhv, sxy, syz . The advantage of
the form of these perturbation expansions is that it makes the equations for the
zeroth- and first-order problem in e similar; in particular, by changing the
subscripts from 1 to 0, and taking the limit uZ0 allows us to deduce the zeroth-
order system from the first-order one and provides some notational and
computational efficiency in our algebraic manipulations. Substituting the forms
(2.20) and (2.21) into the equilibrium equations in the film (2.2)–(2.4) yields

vP1

vX
Z

v2u1
vX2

Ku2u1C
v2u1
vz2

; ð2:22Þ

uP1 Z
v2v1
vX2

Ku2v1 C
v2v1
vz2

; ð2:23Þ

vP1

vz
Z

v2w1

vX2
Ku2w1C

v2w1

vz2
; ð2:24Þ

vu1
vX

Kuv1C
vw1

vz
Z 0; ð2:25Þ

v2P1

vX2
Ku2P1 C

v2P1

vz2
Z 0; ð2:26Þ

subject to the boundary conditions (2.5)–(2.8) which may be written as

u1ðX ; 0ÞZ v1ðX ; 0ÞZw1ðX ; 0ÞZ 0; ð2:27Þ
s1XzðX ; 1ÞZs1yzðX ; 1ÞZ 0; ð2:28Þ
w1ðX ; 1ÞZ h1ðXÞ; ð2:29Þ

s1zzðX ; 1ÞZ a3 v2

vX2
Ku2

" #2
h1ðXÞ; X!0;

0; XO0:

8><
>: ð2:30Þ
Proc. R. Soc. A (2006)



3239Crack-front instability
The above linear problem for P1; u1; v1;w1 may be solved in terms of Fourier
transforms. In terms of the definitions

~Aðk; zÞZ
ðCN

KN
AðX ; zÞeikXdX ; AðX ; zÞZ

ðCN

KN

~Aðk; zÞeKikX dk

2p
; ð2:31Þ

we may write the solution in the Fourier domain as

~P1ðk; zÞZ aðkÞcoshðKzÞCbðkÞsinhðKzÞ; ð2:32Þ

~u1ðk; zÞZK
ik

2K
ðbðkÞz coshðKzÞCðcðkÞCaðkÞzÞsinhðKzÞÞ; ð2:33Þ

~v1ðk; zÞZ
u

2K
bðkÞz coshðKzÞC KbðkÞKk2cðkÞ

u2
CaðkÞz

� �
sinhðKzÞ

� �
; ð2:34Þ

~w1ðk; zÞZ
1

2
aðkÞz coshðKzÞK aðkÞ

K
KbðkÞz

� �
sinhðKzÞ

� �
; ð2:35Þ

where

K Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Cu2

p
: ð2:36Þ

These forms satisfy the equilibrium equations (2.22)–(2.26) and the boundary
conditions at zZ0 given by (2.27). Applying the boundary conditions (2.28) and
(2.29) at zZ1 leads to a relationship between ~s1zzðk; 1Þ and ~w1ðk; 1ÞZ ~h1ðkÞ
given by

~h1ðkÞZFðKÞ~s1zzðk; 1Þ; ð2:37Þ
where

FðKÞZ K2K Csinh 2K

2Kð1C2K2 Ccosh 2KÞ : ð2:38Þ

The piecewise boundary condition (2.30) on s1zzðx; 1Þ suggests the use of the
Wiener–Hopf method of factorization and solution. For this purpose we write

~h1ðkÞZ
ðCN

KN
h1ðXÞeikXdX Z ~h

K
1 ðkÞC ~h

C
1 ðkÞ; ð2:39Þ

where

~h
K
1 ðkÞZ

ð0
KN

h1ðXÞeikXdX ; ~h
C
1 ðkÞZ

ðCN

0
h1ðXÞeikXdX ; ð2:40Þ

and

~s1zzðk; 1Þh ~sK1zzðk; 1ÞZ
ð0
KN

s1zzðX ; 1ÞeikXdX ; ð2:41Þ

where the condition s1zzðXO0; 1ÞZ0 has been used. We pause here to note
that if k is complex ðkhkRC ikIÞ, the integrals in (2.40), (2.41) and their
derivatives with respect to k are bounded at infinity only when ðkIXÞO0.

Therefore, in the complex k-plane, ~h
C
1 ðkÞ is analytic when ImkO0, while ~h

K
1 ðkÞ

and ~sK1zzðk; 1Þ are analytic when Imk!0. Then, in the Fourier domain, the
boundary condition (2.30) may be written as

~sK1zzðk; 1ÞZa3G1ðkÞCa3K4~h
K
1 ðkÞ; ð2:42Þ

with

G1ðkÞZ h 000
1 ð0KÞKikh 00

1 ð0KÞKðk2 C2u2Þh 0
1ð0KÞC ikðk2 C2u2Þh1ð0KÞ: ð2:43Þ
Proc. R. Soc. A (2006)
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Figure 2. The solution bðaÞ of CðKÞZ0 as defined by (2.45).
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Substituting the above expression for ~h
K
1 ðkÞ in (2.37) leads to

a3K4~h
C
1 ðkÞKa3G1ðkÞZCðKÞ~sK1zzðk; 1Þ; ð2:44Þ

where

CðKÞZK1Ca3K4FðKÞ; ð2:45Þ
is a real function with the following properties: (i) it is an even function of K;
(ii) as K/0, CðKÞ/K1Ca3K6=3, and (iii) as jK j/N, CðKÞ/a3jK j3=2.
Therefore, CðKÞZ0 always admits two real roots KZGbðaÞ (see figure 2),
which fact will be important for subsequent analysis. Thus, we may rewrite
CðKÞ as

CðKÞZ ðK2Kb2ÞDðKÞ; ð2:46Þ
where DðKÞ is an even function that has no real roots.

We now need to account for the asymptotic boundary conditions both far from
and in the vicinity of the crack front. Since the front can undulate and thus is a
free boundary, the similarity between the first-order problem and the zeroth-
order problem stops here. For later reference, we note that the important
equations for subsequent analysis are (2.43), (2.44) and (2.46), where the zeroth-
order problems in e are deduced by changing the subscripts from 1 to 0, and
taking uZ0.

The far-field condition (2.9) can be expressed in the Fourier domain as

~h
G
0 ðkÞZ cte as k/0; ð2:47Þ

which is equivalent to the statement that ~h
C
0 ðkÞ and ~h

K
0 ðkÞ have no poles at kZ0;

the same condition holds for ~h
G
1 ðkÞ. The normal stress component at the interface

between the plate and the adhesive film szzðX ; y; 1Þ may be written out as a
perturbation expansion as

szzðX ; y; zÞhs0zzðX ; zÞCe s1zzðX ; zÞC v

vX
s0zzðX ; zÞ

� �
sinðuyÞ: ð2:48Þ

Additionally, the perturbation of the stress intensity factor hðyÞ due to the shape
perturbation of the crack may be written as

hðyÞZ h0 Ceh1ðuÞsinðuyÞCOðe2Þ: ð2:49Þ
Proc. R. Soc. A (2006)



3241Crack-front instability
The stability of the straight crack front follows from the sign of the perturbed
stress intensity factor (Rice 1985); if h1ðuÞO0, the straight front is stable, while
if h1ðuÞ!0 it is unstable.

In light of the crack-tip singularity as given by (2.10), the behaviour of
s0zzðX ; 1Þ and s1zzðX ; 1Þ in the vicinity of the crack front XZ0 are given by

s0zzðX ; 1ÞZ h0ffiffiffiffiffiffiffiffiffiffi
KpX

p COð
ffiffiffiffiffiffiffi
KX

p
Þ as X/0K; ð2:50Þ

s1zzðX ; 1ÞC v

vX
s0zzðX ; 1ÞZ h1ðuÞffiffiffiffiffiffiffiffiffiffi

KpX
p COð

ffiffiffiffiffiffiffi
KX

p
Þ as X/0K: ð2:51Þ

Equivalently in the Fourier domain, the behaviour of ~sK0zzðk; 1Þ and ~sK1zzðk; 1Þ for
jkj/N are given by

~sK0zzðk; 1ÞZ
h0ffiffiffiffi
ik

p CO
1

ðikÞ3=2

 !
as jkj/N; ð2:52Þ

~sK1zzðk; 1ÞZh0
ffiffiffiffi
ik

p
CO

1ffiffiffiffi
ik

p
� �

as jkj/N; ð2:53Þ

so that the first-order perturbation of the stress intensity factor given by (2.51) is

h1ðuÞZ lim
jkj/N

ffiffiffiffi
ik

p
ð~sK1zzðk; 1ÞKik~sK0zzðk; 1ÞÞ: ð2:54Þ

Finally, the vertical displacement of the elastic plate hgðX ; yÞZhgðXÞ in
the region where it is free (XO0) can be determined by integrating (2.11) with
the boundary conditions (2.12) and (2.13). In terms of the notation introduced
at the beginning of this section, the zeroth-order solution hg0ðXÞ of the deflection
of the plate is given by

hg0ðXÞZ c1ðXKaÞ3 Cc2ðXKaÞC1; ð2:55Þ
where c1 and c2 are real constants. At the crack front, XZ0, the continuity
conditions (2.14)–(2.16) impose

h0ð0KÞZKc1a
3Kc2aC1; ð2:56Þ

h 0
0ð0KÞZ 3c1a

2 Cc2; ð2:57Þ
h 00
0ð0KÞZK6c1a: ð2:58Þ

For the first-order problem that accounts for the undulatory perturbations of the
crack front, the deflection of the glass plate hg1ðXÞ is given by

hg1ðXÞZ d1ðXKaÞcosh½uðXKaÞ�Cd2 sinh½uðXKaÞ�; ð2:59Þ
where d1 and d2 are real constants. At the crack front, XZ0, the continuity
conditions (2.14)–(2.16) yield

h1ð0KÞZKd1a cosh½ua�Kd2 sinh½ua�; ð2:60Þ
h 0
1ð0KÞZ ðd1Cd2uÞcosh½ua�Cd1ua sinh½ua�; ð2:61Þ

h 00
1 ð0KÞZ dh 000

0 ð0ÞKd1u
2a cosh½ua�Kð2d1 Cd2uÞu sinh½ua�: ð2:62Þ

We note that dh 000
0 ð0Þhh 000

g0ð0ÞKh 000
0 ð0KÞ due to the discontinuity of the derivative

of the plate curvature at the crack front.
This completes the problem formulation. At each order of the perturbation,

there are three constants of integrations and the stress intensity factor which
Proc. R. Soc. A (2006)
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remain to be determined. For the zeroth-order problem, these quantities are c1; c2;
h 000
0 ð0KÞ and h0, while for the first-order problem they are d1; d2; h

000
1 ð0KÞ and h1.
3. The straight front

We now turn to a solution of the straight front via the zeroth-order problem.
Changing the subscripts from 1 to 0, and taking uZ0 in (2.43) and (2.44) leads to

a3k4~h
C
0 ðkÞKa3G0ðkÞZ ðk2Kb2ÞDðkÞ~sK0zzðk; 1Þ; ð3:1Þ

G0ðkÞZ hK000
0 ð0ÞKikhK00

0 ð0ÞKk2hK0
0 ð0ÞC ik3hK0 ð0Þ: ð3:2Þ

Here ~sK0zzðk; 1Þ is analytic for Imk!0 and ~h
C
0 ðkÞ is analytic for ImkO0 suggesting

the use of a Wiener–Hopf decomposition. Since the function DðkÞ can be
decomposed into the form (see appendix A)

DðkÞZDC
0 ðkÞDK

0 ðkÞ; ð3:3Þ
where DC

0 ðkÞ (resp. DK
0 ðkÞ) is analytic for ImkO0 (resp. Imk!0), (3.1) can be

written as

a3ðk4~hC0 ðkÞKG0ðkÞÞ
ðk2Kb2ÞDC

0 ðkÞ
ZDK

0 ðkÞ~sK0zzðk; 1Þ; ð3:4Þ

which is an equality on the real axis between an analytic function for ImkO0 (the
left-hand side of (3.4)) and an analytic function for Imk!0 (the right-hand side of
(3.4)). The only analytic function in the complex plane that satisfies this property is
a polynomial function of k (Muskhelishvili 1953). The asymptotic behaviour of

~sK0zzðk; 1Þ given by (2.52), and the property that DK
0 ðkÞx

ffiffiffiffi
ik

p
for jkj/N (see

appendix A) allows only a real constant as the general solution of (3.4), so that

~sK0zzðk; 1ÞZ
h0

DK
0 ðkÞ

; ð3:5Þ

~h
C
0 ðkÞZ

1

k4
G0ðkÞC

h0

a3
ðk2Kb2ÞDC

0 ðkÞ
h i

; ð3:6Þ

where h0 is the stress intensity factor of the straight crack front.
Finally, substituting (3.6) into the Fourier-domain equivalents of

(2.56)–(2.58), and noting that ~h
C
0 ðkÞ has no poles at kZ0 leads to the

determination of the constants c1, c2, h
000
0 ð0KÞ and h0 as functions of a and a with

c1 ZKiDC0
0 ð0Þ b

2h0

6aa3
; ð3:7Þ

c2 Z ð2DC
0 ð0ÞCb2aiDC0

0 ð0ÞKb2DC00
0 ð0ÞÞ h0

2a3
; ð3:8Þ

dh 000
0 ð0ÞZ h 000

g0ð0CÞKh 000
0 ð0KÞZKðaDC

0 ð0ÞC iDC0
0 ð0ÞÞ b

2h0

aa3
; ð3:9Þ

h0 Z
6a3

6aDC
0 ð0ÞCð6C2b2a2ÞiDC0

0 ð0ÞK3b2aDC00
0 ð0ÞKb2iDC000

0 ð0Þ
: ð3:10Þ

In typical experiments where the degree of confinement is high, a[1. Therefore,
the stress intensity factor h0 is well approximated by

h0x
3a3

b2a2iDC0
0 ð0Þ

: ð3:11Þ
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We are now in a position to find the equilibrium configuration of the
straight front. The total dimensionless energy E0 of the system is the sum of
the energy in the adhesive film, that of the elastic plate and the interface, and
is given by

2H 3

Dd2
U0 ZE0ðaÞZ

1

a3

ð
dSs0ij

vu0i

vxj
C

ð
dxðh 00

g0ðxÞÞ2 CGa: ð3:12Þ

Here GZ2gH 4=Dd2 is the dimensionless line tension (or equivalently the surface
energy of the cohesive interface) with g the dimensional surface energy. By using
the divergence theorem and the far-field boundary conditions, the previous
expression is simplified to

E0ðaÞZK
1

a3

ð0
KN

dxs0zzh0ðxÞC
ðN
KN

dxðh 00
g0ðxÞÞ2CGa: ð3:13Þ

Simplifying further, by integrating by parts and using the boundary conditions
(2.8), (2.12) and (2.13) give

E0ðaÞZKhg0ðaÞh 000
g0ðaÞChg0ð0Þdh 000

0 ð0ÞCGa: ð3:14Þ
For the asymptotic case a[1, this yields

E0ðaÞZ
3

a3
CGa: ð3:15Þ

The equilibrium position of the straight front with respect to the position of the
spacer, ac, is determined by minimizing E0ðaÞ with respect to a and yields

ac Z
9

G

� �1=4

: ð3:16Þ

We observe that the limiting case a[1 corresponds to G/1, a result going
back to the work of Obreimoff (1930) who used the peeling of a thin film of mica
to determine the value of the interfacial energy. In this limit, the dimensional
crack length is given by acHZð9Dd2=2gÞ1=4, which is independent of m and H
and thus of the properties of the adhesive elastic layer.

The above analysis also allows us to compute the crack opening stress
s0zzðx; 1Þ given by

s0zzðx; 1ÞZh0

ðCN

KN

eKikX

DK
0 ðkÞ

dk

2p
; ð3:17Þ

which exhibits the usual square-root singularity at the crack tip. In figure 3, we
plot szzðx; 1Þ for different values of a. When a!abx9, the stress decreases
monotonically from the edge. However, when aOab, we see that szzðx; 1Þ
becomes non-monotonic, with a new maximum at xZxb. An important point
worth emphasizing here is the appearance of a threshold in the confinement
parameter ab that determines whether or not there is a secondary maximum in
the stress behind the crack tip. Under certain conditions (Ghatak et al. 2004)
corresponding to the case when the contact line is pinned by a perpendicular edge
so that the singularity is weaker than that for a crack, crack nucleation proceeds
via cavitation behind the pinned edge followed by the coalescence and growth of
these resulting bubbles. A simple lubrication theory that neglects the stress
Proc. R. Soc. A (2006)
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Figure 3. szzðx; 1Þ=h0 for different values of a (from bottom to top aZ8; 10; 22). We see that
szzðx; 1Þ=h0 displays a local maximum behind the crack tip when aOabx9.
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singularity at the crack tip (Ghatak et al. 2004) suffices to capture this
phenomena and yields predictions that are consistent with experiments. Since
the local energy release rate at a perpendicular edge vanishes and furthermore,
the incipient crack is pinned at the edge by inhomogeneities and defects it is
prevented from moving. Then, cavitation bubbles may arise where the stress is
maximally tensile behind the pinned crack tip. In the current situation, the crack
tip (or contact line) is not pinned so that in general we do not expect cavitation
behind the crack tip since the stresses at the tip will typically always be larger
than that behind for two reasons: the contact line is a location where the energy
release rate is finite (tantamount to the presence of a classical square-root
singularity), and there are typically no pinning sites along the featureless
adhesive surface, unlike at an edge.

In figure 4, we plot the dimensionless location of maximum tensile stress xb as
a function of the confinement parameter a. We see that xb varies quasi-linearly
with a for aT10, with the dimensionless location of maximum tensile stress
Kxbz0:1a. Then, the actual location of bubble nucleation is given byKxbHz
0:1ðD=mÞ1=3 which is independent of the thickness of the film. For comparison, we
also show the theoretically determined and experimentally observed dimension-
less location of the maximum tensile stress for the case when the crack front is
pinned at an edge (Ghatak et al. 2004). The main differences between these
results can be traced back to the conditions at the crack front, embodied in (i)
the effect of the crack-tip singularity and (ii) the implicit assumption in Ghatak
et al. (2004) of a pinned crack tip that is not allowed to move.
4. The wavy front

We now consider the first-order problem that accounts for the undulatory
perturbations of the crack front. To facilitate the application of the Wiener–Hopf
method here, we write the function G1ðkÞ given by (2.43) as

G1ðkÞZ ða0C ia1kÞðkKiuÞ2Cðb0C ib1kÞðk2Cu2Kb2Þ; ð4:1Þ
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Figure 4. A comparison of the experiments and predictions for the location xb of the secondary
maximum in the normal stress szzðx; 1Þ in the case treated here when the contact line (crack front)
is free, and the case when it is pinned (Ghatak et al. 2004), as a function of the confinement
parameter a. Curve (a) corresponds to the present work and the dashed line is given byKxbz0:1a.
Curve (b) corresponds to the theoretical results based on lubrication theory in Ghatak et al. (2004)
and is given byKxbZ0:49
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a

p
. Curve (c) corresponds to the experimental results in Ghatak et al.

(2004) and is given by KxbZ0:73
ffiffiffi
a

p
K0:006a. We note that the present work shows that the

secondary maximum appears only when aRab, and is a direct consequence of accounting for the
crack-tip singularity.
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where a0, a1, b0 and b1 are real constants related to h1ð0KÞ, h 0
1ð0KÞ, h 00

1 ð0KÞ and
h 000
1 ð0KÞ by

h1ð0KÞZ a1Cb1; ð4:2Þ
h 0
1ð0KÞZKa0K2ua1Kb0; ð4:3Þ

h 00
1 ð0KÞZ 2ua0 C3u2a1 Cðu2Cb2Þb1; ð4:4Þ

h 000
1 ð0KÞZK3u2a0K4u3a1Kðu2 Cb2Þb0: ð4:5Þ

The boundary condition expressing traction continuity at the adhesive
interface (2.44) may now be written as

ðkC iuÞ2~hC1 ðkÞKa0Kia1k

k2 Cu2Kb2
K

DðKÞ~sK1zzðk; 1Þ
a3ðkKiuÞ2

Z
b0C ib1k

ðkKiuÞ2
; ð4:6Þ

where the function ~sK1zzðk; 1Þ is analytic for Imk!0 and the function ~h
C
1 ðkÞ is

analytic for ImkO0. Furthermore, since the function DðKÞ can be decomposed
into the form (see appendix A)

DðKÞZDC
1 ðkÞDK

1 ðkÞ; ð4:7Þ
where DC

1 ðkÞ (resp. DK
1 ðkÞ) is analytic for ImkO0 (resp. Imk!0), (4.6) can be

written as

ðkC iuÞ2~hC1 ðkÞKa0Kia1k

ðk2Cu2Kb2ÞDC
1 ðkÞ

K
DK

1 ðkÞ~sK1zzðk; 1Þ
a3ðkKiuÞ2

Z
b0 C ib1k

ðkKiuÞ2DC
1 ðkÞ

: ð4:8Þ

The left-hand side of (4.8) is the real-valued difference between a function that is
analytic when ImkO0 and another function that is analytic when Imk!0. This
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allows us to write the solutions for ~sK1zzðk; 1Þ and ~h
C
1 ðkÞ as (Muskhelishvili 1953)

~sK1zzðk; 1ÞZ
a3ðkKiuÞ2

DK
1 ðkÞ

ðCN

KN

Fðk 0;uÞ
k 0KkC ie

dk 0

2ip
; ð4:9Þ

~h
C
1 ðkÞZ

a0 C ia1k

ðkC iuÞ2
C

ðk2 Cu2Kb2ÞDC
1 ðkÞ

ðkC iuÞ2
ðCN

KN

Fðk 0;uÞ
k 0KkKie

dk 0

2ip
; ð4:10Þ

where

Fðk 0;uÞZ b0C ib1k
0

ðk 0KiuÞ2DC
1 ðk 0Þ

: ð4:11Þ

The function DC
1 ðk 0Þ is analytic when Imk 0O0 so that Fðk 0;uÞ is analytic when

Imk 0O0 except at k 0Z iu where it exhibits a pole of multiplicity 2. This property
allows us to evaluate the integrals in (4.9) and (4.10) leading to

~sK1zzðk; 1ÞZK
a3

DK
1 ðkÞ

v

vk 0
b0 C ib1k

0

DC
1 ðk 0Þ

� �
k 0Ziu

ðkKiuÞC b0Kb1u

DC
1 ðiuÞ

� �
: ð4:12Þ

To complete the solution of the wavy front problem, we need to fix the real
constants d1, d2 and hK000

1 ð0Þ. The other constants introduced during the analysis
are determined a posteriori through (2.60)–(2.62) and (4.2)–(4.5). First, we note
that (2.42) yields

~h
K
1 ðkÞZ

~sK1zzðk; 1ÞKa3G1ðkÞ
a3ðk2 Cu2Þ2

: ð4:13Þ

Since ~h
K
1 ðkÞ is analytic for Imk!0, there cannot be any poles at kZKiu, leading

to the conditions

~sK1zzðKiu; 1ÞKa3G1ðKiuÞZ 0; ð4:14Þ
v

vk
½~sK1zzðk; 1ÞKa3G1ðkÞ�kZKiu Z 0: ð4:15Þ

Using our knowledge of the singularity at the crack tip which implies that ~sK1zz
ðk; 1Þwh0

ffiffiffiffiffiffiffiffi
ðikÞ

p
for jkj/N (see (2.53)) and the asymptotic behaviour of DK

1 ðkÞxffiffiffiffi
ik

p
for jkj/N (see appendix A) in (4.12) leads to

i
v

vk 0
b0 C ib1k

0

DC
1 ðk 0Þ

� �
k 0Ziu

Z
h0

a3
: ð4:16Þ

The conditions (4.14)–(4.16) determine the constants d1, d2 and hK000
1 ð0Þ as

functions of a, a, u and h0, but we will not write them out explicitly due to their
length. Instead, to understand the onset of the wavy instability of the crack
front, we will focus on the determination of the perturbation to the stress
intensity factor h1ðuÞ induced by the perturbation of the crack front given by
(2.49) and (2.54). For this, we first simplify the expression for ~sK1zzðk; 1Þ, by using
the condition (4.16) and write (4.12) as

~sK1zzðk; 1ÞZ
h0

DK
1 ðkÞ

ðikCuCkðuÞÞ; ð4:17Þ

where

kðuÞZ a3ðub1Kb0Þ
h0D

C
1 ðiuÞ

: ð4:18Þ
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When a[1, some algebra allows us to show that kðuÞ is simply given by

kðuÞZ DC
1 ðiuÞKDC

0 ð0Þ
iDC0

1 ðiuÞC 2u
b2
DC

1 ðiuÞ
; ð4:19Þ

where the parameter bðaÞ is plotted in figure 2. Finally, (2.54), (3.5) and (4.17)
allow us to determine the perturbation to the stress intensity factor

h1ðuÞZ ðuCkðuÞCqð0ÞKqðuÞÞh0; ð4:20Þ
where qðuÞ is defined by the asymptotic expansion

DK
1 ðkÞZ

ffiffiffiffi
ik

p
1C

qðuÞ
ik

� �
as jkj/N: ð4:21Þ

To understand the criterion for instability in terms of the perturbed stress
intensity factor (Rice 1985), we note that if h1O0, regions which are further
away from the spacer ðsinðuyÞ!0Þ have a stress intensity factor hðyÞ which is
smaller than regions which are closer ðsinðuyÞO0Þ. Thus, as the crack advances
quasi-statically the undulations will diminish and the crack front will tend to
straighten and stabilize. On the other hand, if h1!0 regions which are further
away from the spacer ðsinðuyÞ!0Þ have a stress intensity factor hðyÞ that is
larger than regions which are closer ðsinðuyÞO0Þ leading to a destabilizing effect.
Evaluating h1ðuÞ asymptotically using the expression (4.20) and the asymptotic
expansions of kðuÞ and qðuÞ yields

h1ðuÞ=h0x2u; u/1;

h1ðuÞ=h0xu=2; u[1:

Therefore, the straight front is always stable to both small and large wavelength
perturbations for all values of the confinement parameter a. When u/1,
corresponding to long wavelength perturbations (relative to the film thickness),
there is no energetic gain in having a curved crack, while for very short
wavelength perturbations ðu[1Þ, confinement plays no role, and in the absence
of any intrinsic short length-scale these perturbations are also stable. Thus, when
a is small, h1ðuÞ increases monotonically. However, as a increases, this relation
becomes non-monotonic owing to the effects of boundary-induced elastic
shielding. Eventually, when aZac the perturbation in the stress intensity factor
h1 changes sign for finite non-zero u, yielding an unstable wavelength lZ2p=u.

To quantify this, we compute h1ðuÞ as given by (4.20) using the definitions
(4.19) and (4.21) of kðuÞ and qðuÞ. These quantities are computed numerically in
terms of the decomposition of DðKÞ into DC

1 ðkÞDK
1 ðkÞ (see appendix A), yielding

the results shown in figure 5, where we plot h1ðuÞ for different values of a. We see
that there is a critical value aZacx21 for which h1ðucÞZ0 with the
wavenumber of the instability ucx1:85, which corresponds to a wavelength
lcx3:4H in reasonable agreement with the corresponding experimental values of
aexpx18, uexpx1:57 and lexpw4H (Ghatak & Chaudhury 2003). The small
discrepancy (of order 15%) for both the wavelength and the threshold is probably
due to the uncertainty in our knowledge of detailed nature of the adhesive
contact. In particular, it is not clear that the condition of zero tangential slip
(2.6) between the glass plate and the adhesive film is accurate, owing to
the relatively weak nature of the van der Waals interactions present (Ghatak
et al. 2004).
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Figure 5. h1ðuÞ=h0 for different values of a (from top to bottom aZ15; 20; 25). We see that h1=h0
becomes negative for aOawx21 and indicates the threshold for the onset of the undulatory
instability of the crack front. The corresponding value of the dimensionless wavenumber ucz1:85.

M. Adda-Bedia and L. Mahadevan3248
5. Discussion

Our study illuminates the crucial role of geometric confinement in quasi-static
fracture problems. In particular, we show how a straight crack front may lose
stability in the plane of the interface due to a competition between bulk and
surface effects in the presence of multiple length-scales. This must be contrasted
with the instability of the crack plane itself to transverse out-of-plane
undulations in such examples as the sinusoidal cracking of a thin glass plate
(Yuse & Sano 1993; Adda-Bedia & Pomeau 1995).

In the context of adhesion of flexible plates to soft confined films, our analysis
allowed us to determine the equilibrium configuration of the straight front, as
well as the conditions for and the mechanism of the instability of a straight
crack to in-plane perturbations. In particular, we find that the equilibrium
position of the straight front does not depend on either the material properties
or the thickness of the adhesive film. Our analysis in this case generalizes the
classical analysis of Obreimoff (1930) for peeling a solid (mica) film from the
bulk material via cleavage by considering the case when the confinement
parameter a is not large. As the degree of confinement is increased, the normal
traction at the adhesive interface displays a secondary maximum behind the
crack front when aOabx9. The location of this secondary stress maximum xb
is essentially independent of the thickness of the film, withKxbHZ0:1ðD=mÞ1=3.
However, sinceKxbH/a, in the present case where the crack front is free to
move to its equilibrium position unhindered, the singularity at the crack tip
dominates the stress field and bubble nucleation does not occur. When
confinement is increased still further, we see the onset of an undulatory
instability of the crack occurring when aOacZ21, in agreement with
experiments (Ghatak et al. 2000; Ghatak & Chaudhury 2003). We find that
the wavelength of the instability scales linearly with the thickness H, consistent
with experiments, although there is a quantitative discrepancy with the actual
prefactor that shows a difference of about 15%, which may be due to the
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experimental difficulty of controlling the tangential slippage of the flexible plate
on the adhesive film.

On the other hand, when the crack tip is pinned at an edge of adhesive film
(e.g. Ghatak et al. 2004), the elastic layer spans the region X!0 only, and the
two effects conspire to change the qualitative nature of the stress field: the
crack tip is blunted and pinned strongly to the edge. This is consistent with
other experiments reported in Ghatak et al. (2004) where the effect of a change
in the angle of the edge that pins a crack was to change the relative importance
of pinning and the crack-tip stress singularity, leading to a suppression of the
tendency for bubble nucleation. This is also why the simple elastic lubrication
theory in Ghatak et al. (2004) that ignores the stress singularity at the crack tip
completely, but implicitly assumes that the crack is pinned at the edge of the
adhesive film yields criteria for bubble nucleation that compare well with
experiments (see figure 4), but cannot provide a critical value of the
confinement parameter ab for bubble nucleation.

Taken together, these results show that by controlling confinement and crack
pinning, it is possible to quantitatively understand and thus tailor the toughness
of interfaces using simple geometric attributes. Much still remains to be
accomplished in theoretical, experimental and technological arenas.
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Appendix A. The Wiener–Hopf decomposition of D(K)

Here we present the method of decomposition of the function DðKÞ defined in
(2.46) for the zeroth- and first-order problem. Using the properties of the
function CðKÞ defined in (2.45), we define a new function EðKÞ such that

EðKÞZ 2DðKÞ
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 CK2

p Z
2CðKÞ

a3ðK2Kb2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 CK2

p ; ðA 1Þ

where

gZ
2

a3b2
:

The function EðKÞ is an even real function of K that satisfies Eð0ÞZ1 with
EðKÞ/1 as jK j/N. These properties allow to approximate EðKÞ using a
numerical scheme introduced by Liu & Marder (1991). We first define a new
variable l such that

K Z
blffiffiffiffiffiffiffiffiffiffiffi
1Kl2

p : ðA 2Þ

Now the function EðlÞ is a bounded non-oscillatory function on ½K1; 1�. The
constant b is chosen such that EðlÞ is well behaved. The function EðlÞ is
approximated to any desired accuracy as a sum of Chebyshev polynomials. The
complex roots ln of EðlÞ are then found numerically. Using these results and the
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properties of the function EðlÞ, we write EðlÞ in the following approximate form

EðlÞx
YN
nZ1

ðl2Kl2nÞ0EðKÞx
YN
nZ1

K2Cb2n

K2 Cb2
; ðA 3Þ

where

bn Z
blnffiffiffiffiffiffiffiffiffiffiffi
l2nK1

p : ðA 4Þ

We now use the property DðkÞZDðKkÞ so that it follows that

0DC
0 ðkÞDK

0 ðkÞZDC
0 ðKkÞDK

0 ðKkÞ0 DC
0 ðkÞ

DK
0 ðKkÞ Z

DC
0 ðKkÞ
DK

0 ðkÞ
Z const:;

where the constant is arbitrary. The same property holds for the first-order decom-
position. Therefore, the Wiener–Hopf decomposition of the zeroth- and first-order
problem can nowbe carried outwithout any difficulty. For the zeroth order, one has

DK
0 ðkÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gC ik

p
EK
0 ðkÞ; ðA 5Þ

DC
0 ðkÞZ

a3

2

ffiffiffiffiffiffiffiffiffiffiffiffi
gKik

p
EC
0 ðkÞ; ðA 6Þ

where we have chosen the constant such that DK
0 ðkÞw

ffiffiffiffi
ik

p
for jkj/N, and

EH
0 ðkÞZ

YN
nZ1

bnGik

bGik
: ðA 7Þ

For the first order, one has

DK
1 ðkÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 Cu2

p
C ik

q
EK
1 ðkÞ; ðA 8Þ

DC
1 ðkÞZ

a3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Finally, the quantities needed for computing the first-order calculations are given by
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