Turbulence, Lecture 1: The 'Where', the 'Who', the 'Why' and the 'What'

Alexandros Alexakis

Where is Turbulence met ?

everywhere...

Astrophysics, Atmospheric physics, weather prediction, geophysics, engineering, aviation, Industry, ...

Where is Turbulence met?

 \bigcirc

- Galaxies 10^{23} m
- Nebula 10^{18} m
- Solar Wind
 10¹¹ m
- Stelar convection 10^9 m

- Atmosphere 10^7 m
- $\bullet~{\rm Ocean}\\ 10^5~{\rm m}$
- Navy 10² m
- \bullet Coffee $10^{-1}~{\rm m}$

500

Turbulence in science

- Mathematics: Analysis, singularity formation, existence of solutions etc (Millennium Prize by the Clay Mathematics Institute)
- Nonlinear physics, Dynamical systems: Bifurcations, Chaos, spontaneous stochasticity etc)
- **Statistical physics:** (Large degrees of freedom, Out of equilibrium, intermittency, anomalous exponents, etc)
- Earth Sciences (Atmosphere, Oceanography, Climate)
- Astrophysics (Stelar and planetary interior, intertelar medium, nebula clouds...)
- Engineering (Naval, aircraft and car industry, ...)

Why is turbulence important

• In the absence of turbulence

$$U \simeq 72 km/h$$
, $L \simeq 2m$, $\nu = 1.5 \cdot 10^{-5} m^2/s$, $\rho = 1.2 kg/m^3$

rate of energy dissipation (drag)

$$\epsilon \sim (\rho L^3)(\nu U^2/L^2) = 0.014 kgm^2/s^3$$

• In the presence of turbulence rate of energy dissipation (drag)

$$\epsilon \sim (\rho L^3)(U^3/L) = 38000 kgm^2/s^3$$

Why is turbulence important?

$$\frac{\text{Turbulent dissipation rate}}{\text{Laminar dissipation rate}} = \frac{(\rho L^3)(U^3/L)}{(\rho L^3)(\nu U^2/L^2)}$$
$$= \frac{UL}{\nu}$$
$$= \mathbf{Re}$$
$$= 2.6 \cdot 10^6$$
$$UL \quad L^2/\nu \quad viscous \ time \ scale$$

 $Re = \frac{\partial L}{\nu} = \frac{L}{L/U} = \frac{\partial \partial c \partial c \partial c \partial c \partial c}{advection \ time \ scale}$

What is turbulence?

What is turbulence?

What is turbulence?

First Bifuracations

No clear commonly accepted definition of turbulence exists!

Some observations

- Erratic (random) motions
- Unpredictability
- A large range of scales excited from large to small
- Structures exists but are **not** periodic is pace or time
- Strong dissipation

My personal definition

We will say that a 3D flow is turbulent if

- It is chaotic (phase space trajectories are unstable: the slightest perturbation will lead to a different state thus leading to unpredictability)
- It involves a large range of scales (many degrees of freedom whose mean behavior could be predicted)
- Energy is dissipated at a scale much different than the scale it is injected (or was initially injected)
- It is a strongly out of equilibrium process

Thank you for your attention!