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We investigate the locality or nonlocality of the energy transfer and the spectral interactions involved in the
cascade for decaying magnetohydrodynamic �MHD� flows in the presence of a uniform magnetic field B at
various intensities. The results are based on a detailed analysis of three-dimensional numerical flows at mod-
erate Reynolds numbers. The energy transfer functions, as well as the global and partial fluxes, are examined
by means of different geometrical wave number shells. On the one hand, the transfer functions of the two
conserved Elsässer energies E+ and E− are found local in both the directions parallel �k� direction� and
perpendicular �k� direction� to the magnetic guide field, whatever the B strength. On the other hand, from the
flux analysis, the interactions between the two counterpropagating Elsässer waves become nonlocal. Indeed, as
the B intensity is increased, local interactions are strongly decreased and the interactions with small k� modes
dominate the cascade. Most of the energy flux in the k� direction is due to modes in the plane at k� =0, while
the weaker cascade in the k� direction is due to the modes with k� =1. The stronger magnetized flows tend thus
to get closer to the weak turbulence limit, where three-wave resonant interactions are dominant. Hence, the
transition from the strong to the weak turbulence regime occurs by reducing the number of effective modes in
the energy cascade.
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I. INTRODUCTION

The existence of magnetic fields is known in many astro-
physical objects, such as the interstellar medium, galaxies,
accretion disks, star and planet interiors, or solar wind �see,
e.g., �1��. In most of these systems, the magnetic fields are
strong enough to play a significant dynamical role. The ki-
netic and magnetic Reynolds numbers involved in these as-
trophysical bodies are large enough so that the flows exhibit
a turbulent behavior with a large continuous range of excited
scales, from the largest where energy is injected, toward the
finest where energy is dissipated. In many cases, a strong
large-scale magnetic field is present and induces dynamic
anisotropy. Direct numerical simulations that examine in de-
tail the turbulent processes in geo- and astrophysical plasmas
are very difficult to achieve, and only modest Reynolds num-
bers can be reached with today’s computers. One way around
this difficulty is to model the small spatial and temporal
scales to reproduce the large-scale behavior of turbulent
flows. A more basic understanding of turbulence is thus
needed to adequately model the flows, in particular when a
uniform magnetic field, constant in both space and time, is
applied.

As a first approximation, the incompressible magnetohy-
drodynamic �MHD� equations can be used to describe the
evolution of both velocity u and magnetic field b fluctua-
tions. In the presence of a uniform magnetic field B �mag-
netic fields are here expressed in velocity units�, the Elsässer
formulation of the MHD equations, with constant unit mass
density, reads

�tz
± = ± B · �z± − z� · �z± − �P +

� + �

2
�2z± +

� − �

2
�2z�,

�1�

together with � ·z±=0, where z±=u±b are the Elsässer fluc-
tuations, which describe Alfvén waves moving along the di-

rection of the magnetic field �z+� or along the direction op-
posite to the magnetic field �z−�. P is the total �kinetic plus
magnetic� pressure. We assume here equal molecular viscos-
ity � and magnetic diffusivity �, in other words, a unit mag-
netic Prandtl number �Pr=� /�=1�. Hereafter, the direction
along the B magnetic field is referred to as the parallel di-
rection and the projection of the wave vectors along this
direction is denoted k�, while the two directions of planes
perpendicular to B are referred to as perpendicular direc-
tions, the wave vector projection onto such planes being de-
noted k� with norm k���k��.

For periodic boundary conditions, Eqs. �1� have two in-
dependent invariants in the absence of molecular viscosity
and magnetic diffusivity, namely, the Elsässer energies

E± =
1

2
� z±2�x�dx3. �2�

It is worth noting here that the two energies are indepen-
dently conserved and there is no transformation of one en-
ergy to the other. In a collision between two oppositely di-
rected waves, the waves will be distorted, resulting in
structures of smaller scales, but the energy of each wave will
remain the same. Thus, although the interaction of oppositely
directed waves is necessary for the cascade of energy to
smaller scales, oppositely directed waves themselves do not
exchange energy. When very small viscosity and magnetic
diffusivity are present, it is expected that the interactions of
the Alfvén waves cascade the energies in the so-called iner-
tial range, down to the smallest scales, where dissipation
becomes effective and removes energy from the system. The
rate at which large scales lose energy is then controlled by
the nonlinear terms z� ·�z±−�P that are responsible for
coupling different scales and cascading the energy toward
the dissipative scales. The nature of the interactions among
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various scales in turbulent flows that lead to this cascade is a
long-standing problem. Understanding the mechanisms in-
volved is very important to predict evolution of the large-
scale flow behavior, and to estimate global quantities in as-
trophysical systems, such as the transport of angular
momentum, and accretion rates in accretion disks.

High-Reynolds-number hydrodynamic turbulence, often
investigated in the framework of statistically homogeneous
and isotropic turbulence �which can be a questionable as-
sumption in natural flows�, is described to first order by the
Kolmogorov theory �2�. In this phenomenological descrip-
tion, interactions between eddies of similar size give the
dominant contribution to the energy cascade. This assump-
tion leads to an energy spectrum in k−5/3 and an energy cas-
cade rate proportional to urms

3 /L, where urms is the root mean
square of the velocity at large scale and L is the typical
�large� flow scale.

The cascade in MHD turbulence is more complex, espe-
cially in the presence of a background magnetic field. Even
in the simplest case of zero or small intensity of the B field,
so that isotropy could be recovered, whether the MHD en-
ergy cascade can be described by a Kolmogorov type of
phenomenology is still an open question. In particular, the
assumption that interactions between similar-size eddies �lo-
cal interactions� are responsible for the cascade of energy to
smaller scales has been questioned in turbulent MHD flows
by both theoretical arguments �3–5� and the use of numerical
simulations �6–8�. It has been shown for mechanically
forced MHD turbulence that there is a strong nonlocal cou-
pling between the forced scales and the small scales of the
inertial range. Moreover, the large-scale magnetic field gen-
erated by the dynamo action can also locally affect the small
scales by suppressing the cascade rate in the same manner
that an initially imposed uniform magnetic field would. In
the other limit, a strong B field can lead to flow bidimension-
alization, with a drastic reduction of the nonlinear transfers
along the uniform magnetic field. For a B intensity �denoted
B� well above the rms level of kinetic and magnetic fluctua-
tions, the MHD turbulence may be dominated by the Alfvén
wave dynamics, leading to wave �or weak� turbulence where
the energy transfer, stemming from three-wave resonant in-
teractions, can only increase perpendicular components of
the wave vectors, i.e., components in planes perpendicular to
the B direction �k� direction�, the nonlinear transfers along B
�k� direction� being completely inhibited �9–11�. How MHD
turbulence moves from the weak turbulence limit B�urms to
the strong turbulence limit B	urms and B	0 �where isot-
ropy could be recovered� is an open question.

Various authors have tried to give a physical description
of the strong turbulence regime with B	urms. Iroshnikov
�12� and Kraichnan �13� first proposed a phenomenological
description that takes into account the effect of a large-scale
magnetic field by reducing the rate of the cascade due to the
short time duration of individual collisions of z± wave pack-
ets. The resulting one-dimensional �1D� energy spectrum is
then given by E�k�	��B�1/3k−3/2. However, this description
assumes isotropy and, while the effect of the large-scale field
is taken into account by reducing the effective amplitude of
the interactions, the interactions themselves are considered to
be local. In order to take into account anisotropy in strong

turbulence, a scale-dependent anisotropy has been proposed
�14�, the turbulent zl

± eddies being such that the associated
Alfvén �A	 l� /B and nonlinear �NL	 l� /z times are equal
�the so-called critical balance�, where l� and l� are the typical
length scales respectively parallel and perpendicular to the
mean magnetic field. Repeating the Kolmogorov arguments,
one ends up with an E�k� ,k��	k�

−5/3 energy spectrum with
k� 	k�

2/3. Recently, this result has been generalized in an at-
tempt to model MHD turbulence in both the weak and the
strong limits, the ratio of the two time scales �A /�NL being
kept fixed but not necessarily of order 1 �15�. In another
approach to obtain the transition from the strong to the weak
turbulence limit �16,17�, the suggested time scale for the
energy cascade is given by the inverse average between the
Alfvén and the nonlinear time scale �−1=�A

−1+�NL
−1 . All these

models, however, assume locality of interactions that are also
in question in anisotropic MHD turbulence �18�. A nonlocal
model for anisotropic turbulence has been recently proposed
by Alexakis �19�; it assumes that the energy cascade is due to
interactions between eddies with different parallel sizes and
similar perpendicular scales, while a nonuniversal behavior
is expected for moderate Reynolds numbers.

Although very useful in getting a first-order understand-
ing of the processes involved in a turbulent cascade, cascade-
energy models have to be unavoidably based on assumptions
that need to be tested. In this respect, numerical simulations
of the MHD equations are very valuable because they pro-
vide information about the evolution of the fields in the
whole space, something not easily obtained from observa-
tions. Many numerical investigations have been performed
during the last two decades �20–28� and, at the achieved
Reynolds numbers, they have demonstrated that different
power-law exponents are obtained depending on the chosen
forcing. In this work, we use the results of numerical simu-
lations of freely decaying MHD flows at moderate Reynolds
number to investigate the MHD interactions for various in-
tensities of the external magnetic field. In particular, we try
to investigate whether the transfer of energy in the parallel
and perpendicular direction is local �i.e., the two energies E±

cascade between nearby wave numbers� or nonlocal �i.e.,
distant wave numbers are involved in the cascade�, and
whether the coupling between the two oppositely moving
waves z+ and z− �which do not exchange energy� is local or
not; and if not, which modes are responsible for the energy
cascade.

The paper is organized as follows. In the next section, we
give the precise definitions of the transfer functions and par-
tial fluxes used to analyze the nature of the energy cascade.
The details of the numerical simulations are given in Sec.
III A. In Sec. III B, we investigate the locality or nonlocality
of the energy transfers, and in Sec. III C, we examine the
nature of the interactions between the two z+ and z− fields.
We conclude and discuss our results in Sec. IV.

II. DEFINITIONS

Our goal is to investigate the interactions among different
scales. To define the notion of “scale,” we use the field Fou-
rier transforms
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ẑ±�k� =
1

�2��3 � z±�x�e−ik·xdx3 �3�

defined in a 2�-periodic cube, such as

z±�x� = 

k

ẑ±�k�eik·x. �4�

Similar-size eddies will be considered as the ones whose
Fourier transform contains similar wave numbers.

In any basic flow interaction, three wave vectors are in-
volved. For example, the evolution of a given Fourier ampli-
tude ẑ+�k� will be coupled to a ẑ−�p� one and cascade the
energy to the mode ẑ+�q� such that the wave vectors satisfy
k+p+q=0. Note that the mode ẑ−�p� does not gain or lose
energy from this interaction since the two energies E+ and E−

are separately conserved. To obtain the cascade mean rate,
one needs to average over all possible triadic interactions. To
get a phenomenological understanding of the processes at
play in MHD turbulence, we need to know if �i� most of the
energetic exchanges occur between wave numbers such that
�k�	�q� and �ii� the energy flux is a result of spectral inter-
actions of the two fields z± with similar wave numbers or not
��k�	�p��.

To address these questions, let us consider a partition of
the wave vectors into nonoverlapping sets SK

± such that
S±=�K=1

	 SK
± =Z3. For example SK

± could be the spherical
shells of unit width and radius K, i.e., the set of wave vectors
k that have K
 �k��K+1. We now define the filtered fields
zK

±�x� so that only modes in the set SK
± are kept:

zK
±�x� = 


k�SK
±

ẑ±�k�eik·x. �5�

Clearly, one gets

z±�x� = 

K

zK
±�x� . �6�

The triadic interactions among the different sets, say SK
±,

SP
�, and SQ

± , are given by

T3
±�K,P,Q� = −� zK

±zP
� · �zQ

± dx3, �7�

which express the rates at which E± energies are transferred
from the SQ

± to SK
± sets due to the interactions with the modes

belonging to the SP
� set. Note that the collection of sets S+

and S− need not necessarily be the same; for example, S+

could be a collection of cylindrical shells while S− could be a
collection of plane sheets. Adding over the index P �all sets
in S��, we obtain the transfer functions

T±�K,Q� = 

P

T3
±�K,P,Q� = −� zK

±z� · �zQ
± dx3, �8�

which give the E+ and E− transfer rates from the SQ
± to SK

± sets
due to all possible interactions. We note here again that the
z+ field is not exchanging energy with the z− field, and vice
versa, but their interaction is responsible for the redistribu-
tion of the energy among various sets. T±�K ,Q� can give us
information about the locality or nonlocality of the energy

transfer, i.e., whether the energy is exchanged by nearby sets
or long-range transfers from the large scales directly to the
small scales are also involved.

However, the T±�K ,Q� transfer functions do not give us
direct information on the scales of the two fields z+ and z−

that interact and contribute to the energy cascade. To inves-
tigate the locality or nonlocality of the interactions between
the two Elsässer counterpropagating waves, we introduce the
partial fluxes �see �29,30�� defined as

�P
±�K� = 


K�=0

K



Q=0

	

T3
±�K�,P,Q� = − 


K�=0

K � zK�
± zP

� · �z±dx3,

�9�

which express the flux of energy out of the outer surface of
the SK

± shell due to the interactions with the SP
� shell. Sum-

mation over the whole S� collection of sets enables us to
recover the usual definition for the global fluxes:

�±�K� = 

K�=0

K



Q=0

	



P=0

	

T3
±�K�,P,Q� = − 


K�=0

K � zK�
± z� · �z±dx3.

�10�

In the current work, we are going to use three different
types of wave vector collections. We first consider spherical
shells traditionally used in studies of isotropic turbulence
so that a set SK contains the wave vectors k such that
K� �k�
K+1. The second collection of sets are cylindrical
shells along the direction of the guiding magnetic field. In
this case, the set SK contains the wave vectors k such that
K�k�
K+1. Finally, we consider planes perpendicular to
the B direction, so that the set SK contains the wave vectors
k whose k� component satisfies K� �k� � 
K+1.

III. NUMERICAL RESULTS

A. Numerical setup and initial conditions

We integrate numerically the three-dimensional incom-
pressible MHD equations �1�, in a 2�-periodic box using a
pseudospectral method with 2563 collocation points. The
time marching uses an Adams-Bashforth Crank-Nicholson
scheme, i.e., a second-order finite-difference scheme. The
initial kinetic and magnetic fields correspond to spectra pro-
portional to k2 exp�−k /2�2 for k= �1,8�, which means a flat
modal spectrum for wave vector k up to k=2, to prevent any
favored wave vector at time t=0, and the associated
kinetic and magnetic energies are chosen equal, namely,
Ev�t=0�=Eb�t=0�=1/2, as in previous numerical studies
�see �31� and references therein�. Moreover, the correlation
between the velocity and magnetic field fluctuations, as mea-
sured by the cross-correlation coefficient defined by
2�v�x� ·b�x�dx3 / �Ev+Eb�, is initially less than 1%. At
scale injection, the initial kinetic and magnetic Reynolds
numbers are about 800 for flows at �=�	4
10−3, with
urms=brms=1 and an isotropic integral scale L
=2��k−1Ev�k�dk /�Ev�k�dk of about �. The dynamics of the
flow is then allowed to freely evolve. The parametric study
according to the intensity of the background magnetic field B
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is performed for four different values: B=0, 1, 5, and 15. All
the simulations are run up to a computational time tmax=15,
at which the loss of the total energy �kinetic plus magnetic�
is about 95% for the simulation with B=0, 90% for B=1,
and 83% for the B=5 and 15 runs.

Figure 1 shows the time evolution of the total energy
E�t�= �E+�t�+E−�t�� /2 and the total enstrophy ��t�
= �1/2���w2�x , t�+ j2�x , t��dx3 �where w=�
u stands for
the vorticity field, and j=�
b for the current�, for the four
different simulations. One can note that the influence of the
strength of the external magnetic field clearly slows down
the flow dynamics. Note that the B=5 and 15 flows present a
very similar temporal behavior in energy as well as in en-
strophy. The analysis that follows in the next section is based
on the outputs of the runs at t=4 where the spectra are fully
developed and all runs have roughly the same enstrophy. At
this time, the cross-correlation coefficient, which one can
also write �E+−E−� / �E++E−�, is about 3.6% and 2.5%, re-
spectively, for the B=0 and 1 flows, while it is close to 1.6%
for B=5 and 1% for B=15, with thus a lesser increase in the
more strongly magnetized flows. The energy spectra in the
perpendicular direction to the uniform B field E�k��
= �1/2���ẑ−�k��2+ �ẑ+�k��2k�dk� and in the parallel one
E�k��= �1/2���ẑ−�k��2+ �ẑ+�k��2k�dk� are shown in Fig. 2 at
the same time. Clearly as the magnetic field intensity is in-
creased, the spectrum in the k� direction becomes steeper.
Because the planes at k� =0 and k� =1 are shown to play an
important role in the cascade, we mention here their proper-
ties in more detail. In absence of the applied magnetic field,
the modes with k� =0 contain 32% of the total energy and 8%
of the total enstrophy, and the k� =1 modes have 30% of the
total energy and 10% of the total enstrophy. In the strongly
anisotropic case, B=15, the k� =0 modes contain 55% of the
total energy and 34% of the total enstrophy while the k� =1
modes have 37% of the total energy and 35% of the total
enstrophy.

In our investigation, we focus on the cascade of the E−

energy. The E+ cascade has also been analyzed and it gives
qualitatively similar results. We consider separately the cas-
cades in the perpendicular and parallel directions relative to
the applied magnetic field. For this reason, we examine three
different types of flux: �i� the flux across spheres of radius
k��k� which corresponds to an isotropic analysis, �ii� the
flux across cylinders of radius k�k� which corresponds to
the flux in the perpendicular direction, and �iii� the flux
across planes located at k��k��, which corresponds to the
flux in the direction parallel to the B field direction. Figure 3
shows these three fluxes, as a function of k, for various B

FIG. 1. Temporal evolutions of the total energy �top panel� and
of the total enstrophy �bottom panel� for the four examined inten-
sities of the B applied field.

FIG. 2. Total energy spectra in the perpendicular �top panel� and
parallel �bottom� directions.

FIG. 3. Fluxes �−�k� across �i� spheres �solid line�, �ii� cylinders
�dashed line�, �iii� planes �dotted line�, for B=0 �top panel�, 1
�middle panel�, and 5 �bottom panel�.

ALEXAKIS et al. PHYSICAL REVIEW E 76, 056313 �2007�

056313-4



intensities. It is clear that, as the amplitude of the large-scale
magnetic field is increased, the parallel flux is strongly re-
duced. For B=5, this flux is reduced by more than one order
of magnitude when compared to the case with B=0. For
B=15, the parallel flux across planes is very small and it
even takes negative values.

B. Energy transfers

We now examine the locality or nonlocality of energy
transfers from our numerical data. For two different values of
the uniform magnetic field, namely B=0 and 5, Fig. 4 shows
a shadow graph of the transfer function T−�K ,Q� between zK

−

and zQ
− , defined in Eqs. �5� and �8�, for energy exchanges

across cylindrical shells �perpendicular cascade�, while Fig.
5 shows the transfer function T−�K ,Q� for energy exchanges
across plane sheets �parallel cascade�. In all cases, the trans-
fer is concentrated along the diagonal K=Q line. This indi-
cates that the cascade happens through a local energy ex-
change. Similar results are obtained from the two other
simulations at B=1 and 15 �not shown�. Note the highly
nonlinear color bar used for the parallel cascade in the B
=5 case. This choice is due to the extremely fast decrease of
the amplitude of T−�K ,Q� as the wave numbers K and Q
become large. From Figs. 4 and 5, it can be seen that most of
the energy exchange happens close to the diagonal line
�K=Q�. In a strong B flow, some inverse cascade is also
visible in the parallel cascade �Fig. 5� as indicated by the
dark lines below the diagonal and the bright ones above the
diagonal.

To get a better understanding of the T±�K ,Q� transfer
functions, we look at a single wave number Q. Figure 6
displays T−�K ,Q� for the perpendicular cascade �cylinders�

at Q=10 as a function of K, whereas Fig. 7 shows it for the
parallel cascade �planes� at Q=10. To compare the results
obtained from the different B cases, the T−�K ,Q� amplitudes
are normalized so that all transfers are of the same order of
magnitude. Positive values of T−�K ,Q� imply that the shell K
receives energy from the shell Q=10 �Fig. 6, perpendicular
case� and �Fig. 7, parallel case� while negative values of
T−�K ,Q� mean that the shell K gives energy to the shell
Q=10.

For the perpendicular cascade, the shell Q=10 receives
most energy from slightly smaller wave numbers than
K=10 and it gives energy to slightly larger wave numbers.
This implies a locality in the energy transfer, since it is
mostly the nearby cylindrical shells that exchange energy.
The parallel cascade presents a similar behavior; the shell
Q=10 receives energy from slightly smaller wave numbers
than K=10 and it gives energy to slightly larger wave num-

FIG. 4. Transfer function T−�K ,Q� which demonstrates the en-
ergy exchange between cylindrical shells of radii K and Q. Solid
lines show the diagonal K=Q. The top panel shows the B=0 case
and the bottom panel the B=5 case.

FIG. 5. Transfer function T−�K ,Q� which demonstrates energy
exchanges between plane sheets located at distance K and Q from
origin, for B=0 �top panel� and 5 �bottom panel� cases. Solid lines
indicate the K=Q diagonal.

FIG. 6. Energy transfer function T−�K ,Q� for the perpendicular
cascade �cylinders� for Q=10 as a function of K, from the runs with
B=0 �solid line�, 1 �dashed line�, and 5 �dotted line�. Amplitudes of
T−�K ,Q� are normalized to have the same order of magnitude as in
the B=0 case.
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bers. Note, however, that for the B=5 flow, there is also
some trace of an inverse cascade �energy transfer from the
wave number Q=10 to the wave number K=8�. This local
behavior has also been found in isotropic �B=0� decaying
MHD turbulence simulations �32�. Nevertheless, we need to
note that in forced MHD turbulence where the magnetic field
is generated by dynamo action, strong nonlocal transfers also
exist �6,8�. Whether these nonlocal transfers are present in
the forced anisotropic regime still needs further studies.

C. Nonlinear interactions between z+ and z−

The analysis of the energy transfer functions has thus
shown that the energy cascades locally, which means that, in
a collision of two waves, the waves are distorted into struc-
tures of only slightly smaller scales. Nonetheless, this does
not mean that interactions among oppositely traveling waves
are local. In the limit of very large intensities of the back-
ground magnetic field, where the weak turbulence theory is
valid, the energy cascade is due to interactions with the
modes in the plane at k� =0. Therefore, modes with k� �1
interact with modes k� �1 to cascade the energy. To that
respect, the interactions are nonlocal since short waves �large
k�� interact with long waves �small k�� to cascade the energy.
To investigate how close to the weak turbulence regime we
are, we plot in Fig. 8 the total energy flux �−�K�, defined in
Eq. �10�, across cylinders, together with the partial flux
�P=0

− �K�, defined in Eq. �9�, due to interactions with just
k� =0 modes. As the strength of the uniform magnetic field is
increased, the flux due to the interactions with the k� =0
modes become more and more dominant. In the B=15 flow,
the global and partial fluxes across cylinders become almost
indistinguishable, suggesting that interactions with the
modes in the plane at k� =0 are responsible for the energy
cascade. This means that the flow dynamics tends to be
closer to a weak turbulence regime where the three-wave
resonant interactions are dominating.

A different behavior is obtained for the parallel energy
cascade. When a mode ẑ−�k� interacts with a mode ẑ+�p�, the
ẑ−�k� energy will move to the wave vector q so that the
relation k+p+q=0 holds. If, however, p belongs to
the wave vector set with p� =0, this relation then reads

k� +q� =0 in the parallel direction, i.e., �k��= �q��. Therefore,
the energy remains in spectral planes located at the same
distance from the origin. As a result, interactions with the
k� =0 modes cannot contribute to the energy cascade in the
parallel direction. In this case, the closest modes to the
k� =0 modes are the ones that gives most of the energy flux.
Figure 9 shows the total energy flux across planes and the
partial flux due only to interactions with the modes in the
plane at k� =1 �the closest to the k� =0 plane�. As the ampli-
tude of the B field is increased, most of the parallel flux
comes from modes with k� =1. Here, we need to note that the
flux in the parallel direction is much noisier than the flux in
the perpendicular direction and that it often presents negative
values �absolute values are plotted in the bottom panel of
Fig. 9�. A thorough analysis of the parallel cascade would
require to average many data outputs which is not possible in
the case of a freely decaying flows. Such an analysis is left
for future work.

IV. CONCLUSION AND DISCUSSION

In this work we examine the energy cascade and the in-
teractions between different scales for freely decaying MHD
flows in the presence of a uniform magnetic field. Our analy-
sis is based on data obtained from direct numerical simula-
tions of the MHD equations with four different intensities of
the applied magnetic field, in an attempt to study the transi-
tion from strong to weak turbulence limit. One clearly estab-
lished result is that, as the strength of the uniform magnetic
field is increased, the energy spectrum becomes anisotropic
with most of the energy concentrated in the small k� wave
numbers, as already known �28�. It is further shown that the

FIG. 7. Energy transfer function T−�K ,Q� for the parallel cas-
cade �planes� for Q=10 as a function of K, from the data at B=0
�solid line�, 1 �dashed line�, and 5 �dotted line�. Amplitudes of
T−�K ,Q� are normalized to have the same order of magnitude as in
the B=0 case.

FIG. 8. Total energy flux �−�K� �solid line� across cylinders of
radius K together with the partial flux �P=0

− �K� �dashed line� for the
four different values of B, from B=0 �top panel� up to B=15 �bot-
tom panel�.
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energy flux in the parallel direction �relative to the uniform
magnetic field� is also strongly suppressed when the guiding
field is introduced.

To investigate the locality or nonlocality of the spectral
interactions, we measure the transfer functions for the paral-
lel and perpendicular cascades. The transfer functions in the
parallel and perpendicular directions are found to be local,
whatever the strength of the external magnetic field. As a
result, the coupling between modes that travel in the same
direction is local and the energy exchange occurs between
similar-size eddies. This behavior has been shown to hold in
decaying isotropic MHD turbulence simulations �with B=0�
�32�. However, in the presence of a mechanical forcing,
strong nonlocal interactions have been observed with a direct
energy transfer from the forced scale to the inertial range
scales �6,8�. Whether this nonlocal behavior persists in the
anisotropic case still needs further investigation.

The locality or nonlocality of the interactions between
oppositely moving waves �z+ and z−�, which do not exchange
energy, is measured by means of partial fluxes in the parallel
and perpendicular directions due to the coupling in different
spectral planes. This coupling between oppositely propagat-
ing modes does not appear local. As the amplitude of the
applied magnetic field is increased, most of the interactions
occur with the k� =0 modes that are dominant in cascading
the energy. Most of the energy flux is thus in the perpendicu-
lar direction, since the k� =0 modes do not contribute to the
energy cascade in the parallel direction. Hence, the more
strongly magnetized flows tend to present a dynamics close
to the weak turbulence limit, where the three-wave resonant
interactions are responsible for the cascade process. This also
partly explains the similar temporal evolution in the B=5
and 15 regimes �see Fig. 1� since, in both cases, most of the
cascade is due to the k� =0 modes.

For the parallel cascade, the interactions are slightly
different. As already said, this is due to the inability of
the k� =0 modes to cascade the energy in the parallel direc-
tion. In that case, the modes with the smallest but nonzero k�

�k� �1� are the ones responsible for the cascade. This behav-
ior is in qualitative agreement with the description of a re-
cent phenomenological model �19�. However, the lack of
resolution does not allow us to pursue a quantitative com-
parison.

Finally, we would like to emphasize that we analyze here
numerical data of freely decaying MHD flows submitted to
an external magnetic field whose amplitude is varied, while
all the other parameters are kept unchanged �periodic bound-
ary conditions, unit magnetic Prandtl number, initial condi-
tions, and Reynolds number�. Thus, one should be cautious
in any attempt to generalize the obtained results, e.g., forced
turbulence could lead to different behaviors and should be
studied separately. The results could also be dependent on
the kinetic Reynolds number as well as on the magnetic
Prandtl number. Furthermore, the use of a refined spectral
grid in the parallel direction, allowing the presence of more
modes with k� �1, could alter the energy cascade.
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