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ABSTRACT

Typical ejecta of classical nova explosions (thermonuclear runaways of accreted H/He
envelopes on the surfaces of a white dwarfs) are enriched in CNO and Ne, elements
that are not product of the nuclear reactions involved. We investigate how this en-
richment might originate from mixing of the white dwarf material (mainly composed
of CNO&Ne) to the He/H envelope, due to large-scale flow and gravity wave interac-
tion, prior to the explosion. In our simplified mixing model shear flow amplifies the
waves, which eventually form cusps and break. This wave breaking injects a spray of
C/O into the superincumbent H/He forming a layer with mixed material. Material
from this layer are mixed through out the white dwarfs envelope by convective mo-
tions. We perform an extensive study of the interaction shear flows with interfacial
gravity modes by (a) examining the stability properties of such flows using linear
theory, (b) investigating the evolution of marginally unstable modes using weakly
non-linear theory and (c) using two-dimensional numerical simulations to follow the
non-linear evolution of the system. Our results allow us to formulate a quantitative
expression for the amount of C/O per unit area that can be entrained into the H/He.
The fraction of the envelope that is enriched depends on the horizontal distribution of
shear velocity and the density contrast between the C/O white dwarf and the H/He
layer. Using this parameterization to model the mixed mass, we then perform several
one-dimensional Lagrangian calculations of an accreting white dwarf envelope. Our
final results indicate that the envelope can be enriched by ~ 25% of C/O by mass
(consistent with that observed in some ejecta) for shear velocities, over the surface,

with Mach numbers ~ 0.4.
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CHAPTER 1
INTRODUCTION

1.1 An astrophysical problem

Classical novae are a manifestation of thermonuclear runaways in accreted hydrogen
shells on the surfaces of white dwarf stars in close binary systems [1]. Compelling
observational data indicate that the material ejected by some classical novae can be
significantly enriched in C, N, O, and Ne, by 30% by mass or more ([1, 2]). Since the
abundance of CNO catalysts constrains the rate of energy release, such high levels
of CNO enrichment are required in the fastest novae [3], for which the hydrogen
burning reactions (via the CNO cycle) increase the entropy of the envelope faster
than it can adjust. It was recognized early that if some of the underlying white dwarf
matter! could be mixed into the accreted envelope prior to the final stages of the
thermonuclear runaway, then the explosion would be more energetic and the ejecta
more enriched in CNONe elements [4]. One-dimensional models that best reproduce
observations typically accrete material “seeded” with a super-solar composition [5, 6].

The question of how the accreted envelope is enriched has challenged theory for
several decades [2]. For very slow accretion (< 10710Mg yr=1), the downward dif-
fusion of H into the underlying C/O or O/Ne layers [7, 8] could trigger ignition in
the H diffusive tail and drive convective mixing of heavy elements into the envelope
during the early stages of runaway. It is unclear, however, whether there is time at
higher accretion rates for this process to be relevant.

The general problem of shear mixing was considered by many [9, 10, 11], but to

date no self-consistent calculations of these effects have been performed. Kippenhahn

1. By “white dwarf,” we mean the predominantly C/O substrate; we shall refer to the accumu-
lated H/He layer as the “atmosphere” or “envelope.”

1
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& Thomas (1978) [9] considered shearing from differential rotation in the envelope and
estimated the amount of mass mixed by assuming that the envelope was marginally
stable according to the Richardson criterion. MacDonald (1983) [10] considered non-
axisymmetric perturbations and the resulting redistribution of matter and angular
momentum. Fujimoto (1988) [11] emphasized the role of barotropic and baroclinic
instabilities in transporting angular momentum through the envelope. A variation
on this was envisaged by Sparks & Kutter (1987) [12] and [13] (1989), who suggested
that convection just prior to the runaway would transport angular momentum inward
and lead to a large horizontal shear above the C/O white dwarf. However, all these
estimates were based on linear-theory arguments and assumptions that cannot be
justified a priori.

The possibility of mixing via convective overshoot was first considered by Woosley
(1986) [14]. Numerical simulations of convective penetration and mixing at the core-
envelope interface have been carried out in both two dimensions [15, 16] and three [17].
From comparisons of two- and three-dimensional simulations and a careful resolution
study, Kercek et al. (1998,1999) [16, 17] concluded that convective penetration would
not significantly enrich the accreted envelope. In particular, the resolution studies
showed less mixing as grid resolution was increased. This can be readily understood if
the boundary layer between the stellar surface and the accreted (convecting) envelope
is laminar: in that case, since diffusivity in these simulations is numerical, increased
resolution would lead to less mixing as the grid resolution is increased. The above
argument depends entirely on the assertion that the boundary layer is laminar: if
it were turbulent instead, mixing is expected become independent of the viscosity
and diffusivity. However, presently attainable numerical resolutions cannot resolve
a turbulent boundary layer while capturing the large scale astrophysical flows. For

this reason, we have recently re-examined the physics of boundary layer shear flow
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mixing[18, 19, 20, 21, 22|. The question we sought to answer is whether we can
understand the physics involved in a turbulent boundary layer and model its mixing

properties in order to feed back the larger scale numerical simulations.

1.2 An oceanographic problem

Before examining directly the astrophysical problem it is worth looking at a similar
problem in oceanography, ie. the mixing of vapor from the ocean in the atmosphere.
It is well known [23] that this process of mixing is largely governed by the formation
and breaking of interfacial gravity waves that have been amplified by the wind. The
generation of surface waves by winds has been a problem under study for well over
a century. Helmholtz [24] and Lord Kelvin [25] investigated the stability of fluid
interfaces using a simple model of a step function wind shear profile. It was noticed
early on that the Kelvin-Helmholtz theory (from now on KH) predicted a minimum
velocity of the wind for the instability to occur that did not agree with observations
in the ocean [26]. This puzzle was resolved with the work of Miles (1957)[27], which
showed that waves can be amplified by a resonant mechanism. Detailed calculations
of linear theory, using a more realistic wind profile than KH, show that there is an
influx of energy from the wind to the gravity wave as long as there is a height at
which the wind velocity equals the phase velocity of the gravity wave [27, 28]. At
this height, the linear eigenvalue problem is singular and a layer known as the critical
layer is formed. The formation of this critical layer allows the pressure perturbation
to be in phase with the slope of the wave rather than its trough, thus driving the
wave unstable. Vortices therefore that travel with the same velocity as the wave
(resonant condition) amplify it. The resulting minimum velocity to excite gravity

waves is smaller by a factor of /p1/ps than the minimum velocity obtained by KH



theory and is in much better agreement with experiments and observations.

Although, the generation of gravity waves seems to be well understood in oceanog-
raphy, their non-linear evolution is a problem of on-going research. Of particular
interest is answering the questions, how the presence of waves change the wind pro-
file, what is the exact process that leads to wave breaking, and what is the resulting
amount of vapor mixed. The different time-scales and length scales involved in such
a system makes the answer to these questions a challenging one.

Returning to the astrophysical problem it is clear that in order to understand
mixing from a shear boundary layer in this terrestrial environment the physics of the
critical layer instabilities, like in the oceanography case, have to be included. However
the oceanographic work was largely confined to the parameter regime characteristic
of the water/air interface; (ie. very small density ratio), while in the astrophysical
problem we are considering the density ratio is of order one. In order therefore, to
model correctly the the mixing, we need to perform a systematic study of the critical

layer instability.

1.3 A mixing Model

Before investigating the properties of shear boundary layer mixing we describe a
simplified model to guide our research. Consider a ‘wind’ originating either from the
accretion process, or from convection at the base of the envelope. The interaction of
the wind with the gravity waves will lead to the formation of a mixed layer at the
base of the envelope. Material from this mixed layer can spread out through out the
envelope by penetrating convecting roles. Figure 1.1 demonstrates this model.

Let us further assume that the mixing properties of a turbulent boundary layer are

known, and that turbulent mixing results on a time scale 7,,,; in a layer of thickness



Mixed Layer

Figure 1.1: A diagram describing the mixing model.

Ay in which an amount of m,,; of mass from the lower fluid (C/O) has been
mixed. Additional mixing is prevented by the stabilization of the flow due to the
additional density (chemical) stratification. The time scale on which the boundary
mixing layer is swept out by large scale flows (i.e. a penetrating convective roll), is
just 7, ¢ ~ A/U; g where A and U are the characteristic length scale and velocity of
the large-scale circulation. If the time scale 7,, ; is smaller than the “sweep-out time”
T, 5. then the rate of mixing is going to be controlled by the large scale flows and is
going to be given by MC/O = My, /7. If on the other hand 7,,, is larger than
7. s the rate of mixing is going to be controlled by the boundary layer mixing rate,
MC 10 = Myp, /Ty - The accretion process itself lasts for 7, ~ 10* years while
convection starts a few months before the runaway (7,,,,). We would like therefore

or 7, ) a sufficient amount of C'/O has been mixed. If

to know if in this time (7,,, o

for example convection is driving the mixing the total amount of mass mixed would



be:
MC/O = MC/OTconv = Tcom}mM.L./ Inin{7-L.S.’ 7—M.L.})
If therefore we could measure My and 7y from numerical simulations of a turbu-

lent boundary layer and 7;  from numerical simulations of the large scale flows we

can give an estimate of the amount of mass mixed by shear mixing.



CHAPTER 2
LINEAR THEORY

2.1 Introduction

Linear theory is always to be examined first in the study of an instability. Although
it is not informative about the fully nonlinear structures the system develops, it
imposes constraints on the spectrum of the unstable modes and determines the time
scales involved given by the linear growth rate. The stability of fluid interfaces in the
presence of shear flows has been studied for almost half a century; and was largely
motivated by the problem of accounting for observations of surface water waves in
the presence of winds. As early as the 1950’s, it was realized that classical Kelvin-
Helmholtz instability [29] could not account for the observed water waves (cf. [27, 28]),
and efforts were initiated to study the full range of possible unstable modes via which
interfaces such as represented by the water/air interface could become unstable. By
the early 1960’s, the basic mechanism was understood, largely on the basis of work
by Miles [30, 31, 32] and Howard [33]: It was discovered that interfacial waves for
which gravity provided the restoring force (e.g., waves that can be identified with
so-called deep water waves) can be driven unstable via a resonant interaction with
the ambient wind; this work was also one of the first applications in which resonant
(or critical) layers played an essential role in both the physics and the mathematics.
Work carried out at that time showed that the precise form of the vertical wind shear
profile was critical to the nature of the instability; typically, it was assumed that the
wind immediately above the water surface could be characterized by a logarithmic
profile of the form

U(z) = Up + Ujpg log(y/d + 1) , (2.1)
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where Uy, is the velocity jump (if any) at the water/air interface, y is the vertical coor-
dinate (with y = 0 marking the initial water-air interface), and J is the characteristic

1 The idea was then to demonstrate that

scale length of the shear flow in the air.
surface gravity waves whose phase speed is given by ¢ = /g AA; (g the gravitational
acceleration, A the perturbation mode wavelength, and A; = (p2 — p1)/(p2 + p1) the
Atwood number for a density interface between fluids of density p; [upper fluid] and
p2 [lower fluid], with p; < pg) can couple to this wind profile at a height z where
¢ ~ U(z). At the time, it was not possible to construct a self-consistent descrip-
tion of the problem, such that a logarithmic wind profile automatically emerged from
the analysis; and much of subsequent work has focused on establishing the nature
of this wind shear profile (e.g., [34]). Finally, we note that these studies have since
been applied to a number of other contexts, including especially shear flows in atmo-
spheric boundary layers, where they have been extensively expanded, including into
the weakly compressible regime [35].

However, the earlier work, motivated by oceanography was largely focused on the
case of very large density differences between the two fluids separated by an interface,
and primarily considered the fully incompressible case (the weakly compressible case
has been considered by [35]). Our aim is therefore to generalize to arbitrary density

ratios, and to the compressible case.

1. Such velocity profiles are commonly observed in the boundary layer of winds blowing over the
surface of extensive bodies of water; cf. Miles (1957).



2.2 Formulation

2.2.1 The general problem

We consider a two-dimensional flow with = the horizontal direction and y the vertical.
The system consists a layer of light fluid (density p1) on top of a layer of heavy fluid
(density p2). In most of our analysis p; and pg are constant in each layer, and in the
most general scenario both layers can be stratified (densities are functions of y). The
two layers are separated by an interface given by y = h(z;t), which initially is taken
to be flat (y = h(x;0) = 0). The upper layer (p1) is moving with velocity U(y) in
the x direction parallel to the initial flat interface, while the lower layer (p2) remains
still.

As already mentioned, the instability of such stratified shear flow has been in-
vestigated (cf. [27, 33]), albeit under limited physical circumstances. We study this
problem in full generality, allowing for a variety of effects (including broad ranges in
the values of the Atwood number/gravity and in compressibility) with the motiva-
tion that one can establish the role of the relevant instabilities under more general
astrophysical circumstances.

A wind (shear flow) is assumed to flow only in the layer of light fluid (p1) and
is zero in the heavy fluid (pg). Within each layer, the governing equations are the

continuity equation

dp+ V- (pu) =0, (2.2)

and the two-dimensional Euler equation

poru+ pu-Vu = —-VP + pg. (2.3)
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The equation of state closes the system, which is expressed in dynamical terms:

_DP  4PDp

VP = — =
(O +u-V) D Dt

(2.4)

where v is the polytropic exponent. The background density and pressure are in
hydrostatic equilibrium, 0yP, = —pog. The basic state is then defined by a shear
flow U(y) in the upper layer, and hydrostatic pressure (P,) and density profiles (po).

We perturb around this basic state

/

u=U@)i+v, p=p(y)+p, P=Poly)+p, (2.5)

and study the growth of the perturbations (primed variables). From equation 2.4,
the density and pressure perturbations satisfy the relation.
Dp) _ oD/

2
Dt CSD—t + w,(gpo + Csaypo)a (2.6)

where w' is the vertical component of the perturbation velocity, ¢ is the gravita-
tional acceleration, and c¢s = /vPy/po is the sound speed for the background state.

k(x_Ct), we obtain the lin-

Upon expanding the perturbations in normal modes ¢t
earized equations in the perturbation quantities (where we have dropped the primes

for convenience):

ik(U—cu +wUy = —ikpylp,

ik(U - cw =P Dy — P 9P, e
ik(U—c)p = —po(iku +wy) — wpoy ,

ik(U=c)p —wgpo =c2 (ik(U = c)p+wpoy) -

Here we have used the standard notational device of comma-prefaced subscripts
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to denote partial derivatives, e.g.,

fae=0f/0x.

The above equations 2.6 form an eigenvalue problem for the complex number ¢. One
immediately sees that the incompressibility condition V - 4 = 0 can be obtained
by taking the limit ¢g — oo. Our problem simplifies greatly with this assumption.
Therefore we first present our results for the incompressible case, and then examine

how compressibility modifies the stability properties.

2.2.2 The incompressible case

For the incompressible case our analysis simplifies if we define a stream function ¥

such that v = dy¥ and w = —9; V. The 2-D Euler 2.3 equation thus reads
HV2V — U VI, + U V0, =0, y#£h (2.8)

The total stream function ¥ = Wy + ¢ consists of a background stream function
¥y = [§ U(z)dz and a perturbation ¢ = é(y)etk(@=ct) Tgnoring the non-linear terms

in 7 in equation 2.2.2 We obtain the well-studied Rayleigh equation,

Sy — (K + M)ﬁﬁ = 0. (2.9)

The boundary conditions at the interface for the continuity of the normal component

of the velocity and pressure are:

(U—-c)h—¢T = 0, (2.10)
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Alpi((U = )gy = Uyd)l + gh(p1 = p2), (2.11)

where A indicates the difference across the interface and A is the amplitude of the

perturbed interface, h = heik(z—ct)

2.2.8 The compressible case

When the sound speed c¢g is comparable to the background shear flow and/or the
density stratification is non-negligible on the scales of interests the incompressible flow
approximation is not valid and the full set of equations 2.7 needs to be considered.

By eliminating p and v we obtain the following equations:

po(k2UZ + gkg + gks)w = ikUg(0y + kg)p,

(2.12)
ik} (UE/c2 — 1)p = pok(kgUq + Ug.y — Ugdy)w,

where Uy = U — c is the Galilean-transformed velocity in the reference frame of
the wave, ks = poy/po is the inverse stratification length scale, and kg = g/c2. We

further simplify the equations by applying the transformation [36]
1~ . - . y
p=F""5 w=iUgaf, fo=pof* with f=eloksl2dz
Equations 2.12 are then rewritten in terms of these new variables as follows:

P(kEUE + ghg + gks)q = kpy,

(2.13)
R(-U2/2) = pokUZay,
which can be combined to give [35]
ﬁOUg:q,y < 12772
Oy 1_712/.2 —po[k UG‘*‘Q(ks-l-kg)]q:O- (2.14)
1- UG/Cs
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We re-write the above equation into canonical form. The resulting equation is sim-

ilar to the Rayleigh equation for the incompressible flow, except for an additional
. . ~2

stratification term —g(ks + kg)/Ugé:

ks + kg UGy

“2‘*‘9[30 5 T =
UG Ug

Oyy — p=0 (2.15)

where 2 = k2 (1 - Ug/cg), Ug = kUgv/Po/k and ¢ = qUg/k. Tt can be shown that

the stratified Rayleigh equation can be recovered by taking the limit of ¢y — oc.

k 62(UG\/00)
B¢ — |k + g+ LTV =0 2.16

Furthermore, we recover the unstratified Rayleigh equation in the same limit, if kg +

kg = 0 (which corresponds to an adiabatic atmosphere, as we will show later on).

Finally, the boundary conditions at the interface are expressed in terms of fJG and ¢:
_oT ¢

_e_? 92.17
q UE UG (2.17)

using the continuity of ¢ and integrating 2.14 across the interface we obtain
AlUgsy — (Ug,y)é — 958/ Ug] = 0. (2.18)

2.2.4 Wind profiles

In general, it is not trivial to determine the wind profile: strictly speaking, the wind
profile should be determined as part of the solution of the evolution equation for the
wind shear interface. However, it has been customary to simplify the problem by

assuming an a a priori analytical form for the wind profile, and to use this in order
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a) U b) U(y) 0) U(y)
g = g g
- é—,
P, — P, vy P
3 R P,

Figure 2.1: Different wind profiles assumed for the generation of gravity waves. (a)
Kelvin-Helmholtz step function wind profile, (b) logarithmic wind profile with dis-
continuity, (¢) a bounded wind profile.

to study the stability properties of the interface; thus, Miles [27] used a logarithmic
wind profile from turbulent boundary layer theory to model the wind profile in the
air over the ocean. In this example, the turbulence level in the wind is simply defined
by the scale height of the wind profile, which in turn simply depends on how “rough”
the boundary is.

In our formulation we shall also assume the wind profile to be of simple form, and
scale distance with respect to the length scale of the wind boundary layer. In order to
explore the sensitivity of our results to the nature of this wind boundary layer, we will
examine two different kinds of wind profiles: the first is the logarithmic wind profile
U(y) = Up + Uypg log(y/d+ 1), which is derived from turbulent boundary layer theory
for the average flow above the sea surface; the second kind is given by bounded wind
profiles like U(y) = Umax tanh(y/6) or U(y) = Umax(1 — exp(—y/d)), which have the
more realistic feature of reaching a constant finite flow speed above the interface. A
sketch of the wind profiles are shown in figure 2.1. Panel (a) shows the wind profile
envisioned by Kelvin and Helmholtz, panel (b) shows a logarithmic wind profile with

a velocity jump at the interface and panel (c¢) shows a bounded wind profile. We
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note here, that in oceanography the exact shape of the wind profile can be measured
and theoretical predictions of the wave growth rates can be directly compared with
observations, thus a logarithmic profile that fits the wind profile measurements is
more relevant. On the other hand for the astrophysical problem only estimates of
the maximum velocity of the wind can be made and therefore information about the

instability of a bounded wind profile is of more practical use.

2.3 Linear analysis: incompressible case

We start with the stability analysis of the incompressible case with constant densities
in the two layers. The fluid is described by the Rayleigh equation 2.9 within each
layer. We solve the following equation in each layer:

Uyy

Pyy — (/f2 + m)¢ =0,  Blystoo =0, (2.19)

with boundary condition at y = 0 (including the surface tension term)

pakc® = p1[(U = )2y — (U — )Uy| — g(p2 — p1) — ok® =0, (2.20)

where o is the surface tension and we have normalized ¢ by setting ¢|,—¢ = 1.
We scale lengths by 6, the characteristic length of the wind profile 2 and the
velocity by the reference velocity Ulpg or Umax. The dimensionless equation thus

reads

v
¢,yy - (K2 + V,fyycf)gb =0, ¢|y=0 =1, ¢|y=oo =0; (221)

2. In oceanography, such a length scale is referred to as the “roughness” of the wind profile.
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and the boundary condition at the interface now becomes
KC?—r[(Vo— C) by — (Vo — C)V,y| - G(1 = 1) = TK? =0. (2.22)

where C' = ¢/Uy, K = ki, G = g/U%a, Vo = U(0)/Uy, r = p1/p2, and T =
o/ (8U2p).

For a given wind profile, the system then is characterized by the four parameters
(Vo, G, 7, T). We are mainly going to focus on the case V; = 0 and refer the reader
to [19] for the Vg # 0 case. Parameter G is a measure of the wind strength (G is
related to the Froude number as G = F~2). In the case of accretion flow on the
surface of a white dwarf G ~ 1, while in the case of oceanic waves driven by winds,
0.01 < G < 1.0. Table 2.1 lists the values of G for a variety of physical conditions.

The aim of our linear analysis then is to find the value of C' in the complex plane
as a function of these 4 parameters, and to establish the stability boundaries in the
space (K, G,r,T); note that in our convention, I{C'} > 0 implies instability (where

3{-} refers to taking the imaginary part).

2.8.1 Kelvin-Helmholtz and Critical Layer instability

First we give a short summary of the KH instability that can be obtained in our
present setup by setting Uy = 0 ( see figure 2.1) . In this setup the phase velocity of

the waves is given by [29]:

_ k‘2
e P |8 <p2 pL o ) __ne g (2.23)
p1+ p2 k\p1+p2  glp1+p2) (p1+ p2)
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Instability is present if the argument inside the square root is negative. In the absence

of surface tension the unstable wave numbers satisfy:

k> g(p5 — p1)/ (U p1p2) (2.24)

while in the presence of unstable wave numbers we have instability if

pP1+ P2

Ug > 2
P1P2

og(p2 — p1) (2.25)

As we show next the resonant instability has a much different behavior. We first
make some general remarks about the set of equations 2.21 - 2.22 are required. We
observe that in the inviscid limit, if C' is an eigenvalue, then so is C*; therefore we will
have a stable wave only if ${C} = 0. If that is the case, then at the height where V. =
V(yer) = C (assuming such a height exists) the Rayleigh equation has a singularity;
this location y = y¢r is called the critical layer, and is well-discussed in the literature
[38, 37] The existence of such a critical layer is crucial for the presence of instability.
One can prove (A.1) that our system can be unstable only if C, = R{C} < Vjpax
and further more R{C}% + {C}? < V2... This last result is known as Howard’s
semi-circle theorem [33] and it was proven for smooth velocity and density profiles,
however it is easy to show that it holds for our case too (A.1).

The solutions of 2.21 near the critical layer for small or zero C; have a singular
behavior. The solution close to the point where y = y. can be given in terms of the

two Frobenius solutions:

ba =2+ <ﬂ> 24, (2.26)
cr
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K Vi | Vi P Vy
¢b:1+(7+ﬂ+‘/—5 Al S V—y cr¢a(z)log|z|, (2.27)
2 c/r' )

where z = y — 1y (subscript ¢r means “evaluated at the critical point”). The singular
behavior appears in the first derivative of ¢;. The singularity is removed either
because C; # 0, in which case the Frobenius solutions have the same form but y¢,
is now complex (so z never becomes zero); or because viscosity becomes important
in this narrow region, in which case the inner solution can be expressed in terms
of generalized Airy functions [38]. In either case, the basic result is that there is a
phase change across the critical layer, by which we mean that if ¢ = a¢gq + bop is
the solution for the stream function above the critical layer, then the solution below
would be ¢ = (a + iwb)pq + by in the previous formula. Physically this means that
the perturbation wave above the critical layer is not in phase with the wave below
this layer. Moreover, when we apply the boundary conditions at the interface, since
Oy¢|o is now in general complex, the solution of equation 2.22 will give a complex
value of C. That is, the pressure gradient reaches minimum value not on top of the
crests, but rather in front of the crests, where gravity does not act as effectively as a
restoring force. In particular, the destabilizing force is now non-zero at the nodes of
the boundary displacement field (i.e., where h = 0), where the gravitational restoring
force vanishes, but where the vertical velocity of the interface is maximum; thus, the
forcing resembles pushing a pendulum at its point of maximum velocity but minimum
displacement.

Having discussed the physical mechanisms for destabilization, we now turn to
the implications for our choices of initial wind profiles. If we use the logarithmic
wind profile, we obtain unstable waves for all wavenumbers because log(y + 1) is an
unbounded function, therefore a point y where C; = V(y) exists for every value of Cj..

This however is not true for the tanh wind profile. Because waves with C > Vipax are



19

stable and C; (in the absence of surface tension) is a decreasing function of K, there
must be a lower bound on K, K,,;,, so that waves with K < K,,;,, are stable, and
unstable otherwise. The value of K,,;,, in general will depend on the exact form of
the wind profile. In appendix A.2 we find the exact value of K,;,, for a wind profile

of the form V =1 —e7Y,

GA—r)+r—r/(GL—7)+7)2+ (1 —12)
1 — 72

Kpin = (2.28)
The stability bound comes from the modes that have phase velocity C = 1 (ie.
¢ = Uy), in which case the solution of equation (2.36) becomes ¢ = e~ ¥ with
k =1+ K2. Applying the boundary conditions leads to the result above 2.28. We
note that, unlike the Kelvin-Helmholtz case, in the limit » — 0, K,,;,, remains finite
and equal to G (however, the growth rate goes to 0 linearly with r i.e., KC; ~ r);
this confirms that for small density ratios CL-modes dominate. Finally by writing the
wind profile in its dimensional form U = U (1 — e~%/9) and taking the limit § — 0
(which takes the wind profile to the limiting form of a step-function, U = U for
y > 0 and Uy = 0 otherwise) we get kpin = g(1 — 7)/U? which is different from the
result Kelvin-Helmholtz instability gives. This stability boundary illustrated in figure
2.2 where it is compared with the one for KH instability. The unstable modes can
be further restricted if we assume the presence of surface tension or magnetic fields.
This will lead to the additional term 7K?2 in boundary condition at the interface,
where T = o /(paU2l) and o is the surface tension3. Then the unstable modes lie in

the region K,,;;, < K < Kmax, where K,,;, and Kpax are given by the positive real

3. We note that a magnetic field whose direction is aligned with the interface will have the same
effect as surface tension, with o(K) = B2/(2ruK) [29].



20

2.0 Unstable

1.5+
—— KH
Q [
«> 1.0
X

0.5

* Stable
0.0!

0.0 0.2 0.4 0.6 0.8 1.0
P41/ P2

Figure 2.2: Stability diagram in the r = py/p9, k space for the KH-instability (red
line) and for the critical layer instability for three different values of G (blue lines).
Note that we scaled k£ with the length scale U% /g which is independent of ¢ so that
the boundaries of the two instabilities can be compared.
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solutions of

K+r/1+K2—(GA—r)+r+TK2?) =0. (2.29)

Furthermore, there is a value of 7 below which the above equation has no positive real
solutions, and therefore no unstable modes exist. The physics behind these bounds
is simple: In order for a mode to become unstable for the above wind profile, the
phase velocity of the wave must lie in the range 0 < ¢ < Upax. With the inclusion
of surface tension, the phase velocity is not monotonically decreasing with K, but
rather increases without bound for large K. This leaves only a finite region in K
space with phase velocity smaller than Uy,ax; moreover, if the surface tension is large
enough, the minimum phase velocity is larger than Upax, and therefore no unstable
mode exists. For large G > 1, which is the limit we investigate in the next chapter,
equation 2.29 implies that for instability we must have 47G < (r +1)2/(1 — 7). In

the limit 7 — 0 the condition for instability becomes TG < 1/4 to zeroth order in r.

2.8.2 Small density ratio

We are now ready to present results from the linear analysis for the logarithmic and
the bounded wind profiles. The existing literature has primarily covered the case of
small r, with the other parameters assumed to be of order one. In contrast, we are
interested in covering a wider range of the control parameters, and thus provide a
complete description of the full dispersion relation C' = C'(K). We therefore briefly
summarize Miles’ results and move on to the general case.

Assuming the mass density ratio r is a small number (which is true for the air

over water case) and the other parameters are of order one, Miles [27] expanded the
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eigenfunction and the wave velocity C with respect to r
b=go+ro1+1200+..., C=Co+rCi+r2Cot...;  (2.30)

one then obtains the zeroth order solution as a linear gravity wave with constant

amplitude and phase speed Cy = /G/K. At first order O(r), one finds

v
— (K% = 2.31

¢O,yy ( + Vo — C()> b0 0, ( 3 )

2KCyCr — (Vp — Co)2¢()7y +Vy—-Cp)+G = 0. (2.32)

The asymptotic expansion breaks down at the critical point y = y¢r since to first
order Cy is real. Using the phase change of “im rule” across the critical layer from
theory [37],[38], Miles obtains the growth rate of the perturbation at leading order in

T
1

I(C1) = 5K

Vo —Co)? (V,
(= CoPateny) = —r R (J) gt (23

where the last relation is obtained by multiplying equation 2.21 with the complex
conjugate of ¢ and taking the principal value integral, with the contour going below
the singularity; the subscript “cr” means evaluated at the critical point.

The dispersion relation S{C(K)} is shown in figure 2.3a,b for the logarithmic
and for the tanh wind profile for various values of G. The only difference between
the two wind profiles appears at small wavenumbers: the tanh wind profile (whose
asymptotic wind speed is bounded) does not permit waves traveling faster than the
wind to become unstable. For this reason there is a cut-off which can be found in our

small r approximation to be at K = GG for the tanh wind profile.
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Figure 2.3: The imaginary part of C' as a function of the wave number for density
ratio 7 = 1073, Panel (a) is for a logarithmic wind profile and panel (b) is for a tanh
wind profile.

2.8.8 Large density ratio

For large density ratio, we solve the system of equations 2.21-2.22 directly. We focus
on the instability properties of special interest, such as the maximum growth rate,
the wavelength of the fastest growing mode, and the dependence of the the stability
boundaries on the parameters of the model. We solve equations 2.21- 2.22 numerically
using a Newton-Ralphson method. We present results in figures 2.4 and 2.5. The
plots suggest that for small enough r the dependence on r is linear (e.g. the » = 0.001
case is proportional to the » = 0.01 case by a factor of 10.0). For larger values of
r the dependence is stronger than linear, and the smaller K’ modes seem to become

more unstable.

2.3.4 General features of the CL instability

The main goal of our linear theory analysis is to establish the relevance of the
critical-layer instability under various astrophysical or geophysical conditions. With
this motivation in mind, we show here how the growth rate behaves as functions of

the physical parameters G and r.



24

0.003

0.002

Im{C}

Im{C}

0.001 [~

0.000 ESsaaaiyas

Figure 2.4: The Imaginary part of C as a function of the wavenumber for a logarithmic
wind profile and (a) » = 0.01, (b) r = 0.1 and (¢) » = 0.5.
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Figure 2.5: The Imaginary part of C' as a function of the wavenumber for a tanh wind
profile and (a) » = 0.01, (b) » = 0.1 and (c) r = 0.5.
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Figure 2.6: Growth rate of the fastest growing mode as a function of G (a) logarithmic
wing profile, (b) tanh wind profile.
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In figures 2.6a-b we have plotted the maximum growth rate v = S{CK }nax
of the perturbation as a function of the control parameter GG for the wind profiles
(logarithmic and tanh) and for different values of r. It is clear in all cases that there
is an exponential dependence on G for G > 1. This might be expected because
increasing gravity leads to an increase of the real part of C'; therefore the imaginary
part of ¢, that falls exponentially with the distance from the critical layer, will have
an exponentially smaller component at the interface. In appendix A.3, we carry out
an asymptotic analysis for large G for the wind profile U = Upax(1 — e~ Y/ 6), and
derive this exponential dependence. More specifically, the growth rate of the most

unstable mode is found to be
max(K Im {C}) ~ e~ 24mAG (2.34)

where weaker algebraic dependencies have been ignored here; ¢, ~ 2.45... is the
root of a transcendental equation. The zeroth order of the real part of the phase
speed C'is Re{C} = 1/A;G/K. The exact formula is given in the Appendix (A.3).
As is shown there, the stream function ¥ below the critical layer is composed of
an exponentially increasing and an exponentially decreasing component. Since the
boundary condition must be satisfied, the exponentially large component must be in
phase with h, which leaves us with the exponentially small, out of phase, component
to drive the wave unstable. Further calculation then leads to the result given above.
In figure 2.7 we show a comparison of the asymptotic results with the ones predicted
numerically. A similar behavior is expected for other wind profiles but we do not

pursue the asymptotic analysis further here.
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Figure 2.7: A comparison of the asymptotic exponential dependence of the maximum
growth rate (blue lines) with G with numerical results (red diamonds); for the wind
profile U(y) = U1 (1 — exp(y/9)).

2.4 Surface Tension

For the sake of completeness, we have also examined the case in which surface tension
at the density interface is included®. We again assume a wind shear profile of the
form log(y + 1) and tanh(y). The only change in our set of equations to solve is then

an additional term in the boundary condition, equation 2.22. Hence

KC? —r[(Vo - C)%¢y — (Vo — C)V| - G(1 =) = TK? =0, (2.35)

where T = 0/(6p2U?)) and o is the surface tension (¢ = B2/(2ruK)) for the case of
the magnetic field [29]). We show the resulting solutions, namely the dispersion rela-
tions, in figures 2.8a-b. As expected tension decreases the growth rate and becomes

important only in large wavenumbers.

4. We note that a magnetic field in the lower fluid aligned with the flow, would lead to an
equivalent treatment.
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Figure 2.8: The imaginary part of C' for G = 0.5, r = 0.01 and different values of the
surface tension. (a) logarithmic wing profile, (b) tanh wind profile.

An important result, is that in the small density ratio limit, the real part of C
(to zeroth order in 7) is Cy = \/m which has its minimum value Cpy, =
V2(GT)Y/* at K = \/G/T. Thus, for the case of a bounded wind profile (such as
the tanh profile) there is a minimum value of Upyax, given by Chuin, so that a critical
layer can exist. We remind the reader that a similar minimum velocity bound also

exists for the Kelvin-Helmholtz instability, and is given by

2
U>.,|l- 97 650 cm/sec
r\ p2

where we have retained only terms of first order in r. For the CL case we have instead

U>.,|2 99 ~ 20 cm/sec
P2

which differs from the previous bound by a factor of /7. (The numerical values shown
here are derived for the case of air blowing over water.) This illustrates the fact that
for low wind conditions, the CL instability dominates the KH instability for driving

water surface waves.
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2.5 Compressible case

Finally we consider the compressible case. We will consider a compressible fluid
in the upper layer with sound speed cs(y) and an incompressible fluid below. The

dimensionless equations we have to solve now are:

i Ks+K, V
by — |2 +G—L Sf; g4 2G| g = (2.36)
p‘y=0+ VG VG
KC? —r[VE¢y — 0yVey| — GO —1) =0 (2.37)
where
V2 pPy0
and
~ KVG\/ﬁ/p‘y:(]"' .
VG = K Wlth r= p|y:0+/p|y:07

We will assume for simplicity an adiabatic atmosphere,

1—
P = ply=0+ (1 —(v—= 1)7'0;092/) (2.38)
o\?
P = Py (-) . (2.39)
Po

This assumption, which is commonly used in the atmospheric sciences to simplify the
physics involved, has the advantage that Ky + Ks = 0, so our equation becomes by
one order less singular, and therefore easier to solve.

We will not deal here with supersonic flows since in most astrophysical realms

in which interfacial wave generation plays an important role (viz., on white dwarf
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Figure 2.9: The imaginary part of C' for the tanh wind profile, = 0.1 and (a)
G = 0.1, (b) G = 0.01 and different values of sound speed.

surfaces) the relevant flows are thought to be subsonic; for this reason we will consider
only the tanh wind profile. We shall also deal with small values of G, so that the
pressure scale height is large and the breakdown of the adiabatic assumption at values
of y ~ K71 will not affect us either.

The dispersion relation for different values of Cg and for a tanh wind profile is
given in figures 2.9a,b. Compressibility, as it can be seen from the figures, decreases
the growth rate. This is an expected result, since our system has now more degrees
of freedom (e.g., now the perturbation stores thermal energy as well). We conclude,
however, that the deviation from the incompressible case is not very large, even for

relatively strong (but still subsonic) winds.

2.6 Summary of linear theory

In this chapter we have explored the linear instability properties of wind shear layers
in the presence of gravitational stratification. Our principal aim was to explore the full
parameter space of the solutions, defined by the three parameters K (the perturbation

wavenumber), G, and r (the density ratio). For generality purposes we examined
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three different wind profiles. The only notable difference, is between the unbounded
(logarithmic) wind profile and the bounded wind profiles ( 1-exp(y/d) and tanh(y/J)
) at small wave numbers. However the difference originates from the nonphysical
increase of the wind velocity at high altitudes where the boundary layer theory (that
the logarithmic wind profile is derived from) does not longer apply.

We have constructed stability boundaries for the instability, and determined the
dependence of these boundaries on the given parameters. As we discuss later, the
non-linear development of the instability (and therefore mixing) will crucially depend
on the kind of modes that become unstable; therefore an investigation of the stability
boundaries is necessary before the study of the nonlinear regime. An important result
also derived from our analysis, allowing us to make predictions on the importance of
the instability and on the nonlinear development, is the scaling of the growth rate
with the parameters G and r in §2.3.4. Clearly for A;G' > 1 strong mixing is not
expected. Finally we investigated the effects of surface tension and compressibility.
With the inclusion of surface tension, we obtained a bound on the velocity for the
instability to exist. We also found that for subsonic winds the instability weakly
depends on the Mach number.

As we have shown, there are significant differences between the CL and the KH
modes, both in the parameter ranges in which the instability can occur (e.g., the
stability boundaries) and in the magnitude of the growth rate; these differences can
be expected to result in different nonlinear evolution of the underlying physical sys-
tem. For example, it is well-known that CL instability in the air over water case
is responsible for generating waves for winds of magnitude below the threshold for

which Kelvin-Helmholtz instability exists [27].



Table 2.1: Approximate range for parameter GG in three different situations.
Ui(cms™!) gems™2  dem™! G
ocean 102 ~ 103 103 10~102 1071~1
Sun’s surface | 102 ~ 10° 1043 106 ~ 107 1013 ~ 1063
WD 10% ~ 107 108 103 ~ 109 1~ 10




CHAPTER 3
WEAKLY NON-LINEAR THEORY

3.1 Introduction

In this chapter, we uncover the non-linear evolution of wind-driven surface waves by
examining their finite-amplitude evolution using an asymptotic expansion. There are
a number of alternatives for studying the nonlinear behavior of wind-driven surface
waves, such as for example turbulent modeling of the wind-wave coupling [39, 40, 41];
our focus is instead on weakly non-linear theory because we seek a first-principles
understanding of the effects of nonlinearities as the wave amplitude emerges from the
linear regime. We further note here that the weakly non-linear theory for the KH
instability has already been derived by [42]; and that a Ginzburg-Landau equation
was also derived for viscous flow by [43] and [44] for cases where viscous dissipation
dominates in saturating the gravity wave amplitude. However, classical finite ampli-
tude analysis in the weakly nonlinear limit cannot be applied straightforwardly to our
problem because of the presence of critical layers: Due to the singularity that appear
in the linear theory at the point where the phase speed of a surface wave matches
the wind speed, higher order terms in the expansion become more singular and the
expansion must ultimately fail. The fundamental reason for this behavior is that the
flow becomes non-linear first inside the critical layer, even though the rest of the flow
can still be considered as operating in the linear regime. For this reason, a more
refined treatment of the critical layer is required. The necessary analytical ‘machin-
ery’ fortunately already exists: Thus, [45], and later [46], showed that for small but
finite amplitudes the phase change at the critical layer does not necessarily have to

be —im; instead, they found that the phase change is zero if the non-linear terms are

32
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taken into account. Later [47] showed numerically that there is a smooth increase
of the phase change, from —i7 to 0, and introduced the function ®z that gives the
phase change as a function of the amplitude; [48, 49, 50] then derived an ordinary
differential equation to describe the evolution of the amplitude of the perturbation
based on ®f and other similar functions defined for the appropriate critical layer
problem. A fundamental assumption in all this work is that the viscosity is dominant
in the critical layer; this leads to the derivation of an ordinary differential equation
for the wave amplitude. The full equations of the weakly nonlinear problem without
the previous assumption have then been derived and solved numerically for various
cases [51, 52, 53].

In our case the treatment — although closely related to the earlier work — is nev-
ertheless different in some respects. The previously discussed cases were dealing with
a smooth neutral mode where the critical layer was formed at the inflection point
d2U /dy2 = 0. The problem at hand though, deals with neutral modes (gravity
waves) that are weakly coupled to a non-modal disturbance in the critical layer in the
upper layer. Unlike the previous cases the marginally unstable modes do not form
a critical layer at the inflection point since such an inflection point does not exist.
Instead gravity waves become weakly unstable if the coupling between the upper fluid
(wind) and the gravity modes of the lower fluid is weak. This can be the result of
a small coupling coefficient (small density ratio) or if the wind velocity is close to
but higher than the smallest phase velocity of the gravity waves. This allows us to
examine two special cases: the case of small density ratio, and the case of weak wind
or strong stratification; in both cases, the linear growth rate is small. The first case
has been examined by [54] and applied to ocean waves. We will focus on the second
case which is of particular interest to our astrophysical problem, since the instability

takes place on the surface of a white dwarf star, i.e., a star of solar mass, but compa-
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rable in size to the Earth; this corresponds to the strongly stratified limit. Another
technical difference from the previous cases appears in the derivation of the amplitude
equations and lies in the fact that we have a sharp interface. Because of this, our
solvability condition will not be expressed in terms of integrals but rather in terms of
appropriate vector products of the values of the perturbation stream function at the
interface.

An interesting aspect we further examine, with direct applications to the relevant
astrophysical and geophysical systems, is the mixing properties of the finite amplitude
equations. Although the weakly non-linear results do not lead to wave breaking,
which is the main mechanism for mixing the ‘surface material’ with the ‘atmosphere’,
we study the mixing of tracers inside the critical layer as a first step for revealing
the mixing properties of the fully non-linear problem. We measure the finite time

Lyapunov exponents and the particle dispersion of the flow.

3.2 Formulation

As before, we consider a two-layer system with constant fluid density p; and po
(p1 < p2) in the upper and lower layers, respectively. The interface between the
two layers is given by y = h(z,t), where z is the horizontal and y is the vertical
coordinate. In the upper layer we assume a wind parallel to the originally flat interface

y = h(z,t = 0) = 0. The wind has a shear velocity profile U = [U(y), 0], where U(y)

varies only with y. The exact form of the wind profile we chose is:

U(y) = Umax(1 — exp(—y/0)) .
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The lower layer is initially at rest; thus, we will not consider the more complex, albeit
more realistic, case of additional shear in the lower layer [55]. Our aim is to study the
dynamics and the weakly nonlinear development of a small sinusoidal perturbations
of the horizontal interface.!

The fluid is assumed incompressible in both layers; we therefore work with the
stream function ¥, which is connected to the velocity by the relation (u,v) = (0y ¥, =0, V).

The stream function can be separated into its mean and its perturbation components,
Y /
\I’total = [) Udy -+ \1] . (31)

The fluid within each layer is described by the Navier-Stokes equations (in terms of

the stream function ¥):
V20 + UV 5 — Uy, =0, V20, — 0, V20, + 1V2V2D, (3.2)

where V2 is the two-dimensional Laplacian and v is the viscosity (which we will
consider to be small, and therefore negligible except for a narrow region within the
critical layer).

The boundary conditions at the interface are the continuity of the perpendicular

1. As an aside, we note that the presence of a sharp interface boundary between the two fluids in
our system is really only a device to simplify the analysis, but in no way restricts our results. That
is, in a more general case there will be no sharp interface, but the density will change smoothly from
p2 to py in a layer of width §;. We would then also expect U(y) to be a smooth function in y, so that
any flow discontinuity at the interface would be replaced by a smooth variation in U within a thin
viscous boundary layer of width J;. One would then expect to see differences in behavior only for
those modes with horizontal wavenumber k large enough so that the critical layer lies inside these
layers d1,02. Such modes, however, are KH-modes which are not under study here; they will obey a
Richardson-type stability criterion, 1/4 < g(Ap/p)d3 /81 [29]. We therefore expect our assumption
of a sharp interface to be reasonable for horizontal wave-numbers k=1 > max{dy,d2}. Since we are
primarily interested in long wavelength perturbations, we conclude that, for our purposes, we have
not disregarded any important physics.
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component of the velocity to the interface

hi+ (U +T5)h, + 0% =0, (3.3)
and the continuity of pressure
Alpid ¥ty + (U+ T )V gy =0 (U + 0 ) =g (V g+ (U ) iy + 0 50 )}

= ghz(p2 — p1), (3.4)

where h(z,t) is the elevation of the interface and all quantities above are evaluated at
y = h(z,t). The + indices indicate values above and below the interface, and A[ |
denotes the difference across y = h (e.g., A[f(y)] = f(hT) — f(h7) ).

We non-dimensionalize lengths by the characteristic length [ of the wind (a typical
length over which the wind strength changes), and the velocities by the asymptotic
value of the wind at y — 400, Upgz. An important parameter that emerges from
the scaling is G = gl/U2,,,, which is a measure of the ratio of potential energy to
kinetic energy, or alternatively, a measure of the strength of the stratification. Other
dimensionless parameters are the Reynolds number, Re = Upqel/v > 1, and the
ratio of densities, r = p1/p2 < 1. In terms of the non-dimensional parameters,
we focus on the case where Re > 1 in each layer, and especially the limit G > 1

(accretion on white dwarfs in astrophysics).

3.3 Derivation of Amplitude Equations

We are now ready to embark upon the weakly non-linear theory. Formally this is

done by assuming that, for some parameter ranges of interests, our physical system
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lies close to a marginally stable state so that an asymptotic expansion is allowed
near the center manifold. For the problem at hand, however, and in the absence of
surface tension (7 = 0), marginally stable states are possible only when r = 0 or
1/G = 0; the first one expresses the nonphysical situation that there is no upper
fluid, and the latter corresponds to a situation where there is no wind in the upper
fluid (Upmaz ~ 1/v/G). Complication arises as we deviate from these neutrally stable
states. In ordinary dissipative systems, only a small number of modes near the center
manifold become unstable and need to be considered. In our case though, once the
density ratio r or the parameter G is finite, an infinite number of modes become
unstable if surface tension 7 = 0. Ideally the interaction of all these modes needs to
be taken into account. Practically this difficulty is removed by the combined effect of
surface tension 7 (or, equivalently, the presence of a magnetic field) and weak viscous
damping. In the presence of surface tension the stability boundary in the (r,G,T)
space is given by the condition for positive solutions of eq.(2.29) and by r = 0. Surface
tension reduces the number of unstable modes by neutralizing modes of wave numbers
above some cut-off value. Furthermore, weak viscosity will damp out the neutrally
stable modes of high wave numbers, rendering them asymptotically stable. By using
a periodic domain, we can fix the period so that only one mode becomes unstable; by
doing this we omit wave-packet effects [56, 57] that would complicate the analysis,
and we will therefore ignore them in this first look of the problem. We can then derive
the amplitude equation for this single mode as usual.

We focus on situations where G > 1, corresponding to weak winds or strong
gravitation for arbitrary density ratio. As will be shown, the amplitude equations are
very similar to those obtained by Reutov for small density ratio (r < 1) case.

In chapter 2 we showed that unstable modes for the large G' case grow at a rate

proportional to exp{—2¢;, A¢Gt}. Inspired by this result, in the limit G > 1, we set
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the time derivative 0y = edp — C0Oz, where € (defined later) is small such that the
linear growth rate (imaginary part of C) is of order O(e). We expand the stream

function above the interface as
Ut = 2F + EU + (3.5)
The governing equation (3.2) for the upper fluid is then
VAU + UVAUS — Uy U = UEVAUE — 0 V20E +0V2V2et  (3.6)
and for the lower fluid
VAU = U VAU, — U VAU 4 vVPVAET (3.7)
The boundary conditions at the interface are given by
¢hp —Chg+ 9% =NLT., ¢hp—Chg+ ¥, =NLT. and (3.8)

rleUt, —CUL —US U —[e¥7, —CUL |- [G—r)h—Thz| = N.LT.. (3.9)

where N.L.T. are the non-linear terms that are of higher order in e. At the zeroth
order we have

(U= C)V?TF, — Uy Vg, = 0;

Y

expanding in normal modes, Ug = ¢p(y)eE® + c.c., we have

Uyy

b0y — [Kz - ﬁ] d0=0, (3.10)
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where we have focused on the most unstable mode. Equation (3.10) is the Rayleigh
equation with a singular behavior at the point y. where U(y.) = C. The solutions
of (3.10) around the critical layer can be expanded in series (2.26,2.27) ¢g ~ A[1 —
(U U (y—=ye) m(Jly—vyel)+- - ]+ BI(U! JUL) (y—ye) + . - .]. Of course, the singularity
is removed from the real axis if the phase velocity is complex. Nonetheless if the
imaginary part of C is of order € (as in the case we now examine), the vorticity
perturbation becomes of order e~le2 = ¢ near the critical layer, reducing the non-
linear terms to the same order in € as the linear terms, and they have to be taken
into account in the asymptotic expansion in the critical layer.

Outside the critical layer the non-linearity is at higher order (O(e*)) and can
therefore be neglected. It is thus sufficient to use the results from the linear theory for
the outer scales. The outer solution (away from the critical layer) can be evaluated
numerically. In the case of large G case we also have K > A;G > 1 according
to (2.28); thus we can express ¢g using W.K.B.J. approximation as an asymptotic
expansion in terms of 1/K. An analytic expression for the growth rate can also be

obtained in this expansion. We write ¢q as

A3¢above if y >y
oo = N B . (3.11)
A1¢below + Bl¢below if0<y<ye

where @ pove 1S the exponentially decreasing solution for y — +oo and gbf;l ow are
the two linearly independent (exponentially increasing and exponentially decreasing)
solutions of (3.10). The amplitude coefficients Ay and B; are determined from the

inner scaling. In terms of the W.K.B.J. expansion carried out in appendix A, these
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solutions can be written at first order in 1/K (note K > 1), as

r -
4143\/1_ wdy for y > yq

—/TAs cos[ll]% sin (fﬁc wdy' — 7r/4)
b0 = 1 +y/mAs sm[ll] — COs (fyc wdy' — 7r/4) for yo >y > ye (3.12)
VA sin[I{]e” 2ﬁ6+ Jo wdy’

+431 cos[I{]et12 ﬁe_ Jo way' , for yo >y

where I7 and I are integrals determined from the linear solution and are defined in
the appendix (A). w is defined in equation (A.21) and yq is the solution of w(y) = 0.

At second order ¥ = (bleiK T satisfies the inhomogeneous equation

U
d’l,yy - lKZ U ,y%] 1= ﬁgbO,T (3'13)

which again can be solved numerically. Noting that inhomogeneous term is of order
1/K3 (in the rescaled units y — Kv) everywhere except inside the critical layer, it
can be expressed in a W.K.B.J. expansion. For further analysis, it is sufficient to

know that below and away from the critical layer, ¢; can be expressed as

b1 = Agl) +1I o~ Jo wdy' —i—B( ) —Izﬁ ot Jo wdy'

= \/E
In order to match the outer solution with the solution inside the critical layer we

need to know the asymptotic expansion of the outer solution as y — y.. Following

similar calculations as in the linear theory, above the critical layer we have

g0 ~ Ag[meos[[l][— z+...]+sin[[][1 - zIn(z) + ...+ (1 - 2y)z +...]] (3.14)
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and
Ué/ Sin[[l] A3,T
2K U2

In|z[+... (3.15)

where z = (y — yc)(—UY) /UL, 7 is the Euler Masceroni constant and the subscript
c means evaluated at the critical point. Below the critical layer the asymptotic

expansion gives
do~ Aysin[[]][1—zln|z|+...+ (1 =27)z+...]+ 7B cos[l1]e 2 (—z+...) (3.16)

and
by U sin[l1] Ay 1
1= " RKuz

In|z[+... (3.17)

Next we examine the dynamics of the inner scaling in the critical layer.

3.8.1 Inner Solution

To capture the dynamics of the critical layer, we use the scaling @ — ¢2¥, y—y. — €Y’

and 1/R — e3v. From equation (3.6) we obtain

Uryy +UY VU vy + Uy ¥ yyy — VoW yyy — vl yyyy

1 . -
— ¢ EU(’:’YQ\II,YY:U — UMY | + 0. (3.18)

In order to match with the outer solution (3.14,3.16) we expand ¥ as

U =g+ eln(e) Ty + ey + € In(e) g + 2Ty + ... (3.19)
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To first order, we then have
Vo rvy + UY Yo vy + Yoy ¥oyvys — YouYoyyy — vWoyyyy =0.
Matching with the outer solution we obtain
Uy = sin[1](A1€E% + Ate KT (3.20)
and therefore Ay = A3 = A. To the next order (eln(e)), we have
Uy ryy + UeY Ve ayy — 9oV yyy —vWiyyyy = 0.

Matching with the outer solution we obtain

7 Ue U iK
U= |A=LY +07A in|] z .C. 3.21
1 i + Or PRUR sin[I7]e +c.c (3.21)

To third order (¢3), we have
Vo yyr +UY Vs vy, — Vo, Vo yyy — v¥syyyy = Ul Ug . (3.22)
Denoting Z = ‘i’z’yy, which is the vorticity inside the critical layer, we obtain
Zr+UYZy—V,Zy —vZyy =Ul¥g,. (3.23)
To match with the outer solution, we require the boundary conditions of Z
U1 U 1 iKz

lim Z=|AC- — — Ag|sinll
¥ 5o oy~ aigoR AT | sinthle

+ c.c.
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and similarly for Y — —oo with A replaced by Bj. Integrating Z along Y and using

the asymptotic behavior of W9 above and below the critical layer, we obtain

"

]+Oo = 7TU—C cos[1] [A - Bl]eiK”’" + c.c.,

e ZdY v
/—oo - [ 2Y —00 Ué

where we have taken the limiting procedure lim¢_,q [ 1/16/6 Z dY. Defining

I r+n/K . +
=% _le / K —ika / * Zdvdz. (3.24)
2rsin[I1| Ul J—n/K —00

we obtain the following important result:
1.
cos[I1]By = cos[I1|A — —sin[[1]J . (3.25)
T

The last equation (3.25) implies that the phase change across the critical layer
depends on the detailed treatment of the vorticity dynamics inside the critical layer.
In the linear case J = +imA, but as the amplitude grows and the non-linear term

\ifoﬂZ’y in equation (3.23) becomes important, the phase change will decrease.

3.3.2 Boundary conditions and the amplitude equation

Combining the above results we find that the streamfunction at the interface is

1 .
Uolo = ? [A(Q sin(I)e 2 + COS(11)€+IQ) — ;Jsin(ll)e+"2] K (@=C) 4 ¢,
(3.26)

1 :
Yo ylo = gK [A(Q sin(Il)e_I2 - cos(Il)e‘”Z) + ;Jsin(ll)e""’?] K (@=C1) 4 c.c.,

(3.27)



44

Unlike the linear case, the phase change is now defined by J in equation (3.24).
The slow time scale mentioned before is defined by by the value of Cj;, which is

exponentially small and is given by equation (2.34). We therefore define € = e=22 ~

—-2G

e~ ““, and equations (3.26) and (3.27) can be re-written as

| 1
‘1’0\02£ —

2 | Ve

1

\/Eﬂjsin(ll) +2/eAsin(l})| KT yce.. (3.28)

Acos(I) —
To match with the upper fluid we expand ¥~ and A as:
U =205 + 207 4.0 and  h=62hg+ %y .

We write the zeroth order stream function ¥y below the interface, and the surface
elevation hg as ¥y = CHeE2+KY 4 ¢c.and hy = He'S® 4 c.c., H being the
amplitude of the wave.

The first order (¢3/2) boundary conditions give us M -V = 0, where

—C 1 0 H
M = -C 0 1 and Vo=| & | . (3.29)
-G —r) rCK CK CH

® = (Acos(l1) — %J sin(I1)) is the amplitude of the stream function at the interface
and G = G + K2T /(1 —r) is the gravity term including the effect of surface tension.
Here we have discarded the U, term since it is of order 1/K. For a non-trivial
solution, we must have det(M) = 0. This leads us to the relation C' = \/GA;/K and
HC=9.
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At the next order, we have ¢ at the interface

1 1 1) 1 1
o1l = A )$+B§ )\/e and ¢y 4/ = —KAS )$+KB§ NG (3.30)
where the values of Agl),Bgl) depend on A, and can be obtained by matching

with the inner solution at the critical layer. The second term in equation (3.30) is
exponentially small (of order \/€) and can thus be neglected. The stream function of
the lower fluid U7 and the elevation Ay at this order are U] = CHWeiKe+Ky 4 ¢ ¢,

and hy = H (DeiKe 4 ¢ c.. The boundary conditions at the interface are
1
M-V = —Z,?&rwl + Wa, (3.31)

(where M was defined in equation 3.29),

HO) H 1
i=| oM |, W= H =H 1 ,  (3.32)
cH®) ~K(r®+ CH) ~(r+1)KC
and
—2sin(/1)A
Wy = 0 . (3.33)
2rKC'sin(I1)A
We define VT = [-rCK,—CK,1] where V7T is such that VI M = 0. Multiply-

ing equation (3.31) with VT, we obtain VIW; = —2(1 4+ r)CKH and VIW, =

4rCK H sin(I7) . Hence, we arrive at the amplitude equation for large G.

1 T T . 2r
—V Wi =V"W Hp=—K

sin(7) A, (3.34)



46
with

1
CH =2Acos(I1) — J; sin(Iy) . (3.35)

The amplitude evolution can now be determined from equations (3.34)-(3.35).

Equations (3.34)-(3.35) can be re-written in a more familiar form

Hp=—-iCiH +CJ (3.36)

H =D1A+DyJ (3.37)

where Cy1,Co, D1, Dy are coefficients determined from the solutions of the linear prob-
lem. Equations (3.36-3.37) along with the definition of J in equation (3.24), were
first found (in an equivalent form) by [54] to describe the weakly non-linear evolution
of a single-wave coupled to the vorticity in an inviscid critical layer, for small density
ratio r = € < 1, with G of order one. If the viscosity is included in his treatment
by scaling viscosity v — €3v, the same equation for vorticity Z can be obtained, and
his amplitude equations for r < 1 and unity G take exactly the same form as our
amplitude equations for the G > 1 case. We thus focus on the general form of the
amplitude equations in the next section, and present results from solving equations
(3.23), (3.24) and (3.36)-(3.37). We note here that Reutov pointed out the fact that
with the extra assumption Dy = 0 equations (3.36)-(3.37) are identical with those
describing electrostatic waves in a plasma, which have already been solved numeri-
cally by [58]. We investigate the properties of the full set of the equations without

this assumption in the next section.
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3.4 Results

3.4.1 Preliminaries

For both cases (weak wind and small density ratio), the amplitude equations can be

cast into the following more general form:

Hrp+iCiH = iCyJ (3.38)
H=D1A+DyJ (3.39)
KU r+r/K . +oo .
g K0 / /K -ika / Z dYdz = (e" KT Z) (3.40)
2n Ul J—n/K —00
Z’T + UéYZ’z — \i]O,.’EZ,Y - VZ,YY = Ué,\ifo,x (3.41)
with
UI/ 1 U/I 1 .
lim Z=|A—S— 4+ =S —Ap|eET 4 42
Y300 l V1Y T 2U2Y? vT] e e (3.42)
and
T = (Aein + A*e_in) (3.43)

where the coefficient sin[/1] from (3.20) has been absorbed in the amplitude A in
(3.43).

The above equations can be interpreted as follows. Equation (3.39) expresses the
continuity of the normal velocity at the interface: It imposes the constraint that the
phase and amplitude of the perturbation of the surface wave (given by H) is the same
as the perturbation of the wind (given by D1 A + DaJ) including the component that
comes from the phase change at the interface. Equation (3.38) is Newton’s law, or
alternatively can be viewed as a statement about the continuity of pressure at the

interface; it gives the growth of the amplitude H due to the out of phase component
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of the pressure. Equation (3.41) gives the evolution of the vorticity inside the critical
layer that determines the phase change, and involves the non-linear term \ifoyijy.
The coefficients C1,Ca, D1, D2, € R are obtained from the linear theory, and are given
in equations (3.20),(3.34) and (3.35). C1 and Dy are coefficients that involve correction
to the real part of C' due to both the gradient of the velocity at the interface Uy, and
the pressure component in phase with the traveling wave. Co and D7 involve the part
of the pressure perturbation that is out of phase with the traveling wave.

Before we start investigating the properties of the set of equations (3.38-3.41) we
re-scale the amplitudes, the time scale and length scales to reduce the number of free
parameters. The rescaling is carried out in appendix B, where it is shown that we
can set C1 = 0 and D1 = —Cy = U’ = U” = K = 1 with no loss of generality. The
two remaining independent parameters are Do and v.

Dropping the non-linear term in eq. (3.41) we obtain J = imA in the linear case
[38]. Assuming an exponential growth rate A = €Ty and H = €T ag, the above

equation can be written as:

yag — way = 0,
(3.44)
aa — (1+4+imDg)a; = O0;
the growth rate then is given by
2D
v T T2 (3.45)

= —1 .
1+ 7r2’D% 1+ 7r2’D§

We note as an aside that there are several conservation laws at work here. First,
the vorticity is conserved inside the critical layer (Z) 7 = 0, which implies (Z) = 0

since the initial Z had infinitesimal amplitude. Second, by noting that (Vg ,Z) =
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iK(J*A — JA*), one can show that the following laws hold:

FAHP+ (YD)} =0; (3.46)
{1 - (22} =7 (3.47)
% {<(\i;0 + %Yz)Z) + DQ\JF} = (7). (3.48)

Equations (3.47), and (3.48) are conservation laws only if » = 0. In equations (3.46),
(3.47), and (3.48), the integration over z was assumed to be taken first, so that we
ensure the convergence of the integrals. Recalling that the velocity (in the units we
are using) inside the critical layer is given by [u — C,w] = [¢Y + €2(1/2Y? + Uyy) +
e 62\110733 + ...] we can identify the first relation (eq. 3.46) as corresponding to the
conservation of momentum. Combining equations (3.46) and (3.47), we obtain the

conservation of enstrophy inside the critical layer,

diT«Z)?) =-1(Z5). (3.49)

The third equation (3.48) can be regarded as a statement of the conservation of

energy.

3.4.2  Quasi-steady state

An interesting limit in the set of our equations is when the rescaled viscosity is large
enough to play a dominant role inside the critical layer. With this assumption we

can drop the time derivative term in equation (3.41) 2. 7 then depends only on the

2. By using the rescaling A — v?/3A4, Z — v'/3Z,Y — v'/3Y one can show that the time
derivative term is of order v~1/3 smaller than the other terms.
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value of A, which then makes J a function of A only. More specifically we have
vZyy +VouZy =Y Zp=—Vo,; (3.50)

by letting A = R(T)eiG(T), £ =z + O and also using the rescaling Y = v/2nR/2,
Z = \[/R/2Z(€,n) and x = v/(2R)3/2; we obtain

XZ — sin(€)Zy —nZ ¢ = 2sin(€) ; (3.51)
Equation (3.40) then becomes

1 o [T [T+ it 5 1 +oo p+m

J=_—R-e / / e~ Zdedn = —i— A / / sin€Zdedn,  (3.52)
21 -0 J—7+0O 2 J—oco J-m

where the cos(§) term is zero due to reasons of symmetry. Equation 3.52 can be

written as

: . 1 pt+m oo
J =—iA®g(x), with ®g(x) = %/_ﬂ /_Oo sin £Zdnd¢. (3.53)

&7 (x) was first studied numerically by [47]. Its values range from —7 for y — oo to

0 for x — 0. Its asymptotics for y — 0 and y — oo are given by

_— —ax+ea®?+0x3) x<1 3.5
g(x) = -
—mtex B0 8P x>1

where ¢; = 5.5151 ..., cg = 4.2876... and c3 = 1.6057... . The derivation for the

above asymptotics can be found in [49]. The amplitude equation then can be written

as
v

v : B .
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We have thus ended up with an ordinary differential equation for the amplitude
of the wave. Writing A in terms of R and ©, and after some algebra, one can show

that
(1+D3ep®y) Ry = —R*0p, and (1+D30gdp) O 7 = —Dydydy, (3.55)
where &7 = (R® i) R- For large R at late times we can conclude that
|H| ~ |A| = R~ vT?3 and © ~ 2771, (3.56)

This is one of the basic results of our calculations. The above limit becomes
valid at later times when small scales appear inside the critical layer, even when
the rescaled viscosity is smaller than one. An important implication of this result is
that the amplitude grows with an algebraic power instead of the initial exponential
variation. Another important feature is that the growth rate depends linearly on the
viscosity, unlike the case in linear theory. In linear theory, a weak viscosity gave the
same phase change “—in”, and the resulting growth rate was independent (to first

order) of v. Finally we note that the phase of the waves, ©, goes asymptotically to

zero at late times.

3.4.8 Numerical Results

Next we investigate the weakly non-linear evolution of the wave by solving equations
(3.38-3.41) numerically. To solve the advection equation (3.41), we used a code which
is spectral in z and finite difference in Y. The domain range we used was (—50, 50)
in Y and (0,27) in z. Up to 1024 grid points were used in the Y direction and

63 modes were kept in z. Viscosity ¥ = 0.1 is used in all the simulations. The
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Figure 3.1: The evolution of the wave amplitude A for the cases Do = 0 (panel [a]),
Dy = +0.3 (panel [b]) Dy = —0.3 (panel [c]).

far-field boundary conditions (Y — +o0) were satisfied to order 1/Y’, although the
asymptotic behavior of Z was taken into account when we evaluated the integral in
equation (3.40). The code was tested by comparing with a fully pseudo-spectral code
as well as with already published results.

Equations involving a critical layer have been solved numerically for various cases
[59, 53, 51, 52, 58]. The nonlinear evolution of the critical layer leads to the well
studied ‘cats-eye’ pattern. As the amplitude of the wave increases, the ‘phase-change’
across the critical layer is decreased to zero and the amplitude saturates up to diffusive
time scales. We will focus only on the differences being introduced by the coupling of
the amplitude A of the upper ‘wind’ perturbation with the amplitude of the wave H.
Such coupling is controlled by the parameter Dy. When Dy = 0 we have no feedback
of the gravity wave to the critical layer ‘free critical layer’; the amplitude A then is
proportional to H. In figure (3.1) we plot the amplitude of the ‘wind perturbation’ A
as a function of time for three different cases: Dy = 0, +0.3. The saturation amplitude
does not seem to strongly depend on the coupling coefficient Dy. The phase of the
amplitude (arg{A}) does change; this corresponds to traveling vortices.

The first panel in figure (3.2) shows the temporal behavior of phase change
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Figure 3.2: The evolution of the phase change across the critical layer as a function
of time for the Dy = 0 case (panel [a]), and the evolution of the wave amplitude H
for the cases Dy = +0.3 (panel [b]) and Dy = —0.3 (panel [c]).

Im{—J/A}, which is similar for all three cases. The last two panels show the evolu-
tion of the amplitude of the wave H as a function of time for the Dy = 40.3 cases.
H has the same properties as A although the time dependence is smoother, which is
expected since H can be written as a time integral of A.

Finally in figure (3.3) we display the total vorticity Z 4+ Y inside the critical layer
at the non-linear stage, for the cases Do = 0, +0.3. The displacement of the vortices
in the non-zero coupling coefficient cases indicates that the vortices are drifting with
respect to the co-moving frame with the wave. Furthermore, we note the small differ-
ences in the vorticity near the separatrix between figure (3.3)(a) and figures (3.3)(b)
and (c). This hints at different mixing properties induced by the coupling with the

wind, which turn out to be important in the mixing properties of the flow that we

examine in the next section.
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Figure 3.3: Plots of the vorticity inside the critical layer using a gray-scale represen-
tation for the vorticity for the cases Dy = 0,40.3, —0.3 (panel [a,b,c| respectively).

3.5 Effect of gravity wave on chaotic mixing inside critical

layers

The above analysis is originally motivated by the possibility of enhanced mixing of
different fluids due to the instability of wind-driven gravity waves at the interface.
Specifically in the context of nuclear runaway in novae, we are ultimately most in-
terested in the mixing of two differentially rotating layers of distinct chemical abun-
dances in a strong gravitational field [18]. In the strongly non-linear regime, where
the surface waves break due to the wind, dimensional analysis based on preliminary
numerical simulations ([18] and references therein) indicates that turbulent mixing
due to breaking of wind-driven gravity waves is the key to explaining the mixing of
white dwarf stellar matter into the “burning” accreted envelope on time scales consis-
tent with the observations. Motivated by these results, we investigate in this section
the effect of gravity waves on the chaotic mixing in the critical layers, before wave
breaking occurs. In this case, the weakly non-linear flow is laminar everywhere, as
shown in previous section; and the cat’s eye vortices develop within the critical layer,

with the gravity surface waves yet too weak to break. Fortunately, there already



95

exists a substantial body of work focused on mixing within critical layers. The aim of
this section is to analyze weakly nonlinear wave-driven mixing from this perspective;
we mainly focus on the qualitative aspects, and illustrate how the coupling between
gravity waves and vorticity inside the critical layer alters the mixing.

Similar chaotic mixing in critical layers associated with Rossby-waves has been
investigated in great detail, using a variety of approaches, and in various geophysical
and plasma physics contexts [60, 61, 62]. Proper treatment of the mixing in the
critical layer requires consistency in updating the velocity field, vorticity and the
tracer particles [62]. The sensitivity of transport of tracer particles to their initial
conditions reflects the complicated structures of manifolds commonly found in these
non-integrable Hamiltonian systems [60, 61].

In previous section, we have found that, with or without coupling with surface
waves, the general flow structure of the vortices is similar inside the critical layer.
Such vortical structures are typical of the weakly nonlinear evolutions of parallel flows
(62, 53]. However, their mixing properties may be very different (depending on the
details of the underlying flow) in spite of great similarity in the general features. As
pointed out in [60], the single-wave approach adopted above to derive the amplitude
equations is equivalent to the pendulum approximation of a single-mode Hamiltonian
system. In our amplitude equation (3.41), the vorticity Z is advected by a time-
dependent pendulum flow: (u,v) = (Y, —¥q,), with ¥y = AetE?T 4 ¢c.. Putting

A = R(T)et®T) | the particle trajectories (z(xq;T),Y (xg;T)) satisfy equations

|
S
|

T Y, (3.57)

?

Yr KR(T)sin (Kz + ©(T)), (3.58)

Il
<
Il

where xg = (zg, Yp) is the initial particle position.
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Given the time dependence from the numerical solutions in the previous section,
we can calculate the strain rate of such a flow by first linearizing equations (3.57)-

(3.58) for an infinitesimal separation between two particles 0x,

0 1
PX _ (5% Vv = Jx = Adx . (3.59)

dr K2Rcos(Kxz(xg;T) +©) 0

Ao, defined as the product of eigenvalues of matrix A in equation (3.59), is interpreted
as the combination of strain and rotation: A\g(xg) = —det(A) = Rcos(Kz(xq;7T) +
©). During the numerical integration of equations (3.38-3.41) from ¢t =0 to ¢t ~ 8, we
update \g for each xq in the computation domain as the amplitudes are updated, and
we obtain Ag as a function of both space (xg) and time. We then time-average \q for
each xg in the entire domain. The time-averaged \g, denoted as ()g), is a function
of only the initial position xg of the particle. Positive (\g) implies the likelihood
for a positive Lyapunov exponent for that initial position; negative (\g) implies that
rotation is dominant over strain. We have calculated the time-averaged (\g) for each
initial position xqg in the computation domain for Dy = 0.2 case as shown in figure
3.4(b). Figure 3.4(b) is to be compared with figure 3.4(a), where the vorticity is
decoupled from the surface wave: Dy = 0. More striated layers are found in figure
3.4(b), indicating more complicated tangles of manifolds due to coupling with the
surface gravity wave.

The relation between ()\y) and the finite time Lyapunov exponent may not be
straightforward, and can depend sensitively on the prescribed flow. In general cases
where the flow is time dependent, some correction to (Ag) can be made so that it is
closer to the Lagrangian description [63]: where ¥ is the stream function of the flow.

Interestingly A1 = 0 in our case despite the time-dependence of the amplitudes. Thus
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Figure 3.4: (a): (Ag) for the critical layer without coupling to the gravity wave
(Da = 0). (b): (Ag) for the critical layer coupled to the gravity wave (Dy = 0.2).
Bright regions indicate possible positive Lyapunov exponent.

we expect (Ag) to be a good indicator of the finite time Lyapunov exponent, which we
have also calculated independently (figure (3.5)) for the two corresponding cases in
figures (3.4)(a) and (b). Similar to dynamical systems, positive finite time Lyapunov
exponents strongly suggest the presence of unstable mixing manifolds. The larger the
number of positive finite time Lyapunov exponents in the system, the more chaotic
the mixing is.

The spatial distribution of the finite time Lyapunov exponents (FTLE) is certainly
different between figures (3.5)(a) and (b) due to the coupling of shear flow to the
surface wave. However, up to time 7" ~ 8, our calculation shows that the range of
positive FTLE is similar: both cases have almost identical maximum (~ 0.72) and
minimum (~ —0.4) values (please note that the figure 3.6 shows the positive values

of the FTLE). The relative frequency of positive FTLE is also similar (see figure 3.6),
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Figure 3.5: (a): Finite time Lyapunov exponent the un-coupled case Dy = 0. (b):
Finite time Lyapunov exponent for the case D9 = 0.2. Bright regions indicate positive
Lyapunov exponent.
with a slight difference in the variance: variance ~ 0.04 in (b), while in (a) variance
~ 0.03.

In realistic situations where the passive tracers may be weakly diffusive, the
asymptotic mixing property is determined by the combination of slow diffusion and
fast advection. If we define ( as the tracer concentration, we can write down the

equation for the weakly diffusive tracer in the above flow field (eqs. 3.57 and 3.58) as
1
(7 +YCs+R(T)sin(Kz +0(T))Cy = P—evzg, (3.60)

where Pe = Uppqzl/k is the Peclet number, with Up,q, and [ the characteristic velocity
and length defined in previous section, and s the molecular diffusivity of the tracer.

Among all the measures used to describe mixing of diffusive tracers in shear flows,
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Figure 3.6: Probability distribution of the positive finite-time Lyapunov exponent.
Dashed line corresponds to figure 3.5(a), and solid line corresponds to figure 3.5(b).

we focus on the stream-wise particle dispersion (variance), defined as
o2 = (%) - (@)? (3.61)

where (z) and <x2> are, respectively, the first and second longitudinal moments of

the concentration field ¢

(x) = /xQde, (z?) = /xQQde,

and we similarly define the y-variance UZ = (y2) — (y)2.

If the flow is weak and diffusion is strongly dominant over advection, parti-
cles undergo random walks and o increases linearly with the square root of time:

o = (2T/Pe)1/2. On the other hand, if the shear flow is strong and irregular in time,
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the particles will be in a super-diffusive regime (¢ ~ T%, « > 1), during which the dis-
persion grows faster than that for ballistic transport (¢ ~ T'). In cases where the flow
is bounded and time-independent, the super-diffusive regime eventually gives way to
yet another diffusive (Taylor) regime, with a larger effective diffusivity than molecular
diffusion [64]. For a time-dependent velocity field, the super-diffusive regime is the
long-time limit of particle transport.

To examine how the time dependence of the flow affects diffusive particle mixing
in our case, we have integrated equation (3.60) using a particle method ([64] and
references therein). Due to the need to integrate equation (3.60) over long durations,
we have used three models of R(T) and ©(T), resembling two classes of solutions
from solving the amplitude equations (figure 3.7(a)); the first two are for the inviscid
critical layer, where the amplitude oscillates around the saturated value, while the
third is for a viscous critical layer, where the amplitude grows as T2/3 asymptotically
in time.

We place 10° particles at an initial position close to the separatrix, solve for their
positions in §R2, according to equation (3.60) for Pe = 105, and record their positions,
from which we can calculate the particle dispersion. As pointed out in [64], the
method used [65] is particularly robust for small values of the diffusion coefficient,
e.g. large Peclet number. In our case (equations 3.57 and 3.58), ballistic transport is
expected (and confirmed numerically) if there is no time variation in A.

Figure (3.7) illustrates the temporal characteristics of the model flow amplitudes
R we used in this study: two cases corresponding to inviscid critical layers, for which
the initially exponentially growing amplitude saturates to R ~ 1 at 7" ~ 100 and
then oscillates periodically with a fluctuation amplitude of 0.2 and periods of 6 and
65, respectively; and one case corresponding to the viscous situation, in which the

amplitude oscillation just discussed is replaced by an algebraic growth proportional
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to T2/3. The consequent results for our measured transverse and longitudinal particle
dispersion are then shown in Figure (3.8), which provides the computed dispersion
o versus time for these three cases. We clearly see that the early time dependence
of o is verified as the diffusive regime, where o = (27/Pe)/2; and that transverse
diffusion saturates, corresponding to complete transverse mixing in the critical layer.
We also observe that the long time asymptotics for all cases studied are at least super-
diffusive, with o ~ T3/2 for cases 1 and 2, while for case 3, where the amplitude grows
as T2/ 3, the dispersion is close to o ~ T2. This contrasts with results for Poiseuille
flow, for which longitudinal diffusion asymptotes to Taylor dispersion once transverse
diffusion saturates ([64]); this difference in behavior is actually expected because in
our case (as opposed to the Poiseuille case) the flow amplitude continues to show
temporal variations in the long-time limit.

These results are consistent with anomalous diffusion found in other two-dimensional
flows by [66] that predict the o ~ T3/2 scaling for flows with KAM regions. The tem-
poral periodicity in the flow in our first two cases creates the possibility for KAM
regions to coexist with chaotic regions; and particle dispersion is in good agreement
with theory. However, for the third case, the amplitude of the flow grows indefinitely
with time, with no periodicity, and there do not exist any KAM regions; thus the
absence of KAM regions (where particles can get trapped) and the indefinite growth
of the vortices leads to particle transport that is more super-diffusive.

From the above particle simulation results, we expect that, despite the fact that
the particle diffusion coefficient is the same, more diffusive particle dispersion can be
found in viscous critical layers (third case in figure 3.8) than inviscid critical layers
(first and second cases in figure 3.8). For the case of viscous critical layers, the single-
wave asymptotic expansion eventually fails as the critical layer expands indefinitely.

Thus it would be interesting to see how the mixing pattern might be altered when the
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Figure 3.7: The two classes of models for the amplitude R used in calculating the
particle dispersion: the first class, corresponding to inviscid critical layers, shows
initial exponential growth followed by saturation to R ~ 1 and oscillatory behavior;
the second class, corresponding to the viscous case, follows the exponential phase
with algebraic growth. We show only the oscillatory case with period 65; the shorter-
period (6) case looks identical but for the period of the oscillation, but cannot be
easily displayed on the same time plot for reasons of graphical clarity.

1,000 T

E (@ \'nvisc\'dz 1000000 F T

" viscous - ; (b)

100.000 = Superdiffusiveregime o ~T ¥

land 2: inviscid critical layer

0.100 F
r 3: viscouscritical layer

10000?
1000?
0.010¢

0,100

0010

Diffusiveregime 0 = (2T/Pe) w2

OOO,‘ ol ol il il i 00017 Lol Lol Connl Lol Lo
0.1 1.0 10.0 T 100.0 1000.0 10000 a1 1.0 10.0 100.0 1000.0 10000.
T

Figure 3.8: Results of our particle dispersion calculations, for the three amplitude
models shown in the previous figure; in each panel, the solid line corresponds to the
oscillatory case with period 6; the long dashed line for the oscillatory case with period
65; and the dash-dotted line for the viscous case, with ultimately algebraic amplitude
growth. We show the particle dispersion o in (a) the transverse direction and (b) the
longitudinal direction.
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critical layer comes in contact with the interface. In the case where multiple critical
layers interact with each other, the ensuing mixing patterns are found to depend
sensitively on various dimensionless parameters [59]. In the present case of wind-
driven gravity waves, the expanding viscous critical layer may cause the surface wave
to break as the critical layer expands toward the interface, leading to complicated
mixing, as observed in figure 3.9 from direct numerical simulations of wind-driven

gravity waves [22].

3.6 Summary of weakly non-linear theory

In this chapter, we have conducted a weakly nonlinear analysis of the resonant inter-
action between a wind and surface gravity waves based on the earlier linear analysis.

Our results indicate that the exponential growth of unstable resonant waves during
the linear regime transits to algebraic growth in the weakly nonlinear regime. For
parameters we have used to simulate the amplitude equations, the transition occurs
as the surface amplitude H ~ 60, which translates to h/l ~ 60e~3AG for the large
G case, or h/l ~ 60r2 for the small density ratio case. As pointed out by [54], such
a transition amplitude is extremely small for the air-water case as r = 1073 and
h/l ~ 6 - 1075, In the weakly nonlinear regime, the algebraic growth scales to ¢2/3
with a prefactor linearly proportional to the weak viscosity in the critical layer, similar
to cases without coupling with gravity waves.

We have also obtained an interesting result related to mixing at the ‘saddle points’
connecting neighboring cat’s eyes inside the critical layer; this mixing (which we
studied by means of inserting Lagrangian tracers, and observing their evolution) is a
consequence of the dynamics near the ‘saddle’, where mixing between two adjacent

vortices appears to take place (see earlier related work by [60]) Such mixing regions
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are commonly found in non-integrable Hamiltonian systems, and here they suggest
the presence of chaotic mixing. Results from the particle analysis further confirm
that chaotic mixing is a consequence of the temporal behavior of the amplitude asso-
ciated with the global background flow. Even though we have assumed much simpler
temporal behavior for the amplitude in our simulations, the super-diffusion found in
the simpler cases affirms that more chaotic mixing should be expected as a result of
the instability of the shear flow coupled to the gravity surface waves. This may imply
that the entrainment rate of water vapor into air could be enhanced by the coupling
of weak wind with surface waves.

At the outset of our weakly nonlinear analysis we assume the spatial domain
is periodic in the stream-wise direction, and rely on the periodicity to avoid the
problems of interaction between modes in the continuum without resorting to quasi-
linear theory [41] or eddy viscosity models [40, 39]. Assuming that some dissipative
and surface restoring force to reduce the number of unstable modes to one, we focus
on such a resonant mode inside the critical layer. The periodicity assumption, albeit
unrealistic in most physical situations, is advantageous for comparison between our
weakly nonlinear results and direct numerical simulations. The details of this process
are elucidated in the following for various relevant physical setups where our results
may be applicable.

The G = gl/U 2 > 1 assumption can be relevant in astrophysics, where gravity is
very large compared to convection ‘winds’ in the convection zone, or to the accretion
flow on the white dwarf surface. However, there exists no capillary force in astro-
physics. Magnetic fields aligned with the interface act similarly as the surface tension,
yet the resultant dispersion relation is different; unlike surface tension the phase ve-
locity of the waves does not increase with the wave number but instead saturates at

the Alfven speed. Therefore, contrary to the case with surface tension, modes with
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Figure 3.9: Results from direct numerical simulations with G = 0.1 and r = 0.1,
obtained at a (dimensional) time of ~1 sec. Density contour plot of a wind driven
gravity wave are shown in panel a); panel b) shows the energy of the wave as a
function of time.

large wave numbers are not neutralized or damped completely by magnetic fields, but
their growth rate decreases exponentially with wave number. Thus, in the case of a
magnetized plasma, we would also need to further assume that the most unstable
mode is much more “dominant” than any other mode in the continuum in order to
apply our results to astrophysics. In terrestrial situations, the condition G' > 1 can
be met in liquid interfaces for large length scale of the wind (I > U?/g) provided
that the constraint 47G < (r +1)2/(1 — r) for instability is satisfied. For the small
density ratio case (r < 1), the periodicity assumption and the criterion for surface
tension to damp all the modes except the most unstable mode result in a range of
the maximum wind velocity within which our weakly nonlinear results apply to small
density ratio cases: 0.2 ms~! < Umax < 1 ms~! for the air-water case.

We further remark that, as found in the case of an internal boundary layer [59],
a similar non-linear development of the vorticity in the critical layer and its ensu-
ing expansion are also observed in direct numerical simulations for parameters well
beyond the range suitable for weakly nonlinear analysis. Figure 3.9 illustrates such

an example obtained from direct numerical simulation of wind-driven gravity waves
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with G = 0.1 and r = 0.1, no surface tension, and an initial maximum Mach num-
ber of Unaz/Csound = 0.2 [22]. We note that while the characteristic parameters
are beyond the range for weakly nonlinear analysis, the fully nonlinear results bear
a strong similarity to the weakly nonlinear results discussed earlier. Thus, the cat’s
eye vorticity shown in figure 3.3 resembles the contour of scalar density field in panel
a), even though the vorticity has already expanded right above the interface. The
temporal evolution of the wave energy shown in panel b). Despite the fast oscillations
due to sound waves emitting from the reflecting bottom boundary, the temporal vari-
ation behaves similarly to the amplitude H for the weakly nonlinear case shown in
figure 3.2 if the fast sound wave oscillations are filtered. Here it is especially notable
that while the temporal evolution in these two rather different cases bear a remark-
able resemblance, the physics underlying the saturation in these two cases is quite
different: contrary to the weakly nonlinear case, the saturation in the fully nonlinear
calculations results from the fact that the critical layer both broadens substantially
and descends onto the interface (panel a); this behavior and strongly suggests that
in this nonlinear regime, saturation is largely a consequence of the broadening of the
resonant layer, and consequent decreased coupling between the wind and the per-
turbed interface. Thus, we see that the saturation mechanism is likely to depend on
details of the specific parameter regime governing the shear layer; this is an issue we
intend to pursue in much more detail in subsequent studies.

Finally, we note a number of interesting additional issues that remain to be inves-
tigated. For example, while we have focused on mixing above the interface, mixing
below the interface can also have important astrophysical consequences; this is prin-
cipally because (for example) mixing H and He in to C/O of the white dwarf star can
lead to nuclear burning in the upper layers of the star itself, which may significantly

affect the stratification of the interface layer (because then the dynamics of the lat-
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ter layer may resemble much more closely what occurs in atmospheres heated from
below (e.g., the solar photospheric case). Similarly, sub-surface currents in (possibly
due to sub-surface convection) can also significantly couple to the interface instability

67, 68, 69].



CHAPTER 4
NUMERICAL SIMULATIONS

4.1 Introduction

So far we have examined the linear and weakly non-linear theory for the generation of
waves. However, these theories are based on the assumption of small amplitude waves
and give little direct information about mixing, which is largely governed by nonlinear
processes. To our knowledge the fully nonlinear evolution of the resonant instability
has not been previously studied with numerical simulations for either the case of
the ocean or the astrophysical problem. The oceanographic problem is difficult to
address numerically both because the density ratio is very small (p,i/pwater = 1073)
making the growth time scale one thousand times smaller than the wave period, and
because surface tension plays a key role in the spray formation. Nonetheless, there
have been studies [70] on the growth of waves for a given pressure distribution at the
interface given by Miles theory; similarly [71, 72] have investigated boundary layer
simulations in the presence of a wavy boundary and studied the effect of “waves”
on the wind profile. Present computational resources make more detailed modeling
of the oceanographic problem with numerical simulations difficult. However, it is
possible to address the astrophysical problem for a range of relatively strong winds.

In this chapter we present results of the fully nonlinear problem of wind driven
gravity waves for fixed density ratio of p1/p2 = 0.1. The simulations in this study were
performed using the FLASH code [73, 74, 75], a parallel, adaptive-mesh hydrodynamics
code for the compressible flows found in astrophysical environments.

In the next section 4.2 we present the physical setup used in our simulation studies

and the equations of motion. In section 4.3 we present known results from the theory

68
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of free traveling waves. In 4.4 we discuss the numerical code used for the simulations,
and in 4.5 we present the table of our runs and justify the choice of the parameter
space we examine. Section 4.6 presents results about the wave dynamics we observe.
In section 4.7 we present and discuss our results about mixing and in section 4.8 we

present our convergence studies. We summarize and draw our conclusions in section

4.9.

4.2 Initial setup and evolution equations

We consider a two-dimensional square box of size Iy = I, with two layers of com-
pressible fluid in hydrostatic equilibrium separated by a sharp interface located at
ly/2. The densities of the fluids are p; immediately above the interface and pg imme-
diately below, with p; < p2. There is a uniform gravitational field g in the negative
y-direction. The upper fluid moves in the z-direction with a velocity given by U(y),
where y = 0 corresponds to the location of the unperturbed interface. The exact form
of U(y) used is:

U(y) = Umax (1 - ¢7¥/%) (4.1)

A sketch of the wind profile is shown in figure 2.1 ¢).

The equations we evolve are the compressible Euler equations for inviscid flow,

dp
hdad C v = 4.2
dpv
W-FV-pVV-i—VP:pg, (4.3)
0pFE
%-I-V-(pE-i-P)v:pv-g. (4.4)

where p is the density, v is the fluid velocity, P is the pressure, and g is the acceleration
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due to gravity. E is the total specific energy, composed of the specific internal energy

€ and the kinetic energy per unit mass,
Lo
E=¢+ Jv - (4.5)

The system of equations must be closed by an equation of state of the form P =

P (p,€), for which we use a simple gamma, law,

P=(y—-1)pe . (4.6)

The initial density and pressure profiles were obtained by integrating the equation of

hydrostatic equilibrium in an isotropic atmosphere,

ar_ 4.7
i P9y , (4.7)

which for the case of a compressible, gamma-law gas gives

1

gpiy| 7T p\’
pPli=o=p;i |1 —(y—1 ] and P =P (—) : (4.8)
| l [ o= Poy pi

Here P is the pressure at the interface and p;—1 9 is the density immediately above
or below the interface.

A passive scalar X representing the mass fraction of a species!, is advected by:

ag—j(-FV-pXV:O. (4.9)

1. The mass fraction X;(t,x) of a species 4, represents the ratio of the mass m; of the species i
included in an infinitesimal volume element located at x at time ¢, to the total mass m included in
the same volume element.
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In this setup we introduce the passive scalar X representing the mass fraction of the
lower fluid so that X takes initially the value 1 below the interface and 0 above.

We use periodic boundary conditions in the z-direction and hydrostatic, stress-free
boundary conditions in the y-direction [76]. We note that we perform “run down”
simulations in the sense that after the initial conditions are set, no additional forcing
is used to maintain the wind flow.

The non-dimensional numbers involved are G = gd/ Uglax which gives a measure
of the strength of the wind (G is related to the Froude number F' as G = F_Q),
the density ratio r = py/po right above and below the interface (or equivalently the
Atwood number Ay = (1—7r)/(147)) and the Mach number given by Ma = Upax/Cs,
where Cj is the sound speed in the upper fluid given by Cs = fyp—Pl. Two additional
numbers appear due to the finiteness of our calculation. The first one is L = l;g/U 2
which is a measure of the size of the box we are using. The second one is N, which
gives the size of our grid for each spatial direction. The effective Reynolds number
of the flow is is an increasing function of N, although an exact relation between the
two is hard to obtain.

We used simple sinusoidal perturbations of small amplitude to initialize the gravity

waves. For single-mode calculations the perturbed interface was written as
h(z) = Acos(kox) (4.10)

where kg = 27/l is the smallest wave number that fits the computational domain
and A is the amplitude of the wave. In the lower fluid the perturbation of the velocity
was decreasing exponentially according the results of the linear theory. In the upper
fluid the velocity perturbations were modeled so as to mimic the eigenfunctions of the

linear problem. Aky was set to 0.05. For multi-mode perturbations, a superposition
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of different modes was used with random phases. The exact form of the interface is

h(z) = Agcos(kz + ¢r) (4.11)

where ¢, is a random function and and the amplitude Aj of each excited mode is
given by A; = C’kmaxke_k/ Fmax Clpax 18 @ normalizing coefficient keeping the total
amplitude of the perturbation equal to 0.05. kpax Was set to 2kg for all runs except
those in which the effect of the initial spectrum was studied. For all simulations, we
kept r fixed at 0.1 and tried to minimize the effects of compressibility by keeping
Ma = 0.2. Our principal aim, therefore, is to investigate how gravity wave generation
and mixing is affected as we change the parameter G' in the limits L — oo and

N — oo.

4.3 Finite amplitude free waves

There are many known results about finite amplitude free waves (no driving) that are
found to be relevant in our research. Before presenting our results from the numerical
simulations we review some of the properties of free (no wind) irrotational finite
amplitude waves. It has been known for some time [77] that the Stokes equations for
irrotational flows have solutions of traveling gravity waves. These have been evaluated
and tabulated in [78]. There is a highest amplitude, given by A -£=0.4432, for which
gravity wave solutions exist. At this amplitude the waves form a singular crest such
that the radius of the curvature of the interface at the crest goes to zero, forming
a corner with opening angle of 120 degrees. The stability properties of these waves
have been studied extensively by [79] and references therein. It has been shown that

the crest of the waves is subject to various instabilities. Subharmonic instabilities
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appear in front of the crest of the wave when the amplitude of the wave is larger
than A - k=0.4292. However, when superharmonic instabilities are allowed (more
than one wavelength in the computational domain is considered) the crests of the
waves become unstable at much smaller amplitudes [80]. The nonlinear development
of the instabilities has been shown to lead to breaking of the crest [81]. In our
simulations the gravity waves are close to irrotational since the initial perturbation
has no vorticity and vorticity is conserved up to viscous time scales (in the absence
of boundary layers). There are similarities therefore in our simulations with the free
wave theory. In particular most of the instabilities described by [79] are present in
our simulations as secondary instabilities in the fully developed waves, with direct
impact on the mixing properties of the flow. However the presence of wind results in
differences of the nonlinear development of this secondary instabilities even for slowly

growing waves (weak winds), especially at structures in the breaking crest.

4.4 Numerical Method

All the numerical simulations described in this paper were performed using the
FLASH code. The FLASH code is a parallel, adaptive-mesh simulation code for
studying multi-dimensional compressible reactive flows in astrophysical environments.
It uses a customized version of the PARAMESH library [82, 83| to manage a block-
structured adaptive grid, adding resolution elements in areas of complex flow. The
current models used for simulations assume that the flow is described by the Euler
equations for compressible, inviscid flow. FLASH regularizes and solves these equa-
tions by an explicit, directionally split method, carrying a separate advection equation
for the partial density of each chemical or nuclear species (scalars) as required for re-

active flows. The code does not explicitly track interfaces between fluids. As a result,
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Figure 4.1: The parameter space spanned by our runs. Each block in this diagram
corresponds to a set of different runs with different resolution N. The x—axis gives
the size of the computational domain measured in units of (U2,/9); the y-axis gives
the value of G = gd/U2,¢. The dashed line indicates the wavelength of the most
unstable mode for a given value of G. The index S/M indicates whether a single
mode or multimode perturbation was imposed.

mixing occurs on grid-spacing scales exclusively due to numerical diffusion; the rate
of this diffusion is a decreasing function of resolution, but is also a function of flow
speeds and structure. Complete details concerning the algorithms used in the code,

the structure of the code, selected verification tests, and performance may be found

in [73], [74] and [75].

4.5 Numerical simulations

Figure 4.1 illustrates the parameter space spanned by our simulations. Each block

in this diagram corresponds to a set of different runs. The horizontal axis indicates
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the size of the computational domain in terms of the non-dimensional number L.
The value of L in each column differs from the previous one by a factor of 2. The
vertical axis corresponds to the parameter G. Again as we move down in the diagram
G is increasing by powers of 2. G ranged from G = 0.01125 to G = 0.18. The
dashed line shows the location of the most unstable wave number, as predicted by
the linear theory. The two vertical thick lines show the location of the two maximum
wavelengths given by the KH theory (Ag g from equation 2.24) and via Miles theory
(A from equation 2.28). Modes with wavelength to the right of each line are stable
to the corresponding instability. The growth rate from linear theory as a function of
the wave number is shown in figure 4.2 for the five values of G' we are investigating.
For each location in the diagram more than one simulation has been performed with
different grid size. The index N corresponds to the number of grid points in each
direction; N ranged from 64 to 2048. Furthermore, we tested for sensitivity of our
results to the initial conditions by carrying out runs with varying spectrum of the
initial wave perturbation. The superscripts M /S indicates whether a single mode (.5)
or a random multimode (M) perturbation was used at ¢ = 0. The strategy followed
in our numerical simulations was to start from a computational domain the size of the
most unstable wavelength for a given value of G and move to the right in the diagram
(increasing L). The details of each run will be presented along with our results.

At this point we should comment on the computational limitations of the system
we are investigating. First of all we cannot make runs for very large L (too far to
the right in our diagram) because in order to resolve the most unstable wave length
we must increase the size of our grid. For similar reasons, we cannot investigate very
large values of the parameter G' (too far down in the diagram) because the growth
rate of the unstable modes becomes very small compared to the wave period and

the diffusive time scale, the wavelength of the most unstable mode becomes larger
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Figure 4.2: The linear growth rate as a function of the wave number. Each curve
corresponds to a different value of G = gd/ Ur%ax used in our simulations.
and as is shown later, more resolution is required to capture the physics of the wave

breaking.

4.6 Wave dynamics

4.6.1  Comparison with theory

In the first part of our investigation we focus on the formation and nonlinear develop-
ment of the gravity waves. In order to verify the code we compare the growth rates of
the gravity waves from the simulations with the ones predicted by the linear theory.
In figure 4.3 we show the potential energy of the gravity waves at the early stages as
a function of time for different values of the parameter G. The results are from the
runs Algu, B2§12, 03‘5912, D4*5912 and E5§12 for a single mode perturbation. Density

plots of these runs can be seen in figure 4.5 which we discuss later. The potential
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energy of the gravity wave was evaluated based on the integral

By = 5 (02 p)g [ h(@)d (4.12)

where h(z) is the location of the interface, defined as the contour line where p(y) =
0.98p9. Equation 4.12 was derived by integrating py over space and assuming that
the wave amplitude is much smaller than the pressure scale height. We note that this
method was the least noisy method to calculate the gravity wave potential energy in
the linear regime. A direct integration over the whole computational domain for the
evaluation of the potential energy was far too noisy. The results from the simulations
for the evolution of the potential energy of the gravity waves as a function of the
rescaled time tU/0 (from now on we drop the index ‘max’ from Upax for clarity) are
shown in figure 4.3 where they are compared with linear theory predictions. They
are found to be in satisfactory agreement with the theory.

It would be useful to further verify our code using the results of weakly nonlinear
theory. However, computational limitations did not allow us to reach close to the
asymptotic regime G' > 1 required so that the comparison is justified. Nonetheless a
qualitative comparison can be made. In the two panels in figure 4.4 show a comparison
of two advected fields: the vorticity as predicted by weakly nonlinear theory in panel
(a) and density from our numerical simulations in panel (b). There is similarity in

the structure of the two fields although more small scale structure appears in panel

(b).

4.6.2  Nonlinear evolution

Next we discuss the results from the simulations when the system is far away from

linearity. We present first the single-mode runs A1*5912, B2§12, 03*5912, D4§12 and
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Figure 4.3: Comparison of the observed growth rate with the linear theory. The solid
black lines show the evolution with time of the potential energy Ej(t) of gravity waves
calculated from the numerical simulations A1§12, B2§12, C3§12, D4§12, E5§12. The
dashed lines give the linear theory predictions. The first three lines have been shifted
up for clarity.
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Figure 4.4: A qualitative comparison of structure between weakly non-linear theory
and the numerical simulations. Panel (a) shows a contour plot of the vorticity as
predicted by weakly non-linear theory. Panel (a) shows a contour plot of density
from our numerical simulations.
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Figure 4.5: Waves forming for single mode initial perturbations for different
values of GG. The grey scale represents density. Each row corresponds to a
different value of G (starting from the smallest value in the top row) G =
0.0112,0.0225,0.0450, 0.0900, 0.1800; time increases from left to right. The computa-
tional domain is arranged so that the largest wavelength is close to the most unstable
mode.

E5§12. In each simulation a single mode was excited with wavelength equal to the
box length. With this choice we are examining the evolution of the mode close to the
most unstable one for each value of G. The panels in figure 4.5 are density plots that
show the time evolution of the forming wave. Each row corresponds to a different
value of G and each column represents a different time.

There is a difference in the structures that appear as we increase the parameter

G. For the smaller values of G we observe that as the wave grows at some point
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in time it forms a breaking cusp and material start mixing. As time progresses, the
wave becomes very oblique with amplitude larger that what the theory of the highest
wave predicts [79]. The wave is then forced to overturn, leading to the generation of
small scale structure and strong mixing.

As we increase the value of GG, waves grow more slowly as predicted by linear
theory. In run D4§12 the wave reaches a maximum amplitude and a cusp is formed.
We note that this amplitude is smaller than that predicted by [77] who assumed
in his analysis that there was no upper fluid. The profile of the interface strongly
resembles those calculated for irrotational waves by [78] for amplitudes close to the
maximal one. The opening angle is roughly estimated to be 136°, which is close to,
but a little wider than the one predicted by [77]. Figure 4.6 shows a density plot of
a wave about to break, where we show the opening angle. We note that due to the
presence of the wind there is an asymmetry with respect to front and the back of the
wave (i.e. the wave is tilted forward). The development of the cusp instabilities and
the further input of energy from the wind leads to the ejection of material from the
cusp at aperiodic time intervals. The ejected material diffuses in an eddy turnover
time in the upper fluid. At each ejection, the amplitude of the wave drops. The wave
resumes growing, forming a new cusp that again leads to the ejection of new material,
and so on. Finally, in the last row of figure 4.5, G = 0.18, it appears that almost no
cusp formation or mixing is present. As we will show later in the resolution studies,
this is an effect of low resolution that suppresses the cusp instabilities we mentioned
before?.

There is an interesting interpretation of the above described results related to

2. In finite-difference-based or finite-volume-based simulations, the appearance of instabilities -
such as cusp formation- can critically depend on the (effective) grid resolution. This fact is a strong
motivation underlying the resolution studies presented later on.
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Figure 4.6: The structure of the wave near cusp-breaking. The wave just before
breaking forms a cusp of angle ~ 136°. The amplitude of the wave at this point is
Ak = 0.35. The presence of the wind makes the breaking possible at smaller values
of the amplitude than what the theory of free waves predicts.
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Figure 4.7: Waves forming for different G' and the same L with random multi-
mode perturbations. The grey scale represents the mass fraction X Each row cor-
responds to a different value of G (starting from the smallest value in the top row)
G =0.0112,0.0225, 0.0450, 0.0900, 0.1800; time increases from left to right. The com-
putational domain for all figures shown here is L = 1.8.

the two instabilities (KH and resonant) described in the linear theory. For the runs
Algu, B2§12, C’3§12 (where the first mechanism appears to be more dominant) the
wavelength of the most unstable wave is smaller than the maximum wavelength A g g
predicted by KH theory. On the other hand for the runs D4§12, E5§12 where only cusp
breaking or no mixing at all is observed, the most unstable wavelength is larger than
Ak - The minimum wave number predicted from KH can therefore be interpreted

as a criterion for overturning to occur.

Important differences appear when we move to multimode perturbations and com-
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putational boxes larger than the most unstable wavelength. There are two main rea-
sons for this: the first is that larger boxes allow for vortex merging, which affects the
dynamics of the waves; and second reason is that super-harmonic instabilities lead to
cusp-breaking at smaller amplitudes than for cases in which only a single wave period
is considered [80]. Figure 4.7 shows contour plots of the mass fraction of the lower
fluid X from the evolution of the runs A5§/-1[2, B5§/-1[2, 05%2, D5§/{2 and E5§/-1[2. All
runs have the same multimode perturbation as described in §2 and the same box size
L and resolution N. In the first three rows mixing is initiated by the over turning of
small waves (most unstable ones), and A thin mixed layer is formed. Vortices merge
exciting larger wavelengths, that themselves overturn leading to a wider mixed layer.
This procedure continues until wavelengths larger than Az are excited. Mixing then
continues at a smaller rate in a mechanism that resembles cusp-breaking, although
an interface cannot be defined in this case. It is worth noting that at the end, the
largest wavelength mode is dominant, implying that the two-dimensional cascade has
influenced our results.

For larger (G, modes with large wavelength appear to be dominant from the be-
ginning. In particular, the mode with I/ = kL /27 = 2 (two waves in the box) is
dominant at the beginning of the D5§/1[2 run and the mode with I, /A = 1 for the run
E5§/‘1[2. We note that linear theory predicts that the most unstable wavelength has
lg/A ~ 2.5 for the D5§/1[2 run and lz/A ~ 1.7 for the E5§/{2 run for incompressible
flows, which is close considering that the ratio I,/ in our setup can take only integer
values. Further more mixing seems to be suppressed for the E5§{2 run until late
times, while the run D5§/{2 forms breaking cusps that eject material in the upper
fluid that can be clearly seen in the third panel of the fourth row in figure 4.7. We
note that there is more mixing than the single mode run with the same value of G

because, as we discussed in section 4.3, the presence of superharmonic instabilities
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force the cusps to break at smaller wave amplitudes. At the end of this run the two
waves have merged into one.

We focus further on the run D5é‘/‘1’2, which has interesting properties regarding the
evolution of superharmonic perturbations. The configuration of two traveling waves
shown in the first three panels of the fourth row of figure 4.7 appears to be stable
to small perturbations (noise) since it remains at this configuration for some time.
Superharmonic instabilities, although leading to more cusp-breaking do not destroy
the two vortex configuration initially. However at some point in time the two vortices
do merge, exciting the mode with wavelength equal to the box size. Significant amount
of mixing happens at that point. We further investigate the run D5§/1[2 by introducing
a different perturbation at ¢ = 0. The spectrum of the perturbation was of the same
functional form as in equation 4.11 except the peak of the spectrum took the values
kmax = 2kg, 3ko, 4kg, 5kg. The first case corresponds to the previously described run.
Although the same mode (k = 2kg) appears to be dominant at the beginning, the
time at which the two vortices merged into one was different for each run and varied
from 2006/U to 5006/U. We note that there was no systematic correlation of the
merging time with kpax. Figure 4.8 shows the evolution of the potential energy for
these runs. The diamonds indicate where the two vortices merged.

We note finally that although one can trust the 2-dimensional assumption when
mixing starts, three-dimensional effects may well become important when vortex
merging happens. Thus vortex merging can be the result of the two-dimensional
inverse cascade, and might not take place in a three dimensional setup resulting in a
different structure of the mixing zone for the 3-D case. The behavior therefore of the

2-D runs must be compared with 3-D runs in order to resolve this issue.
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Figure 4.8: The evolution of the gravity wave potential energy for different initial
perturbations for the runs D5§/{2. The diamond indicates when the two waves merged
into one. The dashed line gives the linear theory prediction.

4.7 Mixing

Next we focus on mixing. The primary quantities we are interested in are the amount
of mass of the lower fluid that is mixed upwards and the distribution of this mixed
mass. As discussed in section 4.4, in these simulations mixing on small scales is
due to uncontrolled numerical diffusion; however, our investigation is based on the
assumption that absent this effect, mass will still be mixed at a finite rate independent
of the diffusivity because of the generation of eddies at smaller and smaller scales
(turbulent diffusion). How close we are to this limit will be demonstrated in the next
section, where we present our convergence studies. Furthermore since our results are
from run-down numerical experiments, at late times, where turbulence has decayed,
only numerical diffusion will give effective mixing. Therefore there are two expected

stages of mixing: dynamic mixing at early times that is dominated by small scale
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generation (cusp-breaking and overturning) and a diffusive stage at late times when
turbulence is no longer present.

Keeping the above in mind, we quantify the mixing by measuring the lower fluid
mass inside a mixed layer and averaging over the horizontal direction. The mixed layer
is defined as the region in our computational domain where the concentration of the
passive scalar X defined in equation 4.9 is between two extreme values Xmax; Xmin-
We define therefore the quantity M (¢, Xpnin, Xmax) as the mixed mass per unit area

located in the layer with X, < X (¢, z,v) < Xmax °
1
M (t, Xopins Ximax) = 7~ /D pX dz dy (4.13)
x

where D = {(z,y)| Xmin < X (¢, 2,9y) < Xmax}- We further define the density distri-
bution of the mass as

p(t, X) = dM(t, Xpin, X)/dX (4.14)

The distribution expresses the amount of mass from the lower fluid that lies between
the values X and X + d.X, per unit area, and is of particular interest when the effect
of chemical or nuclear reactions is studied.

In figure 4.9 we plot u(t, X) for the runs A5%24, B5%24, 05%24, D5%24, E5%24.
The distribution was calculated by averaging over space and time for the time range
1200 < tU/6 < 1500. The first three runs A5%24, B5%24, 05%24 (overturning runs)
have a large part of the mixed material lying in the range 0.02 < X < 0.4 with a
small shift of the peak of the distribution toward smaller values of X as G is increased.
There is a striking difference between these runs and the results from D5%24, E5%24
(cusp-breaking runs). The peak of the distribution of the cusp-breaking runs are at

smaller values (X < 0.2) with much smaller deviation (much narrower distribution
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Figure 4.9: Distribution of mass z in the mixed layer for the 10242 runs with L = 1.80
and different values of (G; the value of (G is increasing as we move from top to bottom.
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Figure 4.10: The evolution of the mass in the mixed layer per unit area M(t,0.02,0.4)
with L = 1.80 and different values of G as indicated.

peaks). This implies that for the cusp-breaking mechanism the mixed mass is has
spread over a larger area when compared to the overturning mechanism. Mixing by
overturning is confined in the region of the wave, while the ejected material from the
cusp-breaking can spread over a wider vertical range.

In all runs a significant amount of mass appears to be in the high X end of the
distribution, this is more pronounced for the large G cases (e.g. E5). However, this
mass is not related to the cusp formation or overturning but rather to numerical
diffusion in the bulk of the wave. This phenomenon is more obvious in the large G
runs only because the dynamical time scale (§/U) is large and closer to the numerical
diffusion time scale. This mixed mass strongly depends on the resolution, an effect
that is not desirable. We are therefore only interested in the mixed mass for low X
and we will therefore restrict our attention in estimating the mixed mass in the range
(0.02< X <0.4).

Figure 4.10 shows M (t,0.02,0.4) as a function of the rescaled time (tU/¢) from the
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runs A5%24, B5%24, 05%24, D5%24 and E5%24. The first three curves (G < 0.045)
in which mixing is due to overturning, give similar results with small differences. The
mixing time scale for those runs is determined by (6/U). This implies that the mixed
mass as a function of time for the given box size and small values of the parameter

G, (G <£0.045), is given by

2
M(t,0.02,0.4) = pQ% F(U)5) (4.15)

where f is a function that can be estimated from figure 4.10. The total amount of
mass mixed in the dynamic mixing range for sufficiently small ¢ is therefore to first
order independent of the wind length scale §; and only the time scale depends on §.
The amount of mixed mass increases linearly at early times (dynamical range), with

a rate given by:
dM U3
= a].
dt go

(4.16)

where oy is measured to be a; ~ 1.5 -1075.

The dynamical mixing appears to transition to a slower rate, that is possibly
related to numerical mixing, after ¢ ~ 2-1035/U. The total amount of mass mixed
at this point is

M = azpeU?/g, (4.17)

where a9 is measured to be ag ~ 1-1072.

As we move to higher values of the parameter G' (runs D5%24 and E5%24) the
above results no longer hold. The amount of mass mixed for the runs D5%24 and
E5]1V‘624 deviates from the previously discussed curve: M(¢,0.02,0.4) appears to de-
crease fast with G when G is larger than 0.045. This is expected since we know

from the linear theory that the growth rate decreases exponentially with G, and from
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Figure 4.11: The amount of mass in the mixed layer M (¢, 0.02, 0.4) for different initial
perturbations for the run B5§/{2 panel a) and for the ran D5§/{2 panel b).

weakly nonlinear theory we know that the wave to first order remains linear (e.g. no
cusp) in the limit of large G.

In order to draw conclusions for the behavior of chaotic nonlinear systems from
numerical simulations an ensemble average of different initial conditions is ideally
required. However, the computational cost of high resolution runs does not allow
for a large number of runs. For this reason, we have had to contend ourselves with
four different simulations for the setups in B5§/1[2 and D5§/1[2 with different imposed
perturbations, and we have obtained only qualitative results about the sensitivity of
the runs to small differences in the initial conditions. The results are shown in figure
4.11(a-b). For the B5§/{2 runs fluctuations of M are small throughout the integrated
time. For the runs D5§/1[2 there are significant variations of the amount mixed. The
chaotic behavior of the two vortex configuration, as discussed in the previous section,
explains the existence of the large fluctuations. The sensitivity therefore of M to
the initial imposed perturbation increases as we increase the parameter (G, and one

therefore should be careful when interpreting the results of a single run.
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4.8 Convergence Studies

One of the key issues of the problem we examine is the mixing of the two species
and it is therefore important to control diffusion. Unfortunately we have to rely on
numerical diffusion, which is not a well-controlled quantity. It is believed that in the
limit of high resolution (high effective Reynolds number), the effective diffusion of
the two species is going to reach an asymptotic value independent of the resolution.
This expectation is based on the belief that once fully developed turbulence appears
effective diffusion would be determined by eddy diffusion. This assumption and how
close to this limit our simulations are, needs to be explicitly tested.

To investigate the dependence of M (¢, Xin, Xmax) with resolution we repeated
the same runs with different N and looked at the dependence of M and the y on the
grid size. A similar effect is observed for all the overturning runs. As we increase the
resolution of each run the amount of mass mixed M decreases initially up to some
point of lowest mixing and then starts increasing again. This is consistent with the
idea that at low resolution, numerical diffusion dominates the mixing, and increas-
ing the resolution decreases total mixing. Eventually, however, the mixing becomes
dominated by mixing due to small scale motions, and increasing the resolution still
further increases the total mixing as smaller and smaller eddies are resolved. Simi-
lar mixing behavior has been observed in simulations of Rayleigh Taylor instability
[84, 85]. A more non-monotonic behavior was observed for the cusp-breaking waves
as we increased resolution. In figure 4.12 we show the mixed mass M (¢,0.02,0.4) as
a function of time for the runs B5% , D5]\N/f for different values of NV ranging from
64 to 1028. To further demonstrate the sensitivity of mixing with resolution for the
large G runs we show, in figure 4.13 the results of the simulations E5%I for different

resolutions: the structure of the cusp changes drastically as we increase the resolution.
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Figure 4.12: The evolution of the mixed mass M (t,0.02,0.4) for the runs B5%I (panel
a) and D5% (panel b), for five different resolutions.
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Figure 4.13: The formation of the cusp with different resolutions. N gives the number
of grid points across the computational domain.
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Figure 4.14: he evolution of the mixed mass M(t,0.02,0.4) for the runs 35% (panel
a) and DSAN/I (panel b) and for five different box sizes L. The resolution per unit

length (N/L) was kept fixed in all runs to 256/0.9.

Another limit we are interested in is L — oo. It is expected that if we chose
sufficiently large L, then all horizontally averaged quantities should not depend on
L. To test how close we are to this limit we performed a number of simulations
changing the value of L while keeping the resolution per unit of physical length N/I
fixed. It was found that larger values of L were required for convergence as we
increased G. In figure 4.14 we present the dependence of M(¢,0.02,0.4) on the size
of the computational domain L for two values of G, (G = 0.0112 and G = 0.09).
Although the runs with small G' converged for L as small as 0.9, for the large G

modes convergence seems to be achieved only when L is larger than 7.2.

4.9 Summary of Numerical simulations

In this chapter, we have presented the results from an extensive investigation of wind-
driven gravity waves, using numerical simulations. Motivated by an astrophysical

problem we investigated how interfacial waves are amplified by the wind, following
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[27] resonant mechanism, to the nonlinear (breaking wave) stage. Keeping the density
ratio fixed at » = 0.1 we performed a parameter study by changing the nondimensional
parameter G = g6/U?.

Our results are in quantitative agreement with the linear theory and qualitative
agreement with weakly nonlinear theory. In the nonlinear stage our results indicate
that the initial exponential growth of the gravity waves predicted by Miles’s theory
is reaching saturation. For small values of G saturation occurs via overturning of the
gravity waves. For larger values of G the waves saturate with out overturning. At
the saturation amplitude secondary instabilities appear near the cusp of the wave,
that result in cusp-breaking. These instabilities greatly resemble the instabilities of
irrotational finite amplitude gravity waves [79]. Our results therefore demonstrate a
connection between [27] theory for the generation of waves by wind and the theory
for finite amplitude irrotational waves.

The transition between the formation of overturning waves (smaller values of G)
and the formation of cusp-breaking waves (larger values of G) occurs close to the
value of G at which the most unstable wavelength is also marginally KH unstable.
We denote this critical value of G as G, and estimating from the linear theory we
find Gp ~ 0.07. The waves for the runs with G < G (i.e. A, B,C) were found to
overturn while the waves for the runs with G > G (i.e. D, E) showed cusp-breaking.
Although the transition from overturning to cusp-breaking waves in not necessarily
sharp estimate from linear theory is expected to be a good indicator for the value of
G that this transition takes place. Of course the validity of such result for different
density ratios still needs to be examined.

The mixing properties of the two regimes (small G and large G) are significantly
different. The overturning regime mixes very fast on a time scale § /U, an amount of

mass per unit area that scales as poU 2 /g. On the other hand, for large G mixing occurs
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via secondary instabilities, smaller amount of mass is mixed and the distribution of
the mass mixed is different.

Mixing was found to depend on the resolution for all cases, but more strongly in
the cusp-breaking runs. It was found that at high enough resolutions, the amount of
mass mixed increases with resolution. Our results on mixing can therefore be only
interpreted only as a lower bound on the amount of mass mixed. We found better
convergence in the limit L — oo but higher L (computational domain) to achieve this
was required as we increased the parameter G.

We believe that the results of this paper, can have a guiding role to future inves-
tigations on wind wave interactions and mixing in stratified media by wave breaking.
In particular it would be interesting to know if cusp-breaking occurs for arbitrary
large values of G or if there is a cut off; and how different density ratios, dimension-
ality and surface tension can affect these results. Finally, we emphasize that there
is always a need to verify such results by comparing solutions obtained by different

numerical methods as well as validate the calculations with experimental data.



CHAPTER 5
ASTROPHYSICAL IMPLICATIONS

5.1 Introduction

In this chapter we investigate the implications of the results obtained from the previ-
ous sections in the astrophysical problem, and try to construct a “sub-grid” mixing
model to use in a one dimensional stellar evolution code.

So far we have only considered an idealized fluid dynamical problems for a limited
range of parameters in order to get a basic physical understanding of shear mixing.
The actual physical situation in the atmosphere of a white dwarf can be far more
complex. For example, we have only considered small Mach number flows while the
the relevant astrophysical flows can be from highly subsonic (convection winds) to
highly supersonic at the beginning of the accretion phase. The density ratio (which
we kept fixed in the previous chapter to the molecular ratio value r = 0.1 ~ m /m)
can vary by a lot due to temperature differences and partial ionization. Further more
we assumed an ideal equation of state and did not include any nuclear reactions that
play a major part in this astrophysical problem. Extrapolating therefore our results
to the white dwarfs atmosphere is not as straight forward.

An other difficulty that prevents us to make a direct connection of the previous
results with the astrophysical problem is that our work only concentrated only in the
shear layer over the boundary between the white dwarf and the atmosphere, and not
in the large scale atmospheric flows that are responsible for the formation of this layer.
Ideally, we would have to solve for the accretion phase and the resulting atmospheric
instabilities like convection and “match” with the results from the boundary layer.

However, a self-consistent calculation of the accretion boundary layer and the wind

96
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profile in the atmosphere is far beyond the scope of the current research. The resolu-
tion needed to simulate the interaction is so fine as to prohibit the direct simulation
of this effect within a macroscopically large (i.e., the entire atmosphere of the white
dwarf) computational domain.

In order to deal with the above mentioned difficulties and get an estimate on the
amount mixed we follow two steps. First we assume that most of the mixing takes
place at the late stages of the accretion phase and second we use an one dimensional
stellar evolution code (KEPLER) to model the large scale atmospheric flows that uses
the results from the numerical simulations as a parameter input. In § 5.2 we present
two-dimensional numerical simulations of the boundary layer with more (astrophysi-
cal) realistic initial conditions and demonstrate how the mixed mass depends on the
velocity of the flow. We then, in § 5.3, incorporate this relation into a one-dimensional
simulation and discuss two scenarios: that mixing only occurs if the convective zone
reaches the C/O interface; and that the mixing occurs prior to the onset of convection.
Because the shear in the envelope prior to the onset of convection is unknown, we
compute the accretion and runaway for several different masses of the mixed layers.
We discuss the implications, in § 5.4.

Because the shear in the envelope prior to the onset of convection is unknown, we

compute the accretion and runaway for several different masses of the mixed layers.

5.2 Breaking Gravity Waves

To calculate the amount of mass mixed by wave breaking as a function of time, in
more realistic situations, we repeated a suite of numerical simulations of wind-driven
gravity waves. The initial configuration is similar to the one described in the previous

chapter with two main differences. First the density ratio was fixed to p1/p2 = 0.6
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Figure 5.1: Breaking CO waves, as determined by simulations in two dimensions.
Gravity points towards the bottom of the figure, with the vertical distance y in units

of the pressure scale height H, as evaluated just above the interface. The color scale

indicates the mass density in units of g cm ~3.

appropriate for the degenerate plasma prior to ignition. Furthermore we set the
Mach number Ma = Upax/cs = 0.5 and consider four values of §/H: 0.005, 0.01,
0.02, and 0.04. These values vary the value of G = 8g/U2,.)1/2 = (6/H)/(yMa?),
that was investigated in the previous section. The unstable modes have wavenumbers
20] k > g/U2.x(1 — p1/p2). We chose the size of our computational domain to be
roughly equal to this maximum wavelength, so that we have 1024 grid points along
the largest possible wave. In practice, smaller waves become dominant, with the
wavelength of the dominant mode depending on the wind profile. In all cases this
dominant mode is well-resolved.

Figure 5.1 shows fully developed waves breaking, generation of the “spray”, and
mixing of the white dwarf substrate up into the atmosphere. Figure 5.2 shows contours
(black lines) of the carbon mass fraction at 0.49, 0.20, and 0.02, respectively, for the
simulation depicted in Figure 5.1, but at a later time, where 50% was the initial

concentration of C in the lower fluid. The contour at 0.49 corresponds to the carbon
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Figure 5.2: Mass fraction of 12C for 6/H = 0.04 after t = 35000 /U. The vertical
dimension is scaled to the pressure scale height H as evaluated just above the interface.
The contours for 12C mass fractions of, from the top, 0.02, 0.20, and 0.49.
mass fraction of the underlying white dwarf, while the smaller contour values indicate
how far outward into the accreted material the white dwarf substrate is mixed. The
contour at 0.2 delimits the region that contains most of the initial enrichment.
Figure 5.3 shows the surface mass density (the mass of C/O in the mixed layer
per unit area), dMgo/dS, averaged over the horizontal direction. The mixed layer
is defined here as the region in which the carbon mass fraction is between 0.49 and
0.01. The amount of mixed mass depends on these delimiters; reducing the upper
limit to 0.4 decreases the mixed mass by less than a factor of 2. The C/O is mixed
rapidly until it saturates; further mixing occurs on diffusive timescales. Although the
four curves in figure 5.3 do not the same behavior as the ones in figure 4.10 for small
values of G (ie. there is a dependence of the initial slope on the value of G probably
due to compresibility), the total mass of white dwarf material that becomes mixed
at late times is independent of the lengthscale 4. The rate of mixing, i.e., the initial

slopes of the curves in Figure 5.3, does show, however, some dependence on § unlike



100

0.7F T

& 0.6¢

=2

q 0.5¢

>~ £ A E

2 04¢F xx* D[]D AAA++ 34
X WSt L 8/H =5 1079

D 030 g a8t T 4 P

S s 0/H = 11077

8 U2Fm, * o 6/H = 2 1074

S 0.1F% « 6/H = 4 104

0.0%+‘ L n L n n L Il L L L Il L L ‘i
0 2000 4000 6000 8000
tu/6

Figure 5.3: The mixed mass of C/O, per unit area, as a function of time. This
was computed by averaging over the horizontal direction in the simulations. Time is
scaled to §/Umax and Mqq is scaled to palU2,+/g (see eq. 5.1). Four different values
of g8 /U2 . were used, 0.01, 0.02, 0.04, and 0.09.

what we found in the previous chapter. This is probably due to compressibility. Using
dimensional analysis and the numerical results, we find that for a fixed density ratio
p1/p2 = 0.6 the total mass per unit area, dMcp/dS, mixed into the accreted H/He
saturates at

dMgo _ Uhax

_ 1
75 a= T PWD, (5.1)

where « is a non-dimensional constant! that we determine from the simulations to
be a ~ 0.6 (see Figure 5.3). The timescale to reach saturation is far shorter than the
timescale of either the accretion phase (> 104 yr) or the pre-peak convective phase
(~ 100 yr) of a typical classical nova. For example, if §/H = 0.01 and Ma = 0.5, then

the saturation timescale is of order seconds for our nova setup.

1. In general, « depends on pa/p; and possibly Ma. A parameter study, outside the scope of this
paper, is necessary to determine this dependence.



101

5.3 One-Dimensional Nova Models

We now incorporate our simulations of the wave breaking and mixing into simulations
of the thermonuclear burning of a nova. In order to explore the global properties of
this local mixing mechanism, we compute several one-dimensional models of novae
with a modified version of the KEPLER stellar evolution code [86] that includes a
large network of ~ 100 light isotopes [87] implicitly coupled into the stellar struc-
ture solver. This allows us to follow throughout the entire convective envelope the
radioactive decays of nuclei that are formed at the base of the burning zone. The
underlying white dwarf has a mass of 1.0 M), a radius of 5000km, a luminosity of
103 ergss™1, and is composed of a 50%/50% 12C /160 mixture. We retain the outer
0.005 M on the computational grid to follow the thermal inertia of the outer WD
layers and allow the model to relax until it has a constant luminosity before we start

1 and in all but one model (see item

the accretion. The accretion rate is 1079 Mg yr~
3 below), the accreted material consists of 70 % 1H, 28.7% 4He, 0.3 % 12C, 0.1 % 4N,
and 0.9% 160, by mass. Convection is modeled using the Ledoux criterion for sta-
bility and mixing length theory. We assume no convective overshooting and that
semiconvection is too slow to cause mixing.

We investigate three scenarios, as summarized in Table 5.1, for generating the

gravity wave induced mixed layer.

1. In the first scenario, the only shearing considered is that from the convective
cells driving a wind at the interface between the H-rich atmosphere and the C/O
substrate. This is the scenario envisaged by [18], in which the C/O, after being
entrained, is then distributed throughout the convective zone. Figure 5.4 sum-
marizes the evolution of the accreted layer. After accretion for about 6.9 x 104 yr

a convective zone forms about 2.5 x 1075 M, above the WD interface. The to-
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tal envelope mass accreted at ignition is &~ 7 x 1072 M, in good agreement
with the estimates of [88, 89]. Within ~ 100 yr from the onset of convection,
the convective zone extends upward to the surface and downward to about
5x 1076 Mg, above the interface, at which time the runaway reaches its peak
rate of energy generation. This peak phase evolves on a timescale of ~ 1h, but
the convection does not reach the WD interface. Only days later, when the
nova envelope is already significantly expanding, does the burning layer reach
the WD. This downward movement, in mass, of the burning layer is mediated
by heat conduction into these deeper H-rich layers. The convective zone also
moves deeper, but never quite reaches the WD interface2. As a result, there is

no injection of C/O into the H-rich envelope, by construction.

The envelope expands to large radii (> 10'2 cm, large enough to engulf the
secondary) by the end of the simulation, but the result will only be a slow nova,
in rough agreement with the semi-analytical calculations of [88, 89]. We do not
find any contact of the convective region with the WD substrate; as a result,
we do not expect that any convection-driven wave mixing would occur, unless
there is a large redistribution of angular momentum in the accreted envelope

12, 13].

2. In the second scenario, the shearing originates from a wind at the base of the
accreted envelope blowing across the underlying C/O substrate. We assume
that the wind persists throughout the H/He layer with velocity sufficient to

drive mixing on a timescale much less than that to accreted a critical mass of

2. At the very bottom of the H shell the nuclear luminosity from H burning can never become
large enough to drive convection, as it goes to zero at the interface; the only possibility for mixing
to occur is if a steep temperature gradient arises from the thermal inertia of the heated WD core
below an expanding H envelope.
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fuel. In this case the mixed layer is generated prior to ignition. We also assume
a linear (in Lagrangian mass coordinate) gradient in the mass fraction of C/O
between the WD and the accreted envelope. Because the shear profile, and
hence the amount of mass mixed, is unknown, we consider a range of mixed
masses (see Table 5.1). Our ignorance of the fluid motions in the envelope and
substrate prevents us from saying where and how the accreted material spreads
over the surface, and so we cannot determine the actual shear at the base of the
envelope. In all cases that we consider, the shear velocity is subsonic, which is
the range of validity of the 2-d simulations. For such velocities, the mixed layer

is always thinner than a pressure scale height (eq. [5.1]).

Figure 5.5 shows the case with the largest pre-enrichment: the mixed material
comprises 4.6 x 108 g (i.e., a total of 2.3 X 1028 g of WD material is being
mixed with H-rich material). This is about 25% of the envelope mass, which
is less than that generated by the calculation described in section 5.2. From
equation (5.1), a 25% enrichment corresponds to Ma = 0.4 if the velocity were
uniform over the surface. We note that this velocity is much less than Keplerian,
Umax =~ 0.05(GM/R)Y/2, as expected in the envelope well below the accretion
disk boundary layer [90]. If the velocity were not uniform over the surface, then
a higher maximum velocity would be required to inject the same percentage of

the total envelope mass.

The mixed layers are added to the surface using the same accretion rate as the
rest of the envelope (10_9 Mg yr_l); to prevent a runaway while these layers are
being added, we suspend nuclear energy generation during the accretion of the
first 5 x 1028 g. About 50 yr prior to peak energy generation a semiconvective

region forms in the outer 60 % (by mass) of the enriched layer; about 8 months
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Figure 5.4: Kippenhahn diagram of a nova without enrichment. The z-axis indicates
time intervals for the different evolution stages, and the y-axis gives the mass above
the C/O WD substrate. Green hatching (framed by a green line) indicates convection,
blue shading indicates nuclear energy generation for which each level of darker blue
denotes an increase by one order of magnitude, starting at 1019 ergsg=1s~1. The
thick black line shows the total mass of star (including ejecta), increasing because of
accretion; the dash-dotted line indicates the mass outside of 1012 cm ; and the dashed

line marks the interface between the white dwarf C/O substrate and the accreted
layers.
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Figure 5.5: Same as Fig. 5.4 but for a model in which the inner M,;, = 4.6x1028 g are
enriched in C/O with a linear composition gradient (with respect to the Lagrangian
mass coordinate) between the WD composition (C/O) at the base and the accretion
composition (solar) at the upper edge. Note that the convective zone does not reach
the interface with the WD substrate, and that a significant semi-convective region,
indicated by red hatching, develops prior to the onset of convection.
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Figure 5.6: Time-integrated average specific nuclear energy generation of the accreted
envelope. The curves are shifted so that the zero in time corresponds to the peak
energy generation rate. The gray curve indicates the model with the highest wave-
induced pre-enrichment (see Tab. 5.1 and Fig. 5.5); the black curve indicates the
model without prior enrichment (Fig. 5.4). The slope of a curve is proportional to
the average specific energy generation rate in the envelope.

before the peak a convection zone starts at the base of this semiconvective layer

(at 7 x 1079 Mg above the WD interface) that extends upward to the surface

and downward to about 5 x 10~7 Mg above the interface. In contrast to the

first case, the pre-mixed envelope with the largest enriched mass ignites at a

smaller accumulated mass, ~ 5 x 1072 M.

The energy generation in the enriched layer is dominated by 12C(p, 7)13N(B+)13C.
The peak energy generation timescale is about 3 min—20 times faster than in
the first case—with a specific energy generation rate about 20 times higher.
Figure 5.6 shows the specific nuclear energy generation in the accreted enve-

lope, with the time centered about the peak energy generation rate. The larger
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rate of energy generation roughly corresponds to the ~ 20 times greater metal
enrichment. In this scenario the entire 25 % of pre-enriched C/O material is
spread throughout the hydrogen envelope during the runaway. This leads to a
a corresponding enrichment in the ejecta. The ejecta are unbound, i.e., they

have a positive velocity at very large radii.

As in the first case, the convection never reaches the WD interface (although the
base of the convective zone is much deeper), so there is no additional convection-
induced wave mixing of the C/O substrate with the hydrogen-rich envelope. We
did experiment with pre-runaway, pre-enriched layers as small as 1/10,000 the
mass used in the case described above (Table 5.1). As before, we disregarded

nuclear burning for the first 1028

g of accreted material, with the exception of
the case with 3.77 x 1076 Mg of enrichment, where we took twice that mass
to accommodate the entire enriched layer. The difference in masses for which
nuclear burning is suspended is the reason for the case with the largest pre-

enriched mass, 1.15x107° M having a slightly larger envelope mass at runaway

than that of the case with 3.77 x 1076 M of enriched mass.

In none of these cases did the convection reach the WD interface. Eventually, for
the case of an enriched mass of < 1079 M), the runaway behaves as in the non-
enriched case: the energy release rate in the mixed layers is too small to drive
convection above and heat conduction cools it efficiently so that the runaway
does not occur in its vicinity. The slightly higher envelope masses obtained in
the limit of small enrichment is likely to be an artifact of our suspension of

nuclear energy generation for the first fraction of the accretion phase.

. In a third scenario we assume accretion of material enriched to a mass fraction

of 50 % in C/0O. Allowing for nuclear energy generation instantaneously in this
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material leads to a rapid runaway after only a thin layer has been accumulated at
the surface of the star. If this magnitude of enrichment was due to instantaneous
mixing with a colder WD substrate, then a lower temperature in the enriched
material and thus a significantly later runaway could result. We include this run
to demonstrate how qualitatively different the accretion of pre-enriched material
behaves as compared to first accreting unenriched material and then, only later

after it has settled, mixing the accreted layers with the C/O substrate.

5.4 Implications and Summary

Using a constant wind profile that blows across the surface of a white dwarf, we have
performed a two-dimensional parameter study of the mechanism proposed by [18].
Our primary results of the mixing rate and the maximum mixed mass, equation (5.1),
suggest that this process can mix about 10=6-105 Mg of the underlying C/O into
the hydrogen-rich envelope. From this, we investigated two scenarios: that the wind
is the result of convection, and that the wind originates during the accretion phase.
We find that if no enrichment occurs prior to the onset of convection, then the
convective zone does not reach the C/O interface, and no additional mixing occurs
(in the one-dimensional model) in the absence of convective overshoot. The result
in this case will be a slow nova, with little enrichment of the ejecta. In contrast, an
envelope with a mixed layer at the C/O interface, consistent with the scalings from
high-resolution numerical studies, provides a more violent runaway and the ejecta are
enriched by ~ 25% in C/O, consistent the enrichment observed in some nova ejecta.
Such an event does require a strong shear velocity, but the saturation amount of mass
mixed is roughly independent of the shape of the shear profile, so long as its thickness

is much less than a pressure scale height. Our runs, outlined in Table 5.1, show that
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when the metals are concentrated at the base of the accreted envelope, the amount of
mass accreted prior to runaway is larger than if the C/O were uniformly distributed
over the envelope, i.e., if the white dwarf were to accrete material with a supersolar
metallicity. The reason is that the opacity of the envelope is larger than when the
C/O are concentrated at the base.

There are a number of issues that we have not yet addressed or investigated.
First, our results might depend on the dimensionality of the system. We would
therefore expect that although the generation of the gravity waves is captured by two-
dimensional dynamics, the energy cascade of the waves and the advection of spray and
vorticity will be different in a three dimensions. Second, this work investigates only
the density ratio for an accreted envelope in thermal equilibrium. During the early
phase of accretion and during the runaway the density ratio will likely be different.
Third, although our parameter study covers more than one order of magnitude in 9,
it is important to know if our results still hold at even larger values. As § becomes
a respectable fraction of H, we expect that the stratification of the envelope, and in
particular the effect of a non-zero Brunt-Viisala frequency, will become important.
All of these differences can affect the mass and thickness of the mixed layer, and the
investigation of these issues is the subject of ongoing work.

In our one-dimensional nova simulations, we assumed that a convective roll will
only entrain the mixed layer if the base of the convective zone (as computed from
a mixing-length formalism) reaches the interface. Future multidimensional studies
can inform us as to how convection interacts with the interfacial gravity waves, and
to whether this assumption is in fact correct. Moreover, our sub-grid model, when
incorporated into a one-dimensional calculation, does not account for spatial varia-
tions of the wind. Such a variation would occur, for example, if the fuel accretes

non-uniformly over the surface of the star and then spreads. In reality the amount of



Table 5.1: Properties of the 1D nova models

Case Menrich Menvel Enuc,max
(M) (Mo) (ergss™)
no pre-enrichment 0 6.93 x 107° 6.68 x 10%2
wave pre-enrichment 1.26 x 1077 7.08 x 1079 7.24 x 10%2
wave pre-enrichment 1.26 x 1078 7.05 x 1075  7.65 x 1042
wave pre-enrichment 1.26 X 1077 6.78x107° 7.71 x 10%2
wave pre-enrichment 1.31 x 1076 542 x 1075 1.27 x 1043
wave pre-enrichment 3.77 x 1076 4.67 x 107 2.68 x 1043
wave pre-enrichment 1.16 x 107° 4.85 x 10™° 1.26 x 10%
enriched accretion (50 %) 2.08 x 1079 5.28 x 10%
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mass mixed will vary over the surface of the star. Our one-dimensional calculations

must of necessity take the mixed mass as a free parameter. Because the amount of

C/O entrained depends quadratically on the velocity in the wind profile, our calcula-

tion underscores the need for detailed simulations of the shear profile of an accreting

white dwarf. These issues are clearly important and are the next steps to pursue.



APPENDIX A
DETAILED DERIVATIONS OF FORMULAS

A.1 Extension of Howard’s semicircle theorem

We begin from
7HE)0=0 d=0=1 dly=c =0
and

KC?%¢—r[(Vo— C)*¢y — (Vo — C)Vy¢| — G =0.

(A.1)

(A.2)

where G is the restoring force (G = G(1 —r) for the simplest case), 0 < G, 0 < K,

and we assume C; # 0. Let Vg =V — C, and let ¢ = ¢/Vz and D = 0y. Note that

VEDé — Vg¢DVg = VEDY .
The boundary condition can then be written as
rVEDy = KC? -G .
From (A1) we obtain
VD + 2DV Dy — VK2 =0 ;
multiplying the last relation with Vz9* and integrating, we obtain:
VVED b+ $*DVEDY - VEK |y =0,
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(A.3)
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so that

DVADY] — VEIDy > — VEK2 2 =0

and

[ VEDuly — [ VEIDY + K2y = 0.

using the normalization condition, and denoting by Q(y) = [|Dt| + K?|¢|?] > 0, we

then have
1 2K02—G oo 9
v, —/ V) 2Qdy |
AT r | (V) Qdy
so that
KC? -G 00 9
= — V —C)*Qdy . A5
TP r [ = CPQdy (A.5)

Taking the imaginary part, we obtain

KC, 00
= — dy . A.
VP r [TV = CrQdy (A.6)
Therefore,
0< Cr < Vimaz (A.7)

i.e., a wind cannot generate waves traveling faster than its maximum speed. Now,

taking the real part, we obtain

K(C?-C?) -G
Val?

(o0}
:4A[W—W@+¢—ﬁm@, (A.8)

or
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K(C? - C?) — © o 0 2 _ A2y [®
o P VEQdy - 20, [T vQdy+ (2 -c?) [T Qay| |

or

K(C?2-C?H -G _ © KCT o [0
o= | ) VR =20, e+ O [y + (07 = OF) [T @y
so that
K|CP*+d % 2 2

0< ——F5—= Ve —1C1°1Qd A9
v =1, WP -loPid (A.9)

and
C?2+C? < V24 s (A.10)

which is the sought-for result.

A.2 lower bound on the CL-unstable modes

Consider the wind profile V' =1 — e™¥; then the equations 2.21 and 2.21 become

2 e ? _
byy — (K ——1_6_3,_0) ¢=0 (A.11)
and

C? —r[C%y +C] - G(1—7r) = 0. (A.12)

We are interested in the value of K for which our system becomes marginaly unstable.
From the extension of Howard’s semicircle theorem to our case we know that for C)
greater than V4, the system is stable, so the instability is expected to start when

C = Vimaz = 1. Using this value for C' we obtain from A.11
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Pyy — (K2+1)</5=0; (A.13)

therefore ¢ = e YV K?+1 and from A.12 we then have

K—r[-VK24+14+1]-G(1-r)=0, (A.14)

which by solving gives us

GA—r)+r—r/(GAL—1)+7)2+(1-12)
1—1r2 '

Kmin = (A'15)

Numerical integration confirms this result.

A.3 Large G behavior

We are interested in cases for which the factor G is large. As already discussed, such
cases not only correspond to the astrophysical limit of strong surface stratification,
but also correspond to cases for which the wind is weak enough so that the growth rate
of (linearly) unstable modes is small, i.e., to cases for which our analysis is actually
appropriate.

In order to proceed, we need to adopt a specific wind profile; in what follows, we
will use a profile of the form U = (1 — e™¥). However, we note that our basic results
hold for more general wind profiles. From equation 2.28 we know that the unstable
modes will have K to be of the same order as G, and therefore K >> 1; this allows us
to write a WKBJ expansion for the solution of the perturbation stream function of

equation (2.36) for the wind. The equation we have to solve for large K is therefore
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Py — lKQ + 7UU’_‘U%] ¢=0; (A.16)

The boundary condition at the interface is:
KC? —r[C?¢ylg — CU'|g) = G(1 =) = 0. (A.17)

The WKBJ approximation will break down at two points: The first one is at y = y¢,
where the critical layer is located; the second one is at y = y4, where y, is the
solution of K2(U — C) + Uy = 0 and the second term in (A.16) becomes zero. For
this reason, we will have to decompose the y—axis into three regions: 1. 0 < y < y; IL.

Yo < Y < yYa; 1. yqo < y. The first-order solutions of the WKBJ equations therefore

are:

(D) 6 =A1 e Jowdy' | B, et J§ way" (A.18)

(IT) ¢ = AQﬁ sin (fyyc wdy' — 7r/4) + BQ\/LE COS (fyyc wdy' — 7r/4) , (A.19)

(111) 6= Ayt Jya " (A.20)
where

w(y) = \l ‘Kz + Yaw_ , (A.21)

-y
— KZ_e—
U-C J‘ 1—C—e¥

and the —7 /4 factor appearing in the solution for Region IT is inserted for convenience,

to be exploited shortly. The coefficients Ay, By, Aa, Bo, A3 are connected through the
solutions at the points where the WKBJ approximation breaks down, and can be
obtained using matched asymptotics. Thus, close to y = y, it is well-known that

the solution is an Airy function [91]. Matching the two solutions we obtain that for
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Ye < Y < Ya,

2A

& qu {sin [I1] cos l /y y wdy' — 7r/4] — cos [I1] sin l /y y wdy' — 7r/4]} ,  (A22)

and therefore
BQ = 2A3 sin [Il] y A2 = —2A3 CcOos [Il] ; (A.23)

where I] = fgyca wdy’. The solutions near the critical point y = . satisfy the equation

Ull
——Cf =0 A.24
Dyy Uéy¢ (A.24)

where U} = U"|y=y, and U, = U’|y=y,. The solutions of the above equations are

given in terms of z = —(y — yc)UY JU.. > 0 by

fi(z) =Vzh (2vz),  falz) = Va1 (2v7), (A.25)

where J1, N1 are, respectively, the first Bessel and Neumann (Bessel of the second

kind) functions. The first terms in the asymptotic expansion for y — 400 are
4 4
f1(z) =~ % sin (221/2 - 7T/4) . fa(z) ~ —% cos (221/2 - 7T/4) . (A.26)
Matching with the outer solution, we have

¢ = VrAzfi1(z) — VT Bafa(z).
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The asymptotic expansion for z — 07 is

fi = z+... (A.27)

nfy ~ —l14+zhn|z|+...—(1—=2y)z+..., (A.28)

where 7 is the Euler-Masceroni constant. Thus, we can identify f; with the regular
Frobenius solution ¢, and fo with the singular Frobenius solution ¢;. Here we
assumed that C; is much smaller that G—1 (this is something that will be justified a
posteriori).

For y < y. the solutions of equation (A.24) can be obtained by making the trans-
formation z — e~z which is equivalent to taking the contour below the critical
layer. By doing this the first Bessel function transforms to the first modified Bessel
function that is growing exponentially and is real while the second one transforms
to a linear combination of an exponentially growing and an exponentially decreasing
modified Bessel function, and due to the presence of the logarithm it is going to have

an imaginary part. Their asymptotic expansion for y — oo is

fl o~ £e+2\/5

4
SN o V2 [ie?V? — 2e72V7] (A.29)

’ 2y

with z = (y — ye)U/ /UL > 0. The inner solution for negative large z can be then

written as

bin =~ V7m(A2fi — Bafa), (A.30)
~ % [(Ag +iBg) €2V* — 2Bye™2V?] . (A.31)
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Matching with the outer solution then gives

1 1y / Yy !
¢ ~ 2w —(Ag +iBg)e Jyewd" | 9pyet Jue v (A.32)
w
or
A . B 1 1
¢ =2 —;z 2.2 \/Ee_ Jo way' Bze_IQWefdy wdy’ ) (A.33)

where Iy = fé’c wdy’. Gathering all the terms then gives
Al = Ag(cos [11] — isin [I1] >e+12, By = 2Aszsin [I;] e 2, (A.34)
and

= Ag |2sin(I1)e 2e™ Jowdy' 4 coq I)etT2e™ Jo wdy' _  in I)et2et J§ way'|
3

(A.35)

The values of ¢ and ¢4 at zero are therefore
dlo = As [2 sin(I1)e ™2 + cos(I;)et 2 — isin(Il)e+IQ] ) (A.36)
bylo = Asg[2sin(Iy)e 2 — cos(Iy)e ™2 + isin(Iy)e 2] (A.37)

where we have kept terms only to first order in K. For the given wind profile (1—e™%),

we have:

ye=—KIn(1—-C), yq=—-[KIn(1-C)—KIn(1+1/K?),

™ 3
IH~—+4+0(1/K A.38

Iy~ Kye+ O(1/K?) = —KIn(1 - C) + O(1/K), (A.39)
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™

sin(/7) ~ 5K

cos(l1) ~1, e 2=@1-0)K.

Normalizing so that ¢|g = 1, we then obtain

_ 2sin(I1)e™ 2 — cos(I1)eT2 + isin(l)et2

- A.40
2sin(I1)e™12 + cos(I1)etf2 — isin(ly)etl2’ ( )

Py

or
4sin(I1)e T2

=14+ .
& 2sin(Iq)e~12 + cos(Iy)et12 — isin(Iy)et12

(A.41)

The second term in equation (A.41) is exponentially small when compared to 1 since

Iy ~ K; neglecting this term when appropriate then allows ¢, to be written as

¢y =—1+4isin?(f))e 22 (A.42)

where we have kept only the first term in the expansion of the real and imaginary

parts. Plugging in this value of ¢ in equation (A.17), we obtain, to zeroth order,

1-rG
Co =1/ T K =/ AG/K, (A.43)

which corresponds to the gravity wave in the absence of a wind; A; is the Atwood

number. For our purposes, this is as far as we need to go in analyzing the real part
of C.
We next turn to analyzing the imaginary part of C'. To obtain the first order in

Im{C} = C; < Cpy we have:

1 r
2K(1+r)CoCj — rKCg(l + qﬁ,y) =0, C; = 57 n rCO(l + qﬁ,y), (A.44)
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so that

2
;= 17‘00

sin?(I;)e™ 22, or (A.45)

2A:G

(K/AG)
) (A.46)

— rr2 1 AiG 5/ L
Im{C1} = 2(1+7) A2G? ( K ) {(1_I</(«4,:G)

We note that (1 — 1/y/Z)®® is a bounded function smaller than one with ¢, =
max(In(1 — 1//z)?%) ~ —2.45..., and therefore C; has a negative exponential de-
pendence on G and the result in 2.34 follows. We note further that this exponential
dependence should be independent of the wind profile, and in a more general case —
for which U(y) is the wind profile and U~1(c) is its inverse — the growth rate will be
proportional to Cj ~ exp[—2KU~1(c)]; this can be re-written as C; ~ f(c(K))AC,
with f(c) = exp[-2U~1(C)/C] a bounded function and C' = Cy. The interpretation
of equation (A.45) is straightforward: it simply states that the growth rate is propor-
tional to the negative exponential of the height of the critical layer, as measured in

units of the wavelength.

A.4 Rescaling (3.38-3.41)

Before we begin investigating the amplitude equations we re-scale our system so that
we are left with a minimum number of free parameters. By letting Z = U” /VU'Z,
Y =n/VU, T = 7/(VU'k), ¢ = Kz and v = //V/U' we obtain the following

equation to be solved:

Z,T + 7]2’5 - @0)&2)77 - VIZ’nn = @0,57
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with
J= %/_J:T /_Z:O e~ Zdnde

By rescaling A to [Ca|?/|D1|?A, and H to |C2|?/|D1|H, we can always scale our system
so that D; = 1 and C9 = —1. Finally, the coefficient C; can always be set to zero
by performing a Galilean transformation (7 — 7+ C1£) and shifting the critical layer
by Y — Y — Cy. The last transformation corrects the position of the critical layer
to order e. We are left therefore with two independent parameters, Dy and v, to
investigate. The parameter Dy gives a measure of the coupling of the critical layer to
the wave; (Dy = 0 gives the evolution of a “free” critical layer uncoupled from gravity

waves).
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