Turbulence Navier Stokes and Symmetries

Alexandros ALEXAKIS

alexakis@phys.ens.fr Dep. Physique ENS UIm

- Symmetry in fields and in equations
- Symmetries of the Navier Stokes
- Breaking of symmetries

Flow behind a cylinder

Symmetries of Fields

We will say that a field $\mathbf{u}(\mathbf{x},t)$ is invariant under a transformation \mathcal{T} or that it has a \mathcal{T} -symmetry if under the act of the transformation it remains the same:

$$\mathcal{T}[\mathbf{u}] = \mathbf{u}$$

Space translations

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathbf{u}(\mathbf{x} + \hat{\mathbf{e}}_i \ell, t)$$

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathbf{u}(\mathbf{x},t+T)$$

- Time periodic flows have discrete symmetries
- Constant in time flows have continuous symmetries

Reflections

$$\begin{split} \mathcal{T}[(u_x(x,y,z,t),u_y(x,y,z,t),u_z(x,y,z,t))] = \\ (-u_x(-x,y,z,t),u_y(-x,y,z,t),u_z(-x,y,z,t)) \end{split}$$

•
$$\mathbf{u}(\mathbf{x},t) = (\sin(x)\cos(y), -\cos(x)\sin(y), 0)$$

Rotations

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathcal{R}\mathbf{u}(\mathcal{R}^{-1}\mathbf{x},t) + \mathbf{c}$$

Where ${\mathcal R}$ is the rotation matrix ${\mbox{\bf Example:}}$

•
$$\mathbf{u}(\mathbf{x},t) = (y, -x, 0)$$

Galilean Transformations

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathbf{u}(\mathbf{x} + \mathbf{c}t, t) + \mathbf{c}$$

•
$$\mathbf{u}(\mathbf{x},t) = -x/t$$

Scalling Transformations

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \lambda^{\alpha} \mathbf{u}(\lambda \mathbf{x},t)$$

•
$$\mathbf{u}(\mathbf{x},t) = (y, -x, 0)(x^2 + y^2)^{\alpha/2 - 1}$$

Symmetries of equations

We will say that an equation (e.g. the Navier-Stokes) is invariant under a transformation \mathcal{T} or that it has a \mathcal{T} -symmetry if for any solution $\mathbf{u}(\mathbf{x},t)$ of this equation $\mathcal{T}[\mathbf{u}(\mathbf{x},t)]$ is also a solution.

Note that $\mathbf{u}(\mathbf{x},t)$ does not have to be a symmetric field.

Symmetries of equations

Lemma: If the initial conditions $\mathbf{u}(\mathbf{x}, 0)$ has one of the spatial symmetries of the Navier-Stokes $\mathcal{T}[\mathbf{u}(\mathbf{x}, 0)] = \mathbf{u}(\mathbf{x}, 0)$, then if $\mathbf{u}(\mathbf{x}, t)$ remains smooth it retains this symmetry for all times. $\mathcal{T}[\mathbf{u}(\mathbf{x}, t)] = \mathbf{u}(\mathbf{x}, t)$

Proof: If $\mathbf{u}(\mathbf{x},t)$ is a solution then (since \mathcal{T} is one of the symmetries of the Navier-Stokes) $\mathcal{T}[\mathbf{u}(\mathbf{x},t)]$ is also a solution that has the same initial conditions as $\mathbf{u}(\mathbf{x},t)$ ($\mathcal{T}[\mathbf{u}(\mathbf{x},0)] = \mathbf{u}(\mathbf{x},0)$). Thus either there is non-uniqueness of solutions or

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathbf{u}(\mathbf{x},t).$$

(Non-uniqueness occurs only for non-smooth $\mathbf{u}(\mathbf{x}, t)$).

• Space translations:
$$x' = x + \ell$$

• "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x}+\ell,t)$ is also a solution."

• Space translations:
$$x' = x + \ell$$

• "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x}+\ell,t)$ is also a solution."

•
$$\partial_x \mathbf{u}(\mathbf{x}+\ell,t) = \frac{\partial x'}{\partial x} \partial_{x'} \mathbf{u}(\mathbf{x}',t) = \partial_{x'} \mathbf{u}(\mathbf{x}',t)$$

• Space translations:
$$x' = x + \ell$$

• "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x}+\ell,t)$ is also a solution."

•
$$\partial_x \mathbf{u}(\mathbf{x}+\ell,t) = \frac{\partial x'}{\partial x} \partial_{x'} \mathbf{u}(\mathbf{x}',t) = \partial_{x'} \mathbf{u}(\mathbf{x}',t)$$

$$\partial_t \mathbf{u}(x+\ell,t) + \mathbf{u}(x+\ell,t) \cdot \nabla \mathbf{u}(x+\ell,t) = -\nabla P + \nu \nabla^2 \mathbf{u}(x+\ell,t) + \mathbf{f}(\mathbf{x},t)$$
$$\partial_t \mathbf{u}(x',t) + \mathbf{u}(x',t) \cdot \nabla' \mathbf{u}(x',t) = -\nabla' P + \nu {\nabla'}^2 \mathbf{u}(x',t) + \mathbf{f}(\mathbf{x}'-\ell,t)$$

which is the original Navier Stokes (if $f(x, t) = f(x + \ell, t)$)

 $ie, \ \mathbf{u}(x+\ell,t)$ satisfies the same equations as $\mathbf{u}(x,t)$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x},t+T)$ is also a solution."

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x},t+T)$ is also a solution."

•
$$\partial_t \mathbf{u}(\mathbf{x}, t+T) = \frac{\partial t'}{\partial t} \partial_{t'} \mathbf{u}(\mathbf{x}, t') = \partial_{t'} \mathbf{u}(\mathbf{x}, t')$$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x}-\mathbf{c}t,t)+\mathbf{c}$ is also a solution."

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x}-\mathbf{c}t,t)+\mathbf{c}$ is also a solution."

•
$$\partial_t (\mathbf{u}(\mathbf{x} - \mathbf{c}t, t) + \mathbf{c}) = \left(\frac{\partial t'}{\partial t}\right) \partial_{t'} \mathbf{u}(\mathbf{x}', t') + \left(\frac{\partial \mathbf{x}'}{\partial t}\right) \nabla_{\mathbf{x}'} \mathbf{u}(\mathbf{x}', t')$$

•
$$\partial_t \mathbf{u}(\mathbf{x}',t') = \partial_{t'} \mathbf{u}(\mathbf{x}',t') - \mathbf{c} \nabla' \mathbf{u}(\mathbf{x}',t')$$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- \bullet Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c} t, \ t' = t, \ \mathbf{u}' = \mathbf{u} + \mathbf{c}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x}-\mathbf{c}t,t)+\mathbf{c}$ is also a solution."

•
$$\partial_t (\mathbf{u}(\mathbf{x} - \mathbf{c}t, t) + \mathbf{c}) = \left(\frac{\partial t'}{\partial t}\right) \partial_{t'} \mathbf{u}(\mathbf{x}', t') + \left(\frac{\partial \mathbf{x}'}{\partial t}\right) \nabla_{\mathbf{x}'} \mathbf{u}(\mathbf{x}', t')$$

•
$$\partial_t \mathbf{u}(\mathbf{x}',t') = \partial_{t'} \mathbf{u}(\mathbf{x}',t') - \mathbf{c} \nabla' \mathbf{u}(\mathbf{x}',t')$$

•
$$(\mathbf{u} + \mathbf{c}) \cdot \nabla(\mathbf{u} + \mathbf{c}) = \mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{c} \cdot \nabla \mathbf{u}$$

$$\partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' = -\nabla P + \nu \nabla^2 \mathbf{u}' + \mathbf{f}$$
$$\partial'_t \mathbf{u}' - \mathbf{c} - \nabla' \mathbf{u} + \mathbf{u} \cdot \nabla' \mathbf{u} + \mathbf{c} - \nabla' \mathbf{u} = -\nabla' P + \nu {\nabla'}^2 \mathbf{u} + \mathbf{f}$$
if $\mathbf{f}(\mathbf{x}, t) = \mathbf{f}(\mathbf{x} - \mathbf{c}t, t)$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathcal{R}\mathbf{u}(\mathcal{R}^{-1}\mathbf{x},t)$ is also a solution."

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathcal{R}\mathbf{u}(\mathcal{R}^{-1}\mathbf{x},t)$ is also a solution."

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
- Parity (reflections): $\mathbf{u}' = -\mathbf{u}$, $\mathbf{x}' = -\mathbf{x}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $-\mathbf{u}(-\mathbf{x},t)$ is also a solution."

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
- Parity (reflections): $\mathbf{u}' = -\mathbf{u}, \ \mathbf{x}' = -\mathbf{x}$
- Scaling $\mathbf{x}' = \mathbf{x}/\lambda$, $t' = t/\lambda^{\alpha}$, $\mathbf{u}' = \lambda^{\beta}\mathbf{u}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\lambda \mathbf{u}(\mathbf{x}/\lambda,t/\lambda^{lpha})$ is also a solution."

$$\partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' = -\nabla P + \nu \nabla^2 \mathbf{u}' + \mathbf{f}$$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
- Parity (reflections): $\mathbf{u}' = -\mathbf{u}, \ \mathbf{x}' = -\mathbf{x}$
- Scaling $\mathbf{x}' = \mathbf{x}/\lambda$, $t' = t/\lambda^{\alpha}$, $\mathbf{u}' = \lambda^{\beta}\mathbf{u}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\lambda \mathbf{u}(\mathbf{x}/\lambda,t/\lambda^{lpha})$ is also a solution."

$$\partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' = -\nabla P + \nu \nabla^2 \mathbf{u}' + \mathbf{f}$$

$$\lambda^{\beta-\alpha}\partial_t \mathbf{u} + \lambda^{2\beta-1}\mathbf{u}\cdot\nabla'\mathbf{u} = -\lambda^{2\beta-1}\nabla P + \nu\lambda^{\beta-2}\nabla^2\mathbf{u} + \mathbf{f}$$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
- Parity (reflections): $\mathbf{u}' = -\mathbf{u}, \ \mathbf{x}' = -\mathbf{x}$
- Scaling $\mathbf{x}' = \mathbf{x}/\lambda$, $t' = t/\lambda^{\alpha}$, $\mathbf{u}' = \lambda^{\beta}\mathbf{u}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\lambda \mathbf{u}(\mathbf{x}/\lambda,t/\lambda^{lpha})$ is also a solution."

$$\partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' = -\nabla P + \nu \nabla^2 \mathbf{u}' + \mathbf{f}$$

$$\lambda^{\beta-\alpha}\partial_t \mathbf{u} + \lambda^{2\beta-1}\mathbf{u}\cdot\nabla'\mathbf{u} = -\lambda^{2\beta-1}\nabla P + \nu\lambda^{\beta-2}\nabla^2\mathbf{u} + \mathbf{f}$$

Is a solution if $\beta-\alpha=2\beta-1$ and $2\beta-1=\beta-2$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
- Parity (reflections): $\mathbf{u}' = -\mathbf{u}, \ \mathbf{x}' = -\mathbf{x}$
- Scaling $\mathbf{x}' = \mathbf{x}/\lambda$, $t' = t/\lambda^{\alpha}$, $\mathbf{u}' = \lambda^{\beta}\mathbf{u}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\lambda \mathbf{u}(\mathbf{x}/\lambda,t/\lambda^{lpha})$ is also a solution."

$$\partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' = -\nabla P + \nu \nabla^2 \mathbf{u}' + \mathbf{f}$$

$$\lambda^{\beta-\alpha}\partial_t \mathbf{u} + \lambda^{2\beta-1}\mathbf{u}\cdot\nabla'\mathbf{u} = -\lambda^{2\beta-1}\nabla P + \nu\lambda^{\beta-2}\nabla^2\mathbf{u} + \mathbf{f}$$

Is a solution if $\beta-\alpha=2\beta-1$ and $2\beta-1=\beta-2$ $\beta=-1$ and $\alpha=2$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
- Parity (reflections): $\mathbf{u}' = -\mathbf{u}, \ \mathbf{x}' = -\mathbf{x}$
- Scaling $\mathbf{x}' = \mathbf{x}/\lambda$, $t' = t/\lambda^{\alpha}$, $\mathbf{u}' = \lambda^{\beta}\mathbf{u}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\lambda \mathbf{u}(\mathbf{x}/\lambda,t/\lambda^{lpha})$ is also a solution."

$$\partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' = -\nabla P + \nu \nabla^2 \mathbf{u}' + \mathbf{f}$$

$$\lambda^{\beta-\alpha}\partial_t \mathbf{u} + \lambda^{2\beta-1}\mathbf{u}\cdot\nabla'\mathbf{u} = -\lambda^{2\beta-1}\nabla P + \nu\lambda^{\beta-2}\nabla^2\mathbf{u} + \mathbf{f}$$

Is a solution if $\beta - \alpha = 2\beta - 1$ and $2\beta - 1 = \beta - 2$ $\beta = -1$ and $\alpha = 2$ In the absence of viscosity there is a scaling symmetry for any β and $\alpha = 1 - \beta$

- If $\mathbf{u}(\mathbf{x},0)$ has one of the spatial symmetries of the Navier Stokes equations then $\mathbf{u}(\mathbf{x},t)$ will retain this symmetry at all times
- Most of the symmetries of the Navier Stokes equations break down when non-constant forcing is considered
- Most of the symmetries of the Navier Stokes equations break down when non-infinite domain sizes are considered

Thank you for your attention!