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Crack-front instability in a confined
elastic film
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We study the undulatory instability of a straight crack front generated by peeling a
flexible elastic plate from a thin elastomeric adhesive film. We show that there is a
threshold for the onset of the instability that is dependent on the ratio of two length-
scales that arise naturally in the problem: the thickness of the film and an elastic length
defined by the stiffness of the plate and that of the film. A linear stability analysis
predicts that the wavelength of the instability scales linearly with the film thickness. Our
results are qualitatively and quantitatively consistent with recent experiments, and show
how crack fronts may lose stability due to a competition between bulk and surface effects
in the presence of multiple length scales.
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1. Introduction

The problem of peeling a thin plate from a soft confined adhesive film arises
repeatedly in a number of scientific and technological applications, ranging from
the ubiquitous band-aid to insect foot-pads. In these systems, peeling separates
the joined solids and failure occurs via the loss of adhesion at one of the surfaces
attached to the adhesive. When the intercalating adhesive material between the
plate and the substrate is a fluid or viscoelastic solid, early studies on peeling
(McEwan & Taylor 1966; Fields & Ashby 1976; Conley et al. 1992) drew an
analogy to the Saffman—Taylor problem (Saffman & Taylor 1958) for the
dynamics of an interface between two fluids in a confined geometry. Recent
experiments with purely elastic intercalating materials (Ghatak et al. 2000;
Monch & Herminghaus 2001; Ghatak & Chaudhury 2003) have shown that static
patterns almost identical to those observed in the Saffman—Taylor problem arise
at the peeling interface. In figure la, we show the schematic for such an
experiment where a thin flexible cover-slip is peeled off from a soft, thin elastic
adhesive film that is itself attached firmly to a rigid substrate. Examples of
the resulting complex crack morphologies that arise are shown in figure 1b.
An important qualitative difference is that the difference between the fingering in
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Figure 1. (a) Schematic of the problem. (b) The crack front loses stability to an undulatory mode when
the confinement parameter a« = (D/uH 3)1/ 3is large enough. The various morphologies correspond to
increasing thicknesses of the adhesive film for a given flexural stiffness of the cover-slip. Typical
experimental parameter values are 20 << a <100, and a film thickness H~50 um. See Ghatak &

Chaudhury (2003) for further details. (Figure courtesy of A. Ghatak & M. Chaudhury.)

elastomeric films shown in figure 16 and that in fluid or viscoelastic films is that
the former does not involve the transport of matter and is a purely elastic
instability that is rate independent, unlike the Saffman—Taylor instability and its
cousins which are strongly rate dependent. Recent attempts to understand these
purely elastic interfacial patterns have focused on the case of two rigid solids
separated by a thin adhesive layer (Ghatak et al. 2000; Shenoy & Sharma 2002),
and account for the detailed short-range interfacial forces using a combination of
analytical (energetic) and computational analyses. However, the simplest
occurrence of this instability in the context of an undulatory crack at peeling
front, documented by Ghatak et al. (2000) and Ghatak & Chaudhury (2003), has
not been analysed theoretically (but see Ghatak (2005)). In this paper, we
present a continuum elastic analysis of the stability of a linear crack front in a
confined elastic film. Our main result is a simple criterion for the instability of
the peeling front or crack to planar undulations and follows from the effects of
elastic confinement due to the presence of lateral boundaries. This result is
independent of the detailed microscopic interfacial interactions, and is thus very
general and applicable to a variety of different systems.

For relatively thick films in contact with soft elastic plates, the peeling front or
crack is a straight line. However, for confined films in contact with stiff plates,
the front loses the stability to an undulating geometry as can be seen in figure 1.
To understand this, consider a plate with bending stiffness D in contact with an
elastomeric film of shear modulus p and infinite thickness. When the plate is
deformed by an amount ¢ over a characteristic length-scale [, the deformations
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decay exponentially into the bulk of the elastomer with a scale [,. To determine
this, we equate the bending energy per unit width in the plate Dé*/ lg with that
in the elastomer w(é/ lp)gll% so that I, ~(D/ ,u)l/ 3 defines the penetration depth
of the surface deformations. For an adhesive layer of finite thickness H, this
allows us to define a ‘confinement’ parameter a= (D/uH?)'/3; the larger this
parameter, the more confined the system is. Experiments (Ghatak et al. 2000;
Ghatak & Chaudhury 2003) show that the instability arises only if a> «,
independent of the nature of the loading. The wavelength of the instability is
found to be independent of all parameters and scales linearly with the film
thickness H. To understand the qualitative nature of this phenomenon we note
that when o << 1, the film is unconfined and can accommodate a straight peeling
front; indeed the related analysis of a crack front in an infinite three-dimensional
solid shows that a straight crack is stable to small perturbations of its shape
(Rice 1985). However, the introduction of a length-scale via confinement changes
matters qualitatively. When a>> 1, the penetration depth is no longer [, but is
instead H; this geometrical confinement induces large stresses in the
neighbourhood of the crack front which decay exponentially away from this
region. This allows the crack to explore other configurations to relieve the stored
elastic energy and possibly become unstable. The role of confinement is to favour
shear deformations over normal deformations; to accommodate the local
squeezing of the elastic film at the crack-front, the crack prefers to undulate,
since the excess cost of the undulation is more than made up by the energy
released in the adhesive film, an effect that we will quantify in some detail.

In §2, we formulate the problem for the equilibrium of the flexible plate in
partial contact with the elastomeric adhesive film. We assume that the film is an
incompressible linearly elastic solid, and that the plate is bent weakly so that the
curvature of the plate is small (and primarily in one direction). Then, we set-up
the problem for the linear stability analysis of an initially straight crack front to
small in-plane sinusoidal perturbations and determine the stress field in the film
in terms of the plate-induced boundary displacement field. In §3, we determine
the solution corresponding to the straight crack front, and in §4 we determine the
perturbed local stress field due to a wavy perturbation of the crack front. When
expressed in terms of stress intensity factors, our solution leads to a criterion for
the stability of the crack front and yields both a critical confinement threshold
and the wavelength of the perturbation. In §5, we summarize our results and put
them in the larger perspective of crack-front stability in confined systems.

2. Formulation of boundary-value problem

The geometry of peeling pertinent to our problem shown in figure 1a shows the
two length-scales in this problem: the thickness of the adhesive film H and a
characteristic dimension determined by the balance between the energy of
bending the cover-slip and the energy of stretching/shearing the adhesive
film, given by I, = (D/ ,u)l/ 3 where u is the elastomer shear modulus and D is the
flexural rigidity of the plate. The first length-scale characterizes variations in the
vertical or zdirection while the second characterizes variations in the plane of
the crack, i.e. along the (z,y)-directions. The experiments of Ghatak &
Chaudhury (2003) show that the ratio of these length-scales determines the
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onset of the instability which occurs when [, > 18 H. Although the vast disparity
of these two length-scales at the onset of the instability (H << I,) suggests that an
elastic lubrication approximation similar to that used in Ghatak et al. (2004)
should be sufficient for analysing the present problem, we shall see that some
aspects of the problem are closely related to the behaviour of the stress field in
the vicinity of the crack front, where the lubrication approximation clearly
breaks down. Thus, we will not use the lubrication approximation here.

To make the problem dimensionless, we scale the coordinates z; = (x, y, 2)
using H, and scale the displacements in the adhesive film u; = (u, v, w) and the
deflection of the flexible cover-slip h(z,y) using 4’, the separation between the
film and the plate at the spacer. We assume that the adhesive layer may be
modelled as a linear incompressible elastic solid, and scale the stresses in it by
ud'/H. Then, we may write the scaled constitutive equation for the adhesive
elastic layer as

du;, Odu;
i =—Po; +—+ 2.1
i Y 0x o 0wy’ (2.1)
and the equilibrium equations in the film and the condition of incompressibility are
VP = Au, (2.2)
V-u =0. (2.3)

Combining equations (2.2) and (2.3) leads to a Laplace equation for the pressure
in the layer,

AP = 0. (2.4)
To complete the formulation of the problem, we need to specify the boundary

conditions. Defining the position of the crack front to be z= f(y), with f(y)=0
corresponding to a straight front, we may write the boundary conditions as

u(z,y,0) = v(z,y,0) = w(z,y,0) =0, (2.5)
O'xz(% Y, 1) = Uyz(xa Y, 1) =0, (2'6)
w(z,y,1) = h(z,y), (2.7)

A2z, y), z<f(y),
oty 1) = 2.8
(@) {0, z> f(y). .

The conditions (2.5) reflect the attachment of the adhesive layer to the substrate
z=0. The rest of the conditions are a consequence of the continuity of
displacement and traction at the adhesive interface between the layer and the
flexible cover-slip. In particular, conditions (2.6) follow from the assumption of a
shear-free interface between the flexible plate and the adhesive layer. From a
physical point of view, we argue that the separation between the plate and the
film of order of a ‘van der Waals’ distance (approx. 5 nm) allows the plate to
‘slip’ relative to the layer so that the shear stresses are minimal; in reality, there
is some evidence of slip, but the exact boundary condition is still a matter of
some debate (Ghatak et al. 2005). As we will see later, this choice may be
responsible for the small discrepancy between the theoretical prediction for the
critical wavelength and that observed experimentally. Equations (2.7) and (2.8)
state that the layer is in contact with the flexible plate, i.e. the cover-slip only in
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the domain z<f(y). We note that a= (D/uH*)*3, the ratio of the two
characteristic length-scales is the only control parameter in the problem.

Far from the crack, the deflection of the elastic plate h(z, y) and the stress at
the interface o,,(x, y, 1) must also satisfy the asymptotic relations

h(z,y) =0 as xz— —oo, (2.9)
o, (x =% ) —z) as z— . .
sl 1) =~ + 0( VI —2) 1) (2.10)

The condition (2.9) ensures the decay of the traction and displacements far from
the crack front, while (2.10) enforces the inverse square-root singularity of the
stress field at the crack front, with n(y) being the local stress intensity factor.
Finally, we note that the vertical displacement of the cover-slip hy(z,y) in the
region where it is free (z> f(y)) satisfies the equation

A hy(z,y) =0, (2.11)

with the boundary conditions
hy(a,y) =1, (2.12)
Ahg(wv y)|:v=a = 07 (213)

where a is the dimensionless position of the spacer that lifts the cover-slip (see
figure 1a). At the crack front, z= f(y), the following continuity conditions hold

h(fl?, y)’sz(yf = hg(xa y)|m=f(y)7 (214)
Vh(z, y)]F}c(y)— = Vhy(, y)\xzﬂy), (2.15)
Ah(l’, y)’z=f(y)7 = Ahg(xu y)|z=f(y)7 (216)

which correspond to the physical requirements that the displacement of the
cover-slip (elastic plate), its gradient and its curvature are all continuous at this
location. However, the derivative of the curvature, which is proportional to the
vertical shear force will be discontinuous at the crack front.

The use of a long wavelength plate theory for the cover-slip, embodied in (2.8)
needs to be justified, especially since we treat the adhesive film as a bulk solid,
including the effect of the singular stress distribution at the crack tip. Two facts
help us: (i) both faces of the cover-slip are free of shear stresses and thus allow it
to deform by bending, while the adhesive film, which is stuck to the substrate
and confined in the normal direction by the cover-slip can only deform
isochorically by shearing and (ii) the three-dimensional effects of the singular
stress on the cover-slip in the vicinity of the crack tip are relevant only in a
boundary layer whose size scales as the thickness of the cover-slip (Keer & Silva
1972). Experimental observations show that the critical value of the confinement
parameter for the onset of the undulatory instability a ~a, =18 so that the
critical adhesive layer thickness H, = h(E,/ w)3) 40, where we have used the fact
that the bending stiffness of the cover-slip D= E h*/12(1 —»*), where E, and v
are the Young modulus and Poisson ratio of the glass cover-slip of thickness h.
Since E, =100 GPa, u=1MPa, »=0.25, this yields H, =h. Thus, over scales
much larger than the thickness of the cover-slip, we may use a simple plate
theory to characterize its deformations, while we must account for the complete
elastic field in the adhesive film.
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The piecewise boundary condition (2.8) suggests that we change the
coordinate system from (z,y,2) to (X =z—f(y),y,2). With respect to this
system, we may then write

ad ad
9 PR

9> 0 9? 9> 9>
+— —I——]A(X, Yy 2).

AA(z,y, 2) = [(1 +f’2(y))ﬁ—f”(y)ﬁ— f’(y)w a7 T oz

(2.19)

Furthermore, we assume that the perturbed crack has the form f(y)= € sin wy,
with || < 1. Then, anticipating a perturbation expansion in € to account for the
undulations of the crack, we introduce the following forms

ad
A(X,y,z) = Ag(X,2) + ¢ [Al(X, z) + WAO(X’ z)} sin wy + O(€?), (2.20)
B(X,y,2) = eBy(X, 2)cos wy + O(€). (2.21)
Here A=u, w, h, hy, P, 0,4, 0,,, 0, 0., Wwhile B=v, 7,,, 0,,. The advantage of
the form of these perturbation expansions is that it makes the equations for the
zeroth- and first-order problem in € similar; in particular, by changing the
subscripts from 1 to 0, and taking the limit « =0 allows us to deduce the zeroth-
order system from the first-order one and provides some notational and

computational efficiency in our algebraic manipulations. Substituting the forms
(2.20) and (2.21) into the equilibrium equations in the film (2.2)—(2.4) yields

(9P1 62161 9 62U1

— = - 2.22
oX oxr UMt az (2.22)
v 0%v
wP, = 6—X;—w2u1 + 8221’ (2.23)
aPl (92'[1}1 2 62'11)1
7 - 2.24
. axz YT ez (224)
6u1 a'l.Ul
1 -y 2.25
0’ P 9’P
6X21 —w?P; + 6221 =0, (2.26)
subject to the boundary conditions (2.5)—(2.8) which may be written as
u (X,0) = v (X,0) = w (X,0) =0, (2.27)
Ule(Xa 1) = Ulyz(X7 1) = 07 (228)
2
3| 0 m(X), X<0
Ulzz(Xv 1) = : dX? “ 1( )7 =9 (230)
0, X>0.
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The above linear problem for Py, u;, v;, w; may be solved in terms of Fourier
transforms. In terms of the definitions

y - 15¢ +°°~ iex Ak
Ak, 2) = J A(X, 2)edX,  A(X, 2) = J Ak 8 @)
we may write the solution in the Fourier domain as
P, (k,z) = a(k)cosh(Kz) + b(k)sinh(Kz), (2.32)
U (k, z) = —I—Z(b(k‘)z cosh(Kz) + (¢(k) + a(k)z)sinh(Kz)), (2.33)
Kb(k) — k2e(k) -
= 3% ( z cosh(Kz) (T + a(k)z |sinh(Kz) ), (2.34)
%( k)2 cosh(Kz) — (“;f) —b(k)z> sinh(Kz)), (2.35)
where
k* + o?. (2.36)

These forms satisfy the equilibrium equations (2.22)-(2.26) and the boundary
conditions at z=0 given by (2.27). Applying the boundary conditions (2.28) and
(2.29) at z=1 leads to a relationship between &,,,(k,1) and @, (k,1)= hy(k)
given by
where

—2K +sinh 2K
2K(1 4+ 2K? + cosh 2K)

The piecewise boundary condition (2.30) on o4,,(z,1) suggests the use of the
Wiener—Hopf method of factorization and solution. For this purpose we write

F(K) = (2.38)

By (k) = J+w h(X)e"¥dX = hy (k) + by (k), (2.39)
where -
Fr(k) = JO h(X)edx,  hi(k) = rm W(X)edx,  (2.40)
and - ’
1k ) = 0761 = o (X D ax, @2.41)

where the condition o,,(X>0,1)=0 has been used. We pause here to note
that if & is complex (k= kg +ik;), the integrals in (2.40), (2.41) and their
derivatives with respect to k are bounded at infinity only when (kX)> 0.

Therefore, in the complex k-plane, iNLJf(k) is analytic when Imk> 0, while 7, (k)
and 67,,(k,1) are analytic when Imk<0. Then, in the Fourier domain, the
boundary condition (2.30) may be written as

Gk, 1) = Gy (k) + o Kby (k), (2.42)
with
Gy (k) = B (07) —ikh{ (07) — (K* + 20*)hi (07) + ik(k* + 20°)hy (07).  (2.43)
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Figure 2. The solution §(«) of C(K)=0 as defined by (2.45).

Substituting the above expression for A (k) in (2.37) leads to
oK (K)— o Gy (k) = C(K)ar.(k, 1), (2.44)

where
C(K) =-1+ o’ K*'F(K), (2.45)

is a real function with the following properties: (i) it is an even function of K;
(ii) as K—0, C(K)——1+«*K°®/3, and (iii) as |K|— o, C(K)— o*|K[*/2.
Therefore, C(K)=0 always admits two real roots K =248(«) (see figure 2),
which fact will be important for subsequent analysis. Thus, we may rewrite
C(K) as

C(K) = (K*—8°)D(K), (2.46)

where D(K) is an even function that has no real roots.

We now need to account for the asymptotic boundary conditions both far from
and in the vicinity of the crack front. Since the front can undulate and thus is a
free boundary, the similarity between the first-order problem and the zeroth-
order problem stops here. For later reference, we note that the important
equations for subsequent analysis are (2.43), (2.44) and (2.46), where the zeroth-
order problems in € are deduced by changing the subscripts from 1 to 0, and
taking w=0.

The far-field condition (2.9) can be expressed in the Fourier domain as

ﬁ%(k) =cte as k—0, (2.47)

which is equivalent to the statement that har(k) and h (k) have no poles at k=0;
the same condition holds for Ay (k). The normal stress component at the interface
between the plate and the adhesive film o,,(X,y,1) may be written out as a
perturbation expansion as

d
Uzz(Xv Y, Z) = UOzz(X7 Z) +e Ulzz(Xv z) + ﬁUOzz

Additionally, the perturbation of the stress intensity factor n(y) due to the shape
perturbation of the crack may be written as

n(y) = ny + en (w)sin(wy) + O(€*). (2.49)

(X, 2)|sin(wy). (2.48)
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The stability of the straight crack front follows from the sign of the perturbed
stress intensity factor (Rice 1985); if n,(w) > 0, the straight front is stable, while
if 7;(w) <0 it is unstable.

In light of the crack-tip singularity as given by (2.10), the behaviour of
00..(X,1) and 01,,(X,1) in the vicinity of the crack front X=0 are given by

S V= as -0 )
00..(X,1) = Nawe + O(V—X) X—=0, (2.50)
d _ m(w) — _
01.(X,1) + 52 00.(X, 1) - O(WV=X) as X—0~. (2.51)

Equivalently in the Fourier domain, the behaviour of 4;,,(k,1) and ;,,(k, 1) for
|k| — o are given by

— n 1

G(]zz(ka 1) = ﬁ + O(W) as |k’ - %, (252)

01k, 1) = nyVik + O(%) as |k|— oo, (2.53)
1

so that the first-order perturbation of the stress intensity factor given by (2.51) is
m(w) = lim Vik(67.(k, 1) —ikdy.(k, 1)). (2.54)

Finally, the vertical displacement of the elastic plate h,(X,y)=hy(X) in
the region where it is free (X>0) can be determined by integrating (2.11) with
the boundary conditions (2.12) and (2.13). In terms of the notation introduced
at the beginning of this section, the zeroth-order solution Ay (X) of the deflection
of the plate is given by

hoo(X) = (X — a)® + (X —a) +1, (2.55)

where ¢; and ¢y are real constants. At the crack front, X=0, the continuity
conditions (2.14)—(2.16) impose

ho(07) = —¢; @ —cya+1, (2.56)
ho(07) = 3¢ia® + ¢, (2.57)
ho(07) = —6c;a. (2.58)

For the first-order problem that accounts for the undulatory perturbations of the
crack front, the deflection of the glass plate hy (X) is given by

he1 (X) = dy (X — a)cosh[w(X — a)] + d; sinh[w(X — a)], (2.59)
where d; and d, are real constants. At the crack front, X=0, the continuity
conditions (2.14)-(2.16) yield

hi(07) = —d; a cosh[wa] — dy sinh|wa], (2.60)
h1(07) = (d; + dyw)cosh|wa] + djwa sinh[wa], (2.61)
h(07) = 6h{'(0) — dyw? a cosh[wa] — (2d; + dyw)w sinh[wa]. (2.62)

We note that 6hg'(0) = heg(0) — hg'(07) due to the discontinuity of the derivative
of the plate curvature at the crack front.

This completes the problem formulation. At each order of the perturbation,
there are three constants of integrations and the stress intensity factor which
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remain to be determined. For the zeroth-order problem, these quantities are ¢;, ¢,
h{'(07) and 7, while for the first-order problem they are d;, dy, h{"(07) and 7.

3. The straight front

We now turn to a solution of the straight front via the zeroth-order problem.

Changing the subscripts from 1 to 0, and taking =0 in (2.43) and (2.44) leads to
=+ -

0[3]€4h0 (k) —(X3 GO(k) = (k2 _62)D(k)0'022(ka 1)7 (31)

Gy(k) = by (0) —ikhy" (0) — E*hy' (0) + ik*hg (0). (3.2)

Here 6,,,(k, 1) is analytic for Imk < 0 and hg(k) is analytic for Imk > 0 suggesting

the use of a Wiener-Hopf decomposition. Since the function D(k) can be
decomposed into the form (see appendix A)

D(k) = Dy (k) Dy (k), (3-3)
where DJ (k) (resp. Dy(k)) is analytic for Imk> 0 (resp. Imk < 0), (3.1) can be
written as

o’ (K'hy (K) = Go(k))

(k* —6%) Dy ()
which is an equality on the real axis between an analytic function for Imk > 0 (the
left-hand side of (3.4)) and an analytic function for Imk < 0 (the right-hand side of

(3.4)). The only analytic function in the complex plane that satisfies this property is
a polynomial function of k& (Muskhelishvili 1953). The asymptotic behaviour of

Gy,,(k, 1) given by (2.52), and the property that Dj (k) =+/ik for |k| — o (see
appendix A) allows only a real constant as the general solution of (3.4), so that

= Dy (k). (k, 1), (3.4)

(b 1) = o2 (3.5)
o1 Mo 12 2 At
By () = —5 | Gok) + 25 (K =)D (k). (3.6)

where 7, is the stress intensity factor of the straight crack front.

Finally, substituting (3.6) into the Fourier-domain equivalents of
(2.56)—(2.58), and noting that hy(k) has no poles at k=0 leads to the
determination of the constants ¢y, ¢y, h{ (07) and n, as functions of a and a with

8210

o =—inf ()2, (37
¢z = (2D (0) +B”aiDy"(0) =8 D5 (0) 51 (3.8)
2
h{/(0) = H3(0) = B (07) = — (@D (0) +3D(0)) °- 1, (39
6 3
Mo - (3.10)

B 6aD; (0) + (6 +268%a?)iDF'(0) —3B8%aDF" (0) —B*1DF" (0)
In typical experiments where the degree of confinement is high, a >> 1. Therefore,
the stress intensity factor 7, is well approximated by

3o’

Mo
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We are now in a position to find the equilibrium configuration of the
straight front. The total dimensionless energy FE of the system is the sum of
the energy in the adhesive film, that of the elastic plate and the interface, and
is given by

2H3

1 OJugi
S5z o = Ey(a) = = sto—ol-j de( "(z))* + Ta. (3.12)

4 |
20

Here I' = 2y H* /Dé&? is the dimensionless line tension (or equivalently the surface

energy of the cohesive interface) with v the dimensional surface energy. By using

the divergence theorem and the far-field boundary conditions, the previous

expression is simplified to

Ey(a) == |

— 0

0

oo

Aoy, ho(z) + J da(R(x))* + T'a. (3.13)

— 0

Simplifying further, by integrating by parts and using the boundary conditions
(2.8), (2.12) and (2.13) give

Ey(a) = —hy(a)hg(a) + hy(0)6hg (0) + Ia. (3.14)
For the asymptotic case a¢>> 1, this yields
3
a

The equilibrium position of the straight front with respect to the position of the
spacer, a, is determined by minimizing E,(a) with respect to a and yields

o = @) " (3.16)

We observe that the limiting case a>>1 corresponds to I' <K 1, a result going
back to the work of Obreimoff (1930) who used the peeling of a thin film of mica
to determine the value of the interfacial energy. In this limit, the dimensional
crack length is given by a. H = (9D6*/ 27)1/ 4 which is independent of u and H
and thus of the properties of the adhesive elastic layer.
The above analysis also allows us to compute the crack opening stress
UOzz(x7 1) given by
+o0 e—ikX dk
0-022(3:7 1) Mo Joo Da(k) o’ (317)

which exhibits the usual square-root singularity at the crack tip. In figure 3, we
plot ¢,,(z,1) for different values of «. When a <y, =9, the stress decreases
monotonically from the edge. However, when a> «;, we see that o, (z,1)
becomes non-monotonic, with a new maximum at z= z,. An important point
worth emphasizing here is the appearance of a threshold in the confinement
parameter «;, that determines whether or not there is a secondary maximum in
the stress behind the crack tip. Under certain conditions (Ghatak et al. 2004)
corresponding to the case when the contact line is pinned by a perpendicular edge
so that the singularity is weaker than that for a crack, crack nucleation proceeds
via cavitation behind the pinned edge followed by the coalescence and growth of
these resulting bubbles. A simple lubrication theory that neglects the stress
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Figure 3. 7,,(z,1)/ny for different values of « (from bottom to top a=8,10,22). We see that
a..(z,1)/ny displays a local maximum behind the crack tip when a> o, =9.

singularity at the crack tip (Ghatak et al. 2004) suffices to capture this
phenomena and yields predictions that are consistent with experiments. Since
the local energy release rate at a perpendicular edge vanishes and furthermore,
the incipient crack is pinned at the edge by inhomogeneities and defects it is
prevented from moving. Then, cavitation bubbles may arise where the stress is
maximally tensile behind the pinned crack tip. In the current situation, the crack
tip (or contact line) is not pinned so that in general we do not expect cavitation
behind the crack tip since the stresses at the tip will typically always be larger
than that behind for two reasons: the contact line is a location where the energy
release rate is finite (tantamount to the presence of a classical square-root
singularity), and there are typically no pinning sites along the featureless
adhesive surface, unlike at an edge.

In figure 4, we plot the dimensionless location of maximum tensile stress x;, as
a function of the confinement parameter a. We see that x;, varies quasi-linearly
with « for a= 10, with the dimensionless location of maximum tensile stress
—1, = 0.1a. Then, the actual location of bubble nucleation is given by —x, H =
0.1(D/u)*? which is independent of the thickness of the film. For comparison, we
also show the theoretically determined and experimentally observed dimension-
less location of the maximum tensile stress for the case when the crack front is
pinned at an edge (Ghatak et al. 2004). The main differences between these
results can be traced back to the conditions at the crack front, embodied in (i)
the effect of the crack-tip singularity and (ii) the implicit assumption in Ghatak
et al. (2004) of a pinned crack tip that is not allowed to move.

4. The wavy front
We now consider the first-order problem that accounts for the undulatory

perturbations of the crack front. To facilitate the application of the Wiener—Hopf
method here, we write the function G (k) given by (2.43) as

Gy (k) = (ag +iayk)(k—iw)? + (by +ibk)(k* + w* —B%), (4.1)
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Figure 4. A comparison of the experiments and predictions for the location z;, of the secondary
maximum in the normal stress o, (z, 1) in the case treated here when the contact line (crack front)
is free, and the case when it is pinned (Ghatak et al. 2004), as a function of the confinement
parameter «. Curve (a) corresponds to the present work and the dashed line is given by —z, = 0.1a.
Curve (b) corresponds to the theoretical results based on lubrication theory in Ghatak et al. (2004)
and is given by —z, = 0.49y/a. Curve (c) corresponds to the experimental results in Ghatak et al.
(2004) and is given by —z, = 0.73\/a —0.006cc. We note that the present work shows that the
secondary maximum appears only when «a > ay,, and is a direct consequence of accounting for the
crack-tip singularity.

where ay, a;, by and b; are real constants related to h;(07), h{(07), A{(07) and
hi"(07) by

hi(07) = a; + by, (4.2)
hi(07) = —ag —2wa; — by, (4.3)
h(07) = 2way + 3w’ a; + (0 + 6%)by, (4.4)
h'(07) = —3w’ay — 4w’ a; — (0 + B2)by. (4.5)

The boundary condition expressing traction continuity at the adhesive
interface (2.44) may now be written as

(k +iw)?hy (k) —ag—iak D(K)dy,. (k1) _ by +ibik

2+ o — 2  Bk—iw)?  (k—iw)?

where the function 7,,(k,1) is analytic for Imk <0 and the function i?lr(k) is

analytic for Imk> 0. Furthermore, since the function D(K) can be decomposed
into the form (see appendix A)

D(K) = Df (k) Dy (k), (4.7)
where Dy (k) (resp. Dy (k)) is analytic for Imk> 0 (resp. Imk < 0), (4.6) can be
written as

(k+i0)*h (k) —ag—iak  Dy(k)dr.(k1) by +ibk (45)

(k> + w?—B%)Di (k) o (k—iw)? (k—iw)*D;f (k) '
The left-hand side of (4.8) is the real-valued difference between a function that is
analytic when Imk > 0 and another function that is analytic when Imk < 0. This

(4.6)
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allows us to write the solutions for ,,(k, 1) and ﬁ?(k) as (Muskhelishvili 1953)

Ak—iw)? (T &K, w) dF
o ) dk 4.9
1..(k, 1) Dy (k) J_m K —k+ie 2im’ 4
] ik (B +w?—80DT (k) (+° ok dk’
g =it S0 [ A
(k +iw) (k +iw) = W ke
where
by +ib k'
O o) = — 0T 10 (4.11)

(F—i0)P Dy (F)

The function Dy (k') is analytic when Imk’ > 0 so that ®(k’, w) is analytic when

Imk’ > 0 except at &' = iw where it exhibits a pole of multiplicity 2. This property
allows us to evaluate the integrals in (4.9) and (4.10) leading to

3 : /

[0 (9 b(] +1b1]€ . bo_blﬁ)

2 k—iw) + 21

Dy (k) [ak/ [ DF#) Jraw™ T ¥ D)

To complete the solution of the wavy front problem, we need to fix the real

constants d;, dy and h;”’(0). The other constants introduced during the analysis

are determined a posteriori through (2.60)—(2.62) and (4.2)—(4.5). First, we note
that (2.42) yields

. 51, (k1) —a® Gy (k
hl(k) — alzz( ) ) o 21( )
a3 (k? + w?)
Since ﬁ;(k) is analytic for Imk < 0, there cannot be any poles at k= —iw, leading
to the conditions

(4.13)

71 (—iw, 1) — & Gy (—iw) = 0, (4.14)

0 ._

% [alzz(kv 1) _a3 Gl(k)]k:—iw = 0. (415)
Using our knowledge of the singularity at the crack tip which implies that a7,
(k, 1) ~mg+/(ik) for |k| — oo (see (2.53)) and the asymptotic behaviour of Dy (k) =

Vik for |k| > o (see appendix A) in (4.12) leads to

. d bo + lbl ]f/ Mo
i— =—.
Ok | DF(K) Jyi &
The conditions (4.14)-(4.16) determine the constants d;, dy and h;"(0) as
functions of a, @, w and 7y, but we will not write them out explicitly due to their
length. Instead, to understand the onset of the wavy instability of the crack
front, we will focus on the determination of the perturbation to the stress
intensity factor n;(w) induced by the perturbation of the crack front given by
(2.49) and (2.54). For this, we first simplify the expression for a71,,(k, 1), by using

the condition (4.16) and write (4.12) as

Mo

(4.16)

01 (k1) = RO (ik + w + k(w)), (4.17)
where
o3 (wby —
k(w) = w (4.18)
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When a>> 1, some algebra allows us to show that «(w) is simply given by
Dy (iw) — Dy (0)
K(w) - 'D—H : 2w D+ 3 )
1D (iw) + 57 Dy (iw)
where the parameter §(«) is plotted in figure 2. Finally, (2.54), (3.5) and (4.17)
allow us to determine the perturbation to the stress intensity factor

N1 (w) = (0 + k(w) +6(0) =0(w))n, (4.20)
where f(w) is defined by the asymptotic expansion

Dy (k) = \/i'k<1 +%> as k| — oo. (4.21)

To understand the criterion for instability in terms of the perturbed stress
intensity factor (Rice 1985), we note that if n; > 0, regions which are further
away from the spacer (sin(wy)<0) have a stress intensity factor n(y) which is
smaller than regions which are closer (sin(wy) > 0). Thus, as the crack advances
quasi-statically the undulations will diminish and the crack front will tend to
straighten and stabilize. On the other hand, if n; <0 regions which are further
away from the spacer (sin(wy) <0) have a stress intensity factor n(y) that is
larger than regions which are closer (sin(wy) > 0) leading to a destabilizing effect.
Evaluating 7, (w) asymptotically using the expression (4.20) and the asymptotic
expansions of k(w) and 6(w) yields

mw)/ny =20, o<l,
m()/n=w/2, w>1.

Therefore, the straight front is always stable to both small and large wavelength
perturbations for all values of the confinement parameter a. When w << 1,
corresponding to long wavelength perturbations (relative to the film thickness),
there is no energetic gain in having a curved crack, while for very short
wavelength perturbations (w >> 1), confinement plays no role, and in the absence
of any intrinsic short length-scale these perturbations are also stable. Thus, when
a is small, n;(w) increases monotonically. However, as « increases, this relation
becomes non-monotonic owing to the effects of boundary-induced -elastic
shielding. Eventually, when a = «, the perturbation in the stress intensity factor
1, changes sign for finite non-zero w, yielding an unstable wavelength A= 27/w.

To quantify this, we compute n;(w) as given by (4.20) using the definitions
(4.19) and (4.21) of k(w) and #(w). These quantities are computed numerically in
terms of the decomposition of D(K) into Df (k) Dy (k) (see appendix A), yielding
the results shown in figure 5, where we plot n; (w) for different values of «. We see
that there is a critical value a=a.=21 for which 7;(w,)=0 with the
wavenumber of the instability w,=1.85, which corresponds to a wavelength
A. = 3.4H in reasonable agreement with the corresponding experimental values of
Ooyp =18, Wey, =1.57 and Ay, ~4H (Ghatak & Chaudhury 2003). The small
discrepancy (of order 15%) for both the wavelength and the threshold is probably
due to the uncertainty in our knowledge of detailed nature of the adhesive
contact. In particular, it is not clear that the condition of zero tangential slip
(2.6) between the glass plate and the adhesive film is accurate, owing to
the relatively weak nature of the van der Waals interactions present (Ghatak
et al. 2004).

(4.19)
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Figure 5. 1y (w)/n, for different values of o (from top to bottom «= 15,20,25). We see that n,/n,
becomes negative for a> «, =21 and indicates the threshold for the onset of the undulatory
instability of the crack front. The corresponding value of the dimensionless wavenumber o, = 1.85.

5. Discussion

Our study illuminates the crucial role of geometric confinement in quasi-static
fracture problems. In particular, we show how a straight crack front may lose
stability in the plane of the interface due to a competition between bulk and
surface effects in the presence of multiple length-scales. This must be contrasted
with the instability of the crack plane itself to transverse out-of-plane
undulations in such examples as the sinusoidal cracking of a thin glass plate
(Yuse & Sano 1993; Adda-Bedia & Pomeau 1995).

In the context of adhesion of flexible plates to soft confined films, our analysis
allowed us to determine the equilibrium configuration of the straight front, as
well as the conditions for and the mechanism of the instability of a straight
crack to in-plane perturbations. In particular, we find that the equilibrium
position of the straight front does not depend on either the material properties
or the thickness of the adhesive film. Our analysis in this case generalizes the
classical analysis of Obreimoff (1930) for peeling a solid (mica) film from the
bulk material via cleavage by considering the case when the confinement
parameter « is not large. As the degree of confinement is increased, the normal
traction at the adhesive interface displays a secondary maximum behind the
crack front when a> oy, =9. The location of this secondary stress maximum
is essentially independent of the thickness of the film, with —z, H = 0.1(D/ ,u,)l/ 3
However, since —z, H << «, in the present case where the crack front is free to
move to its equilibrium position unhindered, the singularity at the crack tip
dominates the stress field and bubble nucleation does not occur. When
confinement is increased still further, we see the onset of an undulatory
instability of the crack occurring when «>a,=21, in agreement with
experiments (Ghatak et al. 2000; Ghatak & Chaudhury 2003). We find that
the wavelength of the instability scales linearly with the thickness H, consistent
with experiments, although there is a quantitative discrepancy with the actual
prefactor that shows a difference of about 15%, which may be due to the
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experimental difficulty of controlling the tangential slippage of the flexible plate
on the adhesive film.

On the other hand, when the crack tip is pinned at an edge of adhesive film
(e.g. Ghatak et al. 2004), the elastic layer spans the region X<0 only, and the
two effects conspire to change the qualitative nature of the stress field: the
crack tip is blunted and pinned strongly to the edge. This is consistent with
other experiments reported in Ghatak et al. (2004) where the effect of a change
in the angle of the edge that pins a crack was to change the relative importance
of pinning and the crack-tip stress singularity, leading to a suppression of the
tendency for bubble nucleation. This is also why the simple elastic lubrication
theory in Ghatak et al. (2004) that ignores the stress singularity at the crack tip
completely, but implicitly assumes that the crack is pinned at the edge of the
adhesive film yields criteria for bubble nucleation that compare well with
experiments (see figure 4), but cannot provide a critical value of the
confinement parameter oy, for bubble nucleation.

Taken together, these results show that by controlling confinement and crack
pinning, it is possible to quantitatively understand and thus tailor the toughness
of interfaces using simple geometric attributes. Much still remains to be
accomplished in theoretical, experimental and technological arenas.

We thank John Hinch for his many comments that helped to sharpen and clarify our arguments.
This work was supported by the Schlumberger Chair Fund at University of Cambridge (L.M.).
Laboratoire de Physique Statistique de I’Ecole Normale Supérieure is associated with the CNRS
(UMR 8550) and Universities Paris VI and Paris VII.

Appendix A. The Wiener—Hopf decomposition of D(K)

Here we present the method of decomposition of the function D(K) defined in
(2.46) for the zeroth- and first-order problem. Using the properties of the
function C(K) defined in (2.45), we define a new function F(K) such that

2D(K) 2C(K)

) = TR (=W T R (A1)
where
2
7_013—52.

The function E(K) is an even real function of K that satisfies E(0)=1 with
E(K)—1 as |K|— o. These properties allow to approximate F(K) using a
numerical scheme introduced by Liu & Marder (1991). We first define a new
variable [ such that

bl
= : A2
V1i—"P A2
Now the function E(l) is a bounded non-oscillatory function on [—1,1]. The
constant b is chosen such that E(l) is well behaved. The function E(l) is
approximated to any desired accuracy as a sum of Chebyshev polynomials. The
complex roots [, of F(l) are then found numerically. Using these results and the
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properties of the function F(l), we write E(I) in the following approximate form

N N 2 2
B =T[(F—2) = B(K) = ][ oot (A3

where
bl,,

R
We now use the property D(k)= D(—*k) so that it follows that
Dy (k) _ Dy (k)
Dy(=k)  Dy(k)
where the constant is arbitrary. The same property holds for the first-order decom-

position. Therefore, the Wiener—Hopf decomposition of the zeroth- and first-order
problem can now be carried out without any difficulty. For the zeroth order, one has

G (k) = \/y + ikEy (), (A 5)

(A 4)

=Dj (k) Dy (k) = Dy (=) Dy (—k) =

= const.,

od
= & r—RE (b), (A6)
where we have chosen the constant such that Dy (k) ~ v/ik for |k| — %, and
N .
I B, xik
Ey (k) = . A7
o =115 (A7)

For the first order, one has

Dr(k) = V72 + o + kB (k), (A8)
3
Df (k) = 2/ F 2 —ikE; (k) (A 9)

2
N 2 2 :
- VB, +w ik
Ef(k) =] (A 10)
n=1

where

V2 + 2 +ik

Finally, the quantities needed for computing the first-order calculations are given by

_1 = 2 - 2 2 _ /12 2
w)—§\/7 +w —1—2[\/6”—#&) -V + o, (A 11)
\/____—_. B2+ w+w
D (iw) = Y+ +<J)H\/WJr , (A 12)
w* + w

iDM (i) +i 1 (A13)
Dy (iw) 2V P+ 0t +w) o %-I-o) +w vb2+w2+w .
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