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Symmetry in fields and in equations

Symmetries of the Navier Stokes

Breaking of symmetries
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Flow behind a cylinder
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Symmetries of Fields

We will say that a field u(x, t) is invariant under a
transformation T or that it has a T -symmetry if under the

act of the transformation it remains the same:

T [u] = u
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Space translations

T [u(x, t)] = u(x+ êi`, t)

Example:

u(x, t) = (0, sin(z), cos(y))

continuous symmetry in x : u(x, y, z) = u(x+ `x, y, z, t)
discrete symmetry in
y, z, : u(x, y, z) = u(x, y + 2nyπ, z + 2nzπ, t)
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Time translations

T [u(x, t)] = u(x, t+ T )

Example:

Time periodic flows have discrete symmetries
Constant in time flows have continuous symmetries
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Reflections

T [(ux(x, y, z, t), uy(x, y, z, t), uz(x, y, z, t))] =
(−ux(−x, y, z, t), uy(−x, y, z, t), uz(−x, y, z, t))

Example:

u(x, t) = (sin(x) cos(y),− cos(x) sin(y), 0)
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Rotations

T [u(x, t)] = Ru(R−1x, t) + c

Where R is the rotation matrix Example:

u(x, t) = (y,−x, 0)
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Galilean Transformations

T [u(x, t)] = u(x+ ct, t) + c

Example:

u(x, t) = −x/t
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Scalling Transformations

T [u(x, t)] = λαu(λx, t)

Example:

u(x, t) = (y,−x, 0)(x2 + y2)α/2−1
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Symmetries of equations

We will say that an equation (e.g. the Navier-Stokes) is
invariant under a transformation T or that it has a
T -symmetry if for any solution u(x, t) of this equation

T [u(x, t)] is also a solution.

Note that u(x, t) does not have to be a symmetric field.
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Symmetries of equations

Lemma: If the initial conditions u(x, 0) has one of the
spatial symmetries of the Navier-Stokes

T [u(x, 0)] = u(x, 0),
then if u(x, t) remains smooth it retains this symmetry for

all times.
T [u(x, t)] = u(x, t)

Proof: If u(x, t) is a solution then (since T is one of the
symmetries of the Navier-Stokes) T [u(x, t)] is also a solution that
has the same intitial conditions as u(x, t) (T [u(x, 0)] = u(x, 0)).
Thus either there is non-uniqueness of solutions or

T [u(x, t)] = u(x, t).

(Non-uniqueness occurs only for non-smooth u(x, t)).
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Symmetries of the Navier-Stokes

Space translations: x′ = x+ `
“if u(x, t) is a solution u(x+ `, t) is also a solution.”

∂xu(x+ `, t) = ∂x′

∂x ∂x′u(x′, t) = ∂x′u(x′, t)

∂tu(x+`, t)+u(x+`, t)·∇u(x+`, t) = −∇P+ν∇2u(x+`, t)+f(x, t)

∂tu(x
′, t)+u(x′, t)·∇′u(x′, t) = −∇′P+ν∇′2u(x′, t)+f(x′−`, t)

which is the original Navier Stokes (if f(x, t) = f(x+ `, t))

ie, u(x+ `, t) satisfies the same equations as u(x, t)
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Symmetries of the Navier-Stokes

Space translations: x′ = x+ `
Time translations: t′ = t+ T

“if u(x, t) is a solution u(x, t+ T ) is also a solution.”

∂tu(x, t+ T ) = ∂t′

∂t ∂t′u(x, t
′) = ∂t′u(x, t

′)
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Symmetries of the Navier-Stokes

Space translations: x′ = x+ `
Time translations: t′ = t+ T
Galilean transformations: x′ = x− ct, t′ = t, u′ = u+ c

“if u(x, t) is a solution u(x− ct, t) + c is also a solution.”

∂t(u(x− ct, t) + c) =
(
∂t′

∂t

)
∂t′u(x

′, t′) +
(
∂x′

∂t

)
∇x′u(x′, t′)

∂tu(x
′, t′) = ∂t′u(x

′, t′)− c∇′u(x′, t′)
(u+ c) · ∇(u+ c) = u · ∇u+ c · ∇u

∂tu
′ + u′ · ∇u′ = −∇P + ν∇2u′ + f

∂′tu
′ −����c · ∇′u + u · ∇′u+����c · ∇′u = −∇′P + ν∇′2u+ f

if f(x, t) = f(x− ct, t)
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Symmetries of the Navier-Stokes

Space translations: x′ = x+ `
Time translations: t′ = t+ T
Galilean transformations: x′ = x− ct, t′ = t, u′ = u+ c
Rotations u′ = Ru, x′ = R−1x
Parity (reflections): u′ = −u, x′ = −x

“if u(x, t) is a solution −u(−x, t) is also a solution.”
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Symmetries of the Navier-Stokes

Space translations: x′ = x+ `
Time translations: t′ = t+ T
Galilean transformations: x′ = x− ct, t′ = t, u′ = u+ c
Rotations u′ = Ru, x′ = R−1x
Parity (reflections): u′ = −u, x′ = −x
Scaling x′ = x/λ, t′ = t/λα, u′ = λβu

“if u(x, t) is a solution λu(x/λ, t/λα) is also a solution.”

∂tu
′ + u′ · ∇u′ = −∇P + ν∇2u′ + f

λβ−α∂tu+ λ2β−1u · ∇′u = −λ2β−1∇P + νλβ−2∇2u+ f

Is a solution if β − α = 2β − 1 and 2β − 1 = β − 2
β = −1 and α = 2
In the absence of viscosity there is a scaling symmetry for any β
and α = 1− β
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Symmetries of the Navier-Stokes

If u(x, 0) has one of the spatial symmetries of the Navier
Stokes equations then u(x, t) will retain this symmetry at all
times

Most of the symmetries of the Navier Stokes equations break
down when non-constant forcing is considered

Most of the symmetries of the Navier Stokes equations break
down when non-infinite domain sizes are considered
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