Exercises 04

Consider again the equation

$$\partial_t \mathbf{b} + \mathbf{v} \times \mathbf{b} = -\nabla P' - \alpha \mathbf{b} + \nu_m \nabla^{2m} \mathbf{b} \tag{1}$$

in a periodic box where $\nabla \cdot \mathbf{b} = 0$.

v is related to **b** as $\mathbf{v} = (\nabla \times)^n \mathbf{b}$ for some $n \in \mathbb{N}$ so that $(\nabla \times)^1 \mathbf{b} = \nabla \times \mathbf{b}$, $(\nabla \times)^2 \mathbf{b} = \nabla \times \nabla \times \mathbf{b}$, $(\nabla \times)^3 \mathbf{b} = \nabla \times \nabla \times \nabla \times \mathbf{b}$ and so on For n = 1 the system reduces to the Navier Stokes with $\mathbf{b} = \mathbf{u}$. For any n Energy $\mathcal{E} = \langle \frac{1}{2} |\mathbf{b}|^2 \rangle$ & Helicity $\mathcal{H} = \langle \mathbf{b} \cdot \mathbf{v} \rangle$ are conserved for $\nu_m = 0$ and $\alpha = 0$ (see last homework)?

- 1. For a given n what is the sign of \mathcal{H} ?
- 2. Predict the direction of cascade of \mathcal{E} and \mathcal{H} when $\mathcal{H} > 0$.

3. Assuming self-similarity predict the energy spectra for every n.