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In this paper, we study the development of anisotropy in strong MHD turbulence in the presence of

a large scale magnetic field B0 by analyzing the results of direct numerical simulations. Our results

show that the developed anisotropy among the different components of the velocity and magnetic

field is a direct outcome of the inverse cascade of energy of the perpendicular velocity components

u? and a forward cascade of the energy of the parallel component uk. The inverse cascade develops

for a strong B0, where the flow exhibits a strong vortical structure by the suppression of

fluctuations along the magnetic field. Both the inverse and the forward cascade are examined in

detail by investigating the anisotropic energy spectra, the energy fluxes, and the shell to shell

energy transfers among different scales. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975609]

I. INTRODUCTION

Magnetohydrodynamics (MHD) provides the macro-

scopic equations for the motion of a conducting fluid that is

coupled with the electrodynamics equations. MHD flows are

ubiquitous in nature, and they are observed in the interstellar

medium, galaxies, accretion disks, star and planet interiors,

solar wind, Tokamak etc. In such flows, the kinetic Reynolds

number Re (defined as Re¼UL/�, where U is the rms veloc-

ity, L is the domain size, and � is the kinematic viscosity)

and magnetic Reynolds number Rm (defined as Rm¼UL/g,

where g is the magnetic diffusivity) are so large that the

flows are turbulent with a large continuous range of excited

scales, from the largest scales where energy is injected into

the smallest scales where energy is dissipated. Furthermore,

in most of these systems, reasonably strong magnetic fields

are known to exist, with correlation lengths much larger than

those of the turbulent flow. These large-scale magnetic fields

present in these systems induce dynamic anisotropy, and

hence play a significant dynamical role in the flow evolution.

Resolving both the large scale magnetic fields and the

small scale turbulence by direct numerical simulations is still

a major challenge even with the presently available super-

computers (see Ref. 1). One of the possible simplifications

around this difficulty is to model the large-scale magnetic

field by a uniform magnetic field B0, and study its effect on

the small scale turbulence. This approximation simplifies the

analysis of the system as it allows studying the effect of large

magnetic fields on small scale turbulence without tracking

down their slow evolution. For example, various features of

the solar corona (e.g., the magnetic structures associated

with prominence, coronal holes with their open field lines,

and coronal loops) are modeled using such a “magnetofluid

with mean B0 field” approximation. Other systems of interest

where such an approximation is advantageous include the

solar wind, where the inertial-range fluctuations are sub-

jected to a mean magnetic field, and fusion devices, like

ITER, that involve large toroidal magnetic fields.

MHD turbulence in the presence of a mean magnetic field

has been the subject of many studies.2–6 The initial phenome-

nological estimates for the energy spectrum E(k) based on

Alfv�en effects and isotropy led to the prediction of an energy

spectrum EðkÞ / k�3=2.2,3 Verma7,8 showed that the

“random” large-scale mean magnetic field B0 gets renormal-

ized to yield B0ðkÞ � k�1=3 and Kolmogorov-like energy

spectrum (EðkÞ � k�5=3). This result is also consistent with

the energy spectrum derived by re-normalizing viscosity

and resistivity.9

The presence of a large-scale mean magnetic field how-

ever supports the propagation of Alfv�en waves that makes

the flow anisotropic. The first studies of anisotropy by

Shebalin et al.4 in two-dimensional magnetohydrodynamics

and by Oughton et al.6 in three dimensions quantified the

anisotropy by measuring the angles

hu;b ¼ tan�1

X
k

k2
z Eu;b kð Þ

X
k

k2
x þ k2

y

� �
Eu;b kð Þ

; (1)

where Eu,b is the velocity or magnetic field energy spectrum,

and ẑ is the direction of the mean magnetic field. In their low-

resolution simulations (kmax¼ 32), they employed B0¼ 0 to 16,

and showed that strong anisotropy arises due to the mean mag-

netic field with the anisotropy being strongest at higher wave-

numbers and thus it cannot be neglected. Phenomenological

theories that take into account anisotropy, predict that the aniso-

tropic energy spectrum scales as k
�5=3
? (Ref. 10) (where k? is

the wave number perpendicular to the mean magnetic field) or

as k
�3=2
? .11 Simulations of Boldyrev et al.12–14 support �3/2

exponent, while those by Beresnyak15–17 argue in favour of

Kolmogorov’s exponent �5/3. Thus, at present there is no con-

sensus on the energy spectrum for the MHD turbulence.

The only case that analytical results have been derived is

the weak turbulence limit where the uniform magnetic field is

assumed to be very strong. In this limit, the evolution of the
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energy spectrum can be calculated analytically using an asymp-

totic expansion18 that leads to the prediction Eðk?Þ / k�2
? . The

predictions above however are valid only in large enough

domains in which many large-scale modes along the mean

magnetic field exist. In finite domains, one finds an even richer

behavior. It has been shown19–21 with the use of numerical sim-

ulations that in finite domains, three-dimensional MHD flows

become quasi-two-dimensional for strong external magnetic

fields. These states exhibit a high anisotropy with very weak

variations along the direction of the magnetic field and resem-

ble the two-dimensional turbulence. In fact, it can be shown

that for B0 above a critical value, the aforementioned two-

dimensionalisation becomes exact,22 with three-dimensional

perturbations dying off exponentially in time. At intermediate

values of B0, however, three-dimensional perturbations are pre-

sent and control the forward cascade of energy.

The degree of anisotropy in such quasi two-

dimensionalized situations has been studied more recently.

To quantify scale-by-scale anisotropy, Alexakis et al.19,23

partitioned the wavenumber space into coaxial cylindrical

domains aligned along the mean magnetic field direction,

and into planar domains transverse to the mean field. Using

this decomposition, Alexakis19 studied the energy spectra

and fluxes, as well as two-dimensionalization of the flow for

mean magnetic field strengths B0¼ 2, 5, and 10. He reported

an inverse energy cascade for the wavenumbers smaller than

the forcing wavenumbers. Teaca et al.24 decomposed the

spectral space into rings, and arrived at a similar conclusion

as above. Teaca et al. observed that the energy tends to con-

centrate near the equator strongly as the strength of the mag-

netic field is increased. They also showed that the constant

magnetic field facilitates energy transfers from the velocity

field to the magnetic field. In the present paper, we study in

detail the development of anisotropy in such flows and relate

it to the development of the inverse cascade.

The outline of the paper is as follows. We introduce the

theoretical framework in Sec. I followed by details of the

numerical simulations in Sec. II. Next, we discuss the aniso-

tropic spectra in Sec. III, and energy transfer diagnostics like

energy flux and shell-to-shell energy transfers in Sec. IV.

Finally, we conclude in Section V.

II. SETUP AND GOVERNING EQUATIONS

We consider an incompressible flow of a conducting

fluid in the presence of a constant and strong guiding mag-

netic field B0 along ẑ direction. The incompressible MHD

equations8,25 are given below

@

@t
uþ u � rð Þu ¼ �rPþ B � rð Þbþ �r2uþ f

@

@t
bþ u � rð Þb ¼ B � rð Þuþ gr2b

r � u ¼ 0; r � b ¼ 0:

(2)

Here u is the velocity field, B is the magnetic field, f is the

external forcing, P is the total (thermalþmagnetic) pressure,

� is the viscosity, and g is the magnetic diffusivity of the

fluid. We take �¼ g, thus the magnetic Prandtl number

Pm¼ �/g is unity. The total magnetic field is decomposed

into its mean part B0ẑ and the fluctuating part b, i.e.,

B ¼ B0ẑ þ b. Note that in the above equations, the magnetic

field has the same units as the velocity field.

The above equations were solved using a parallel pseudo-

spectral parallel code Ghost26 with a grid resolution 5123 and

a fourth order Runge-Kutta method for time stepping. The

simulation box is of the size (2p)3 on which periodic bound-

ary condition on all directions were employed. The velocity

field was forced randomly at the intermediate wavenumbers

satisfying 8 � jkj � 10. This allowed to observe the develop-

ment of both the inverse cascade and the forward cascade

when they are present. The simulations were evolved for suf-

ficiently long times so that either a steady state was reached,

or until we observe a dominant energy at the largest scales

due to the inverse cascade of energy (for large B0). In the sim-

ulations, the forcing amplitude was controlled, while the satu-

ration level of the kinetic energy is a function of the other

control parameters of the system. Thus, the more relevant

non-dimensional control parameter is the Grasshof number

defined as G � kfkL3=�2, where k � k stands for the L2 norm,

and L¼ 2p is the length scale of the system. Alternatively, we

can use the Reynolds number Re ¼ kukL=� based on the rms

value of the velocity. Note however that Re evolves in time in

the presence of an inverse cascade. For further details of sim-

ulations, refer to Alexakis.19

We examine two different values of B0¼ 2 and 10. The

results of these simulations were first presented in Ref. 19

and correspond to the runs R2 and R3 respectively in that

work. The values of the control parameters used and of the

basic observable are summarized in Table I. The runs have

relatively moderate Reynolds number due to the forcing at

intermediate wavenumbers. Therefore we do not focus on

the energy spectra. Rather we aim to unravel the mechanisms

that lead to the redistribution of energy and development of

anisotropic turbulence due to the mean magnetic field.

Sections III and IV, we analyze the anisotropic energy

spectra and energy transfer diagnostics using the generated

numerical data by employing another pseudo-spectral code

TARANG.27 We describe the anisotropic energy spectra, as well

as the fluxes and the energy transfers involving the velocity

and magnetic fields, generated during the evolved state.

Throughout the paper, we denote uk ¼ uz and u? ¼ ðux; uyÞ.

III. SPECTRA AND ANISOTROPY

First we present visualizations of the two examined flows

for B0¼ 2 and 10 to demonstrate the anisotropy of the flow.

In Figure 1, we present the iso-surfaces of the magnitude of

TABLE I. Steady-state parameters of the simulation: Grasshof number

G � kfkL3=�2, Reynolds number kukL=�, kinetic and magnetic energies,

B0=kuk; r�1
A ¼ kbk

2=kuk2
, kinetic and magnetic dissipation rates, aniso-

tropic parameters Au and Ab(see Eq. (3)). The values are obtained from sin-

gle snapshots and not by time-averaging.

Gr1=2 Re B0 kuk2 kbk2 B0=kuk r�1
A �kruk2 gkrbk2 Au Ab

2500 1.09� 104 2 0.24 0.18 4.08 0.75 0.043 0.041 0.53 0.73

2500 1.53� 104 10 0.47 0.012 14.6 0.026 0.015 0.0021 3.7 1.6
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the vorticity jxj, where x ¼ r� u. The flow has vortical

columnar structures along B0 that becomes stronger as B0 is

increased. To get further details of the flow structure, we make

a horizontal section for the B0¼ 10 case. In Figure 2(a), we

show the density plot of vorticity magnitude along with veloc-

ity vectors (ux, uy). The flow develops a strong vortical struc-

ture, with strong uy and ux components, while modes that vary

along ẑ are very weak. The reason for the formation of these

structures is discussed in detail in Sec. IV).

To quantify the anisotropy of the flow, we propose the

anisotropy measures Au and Ab for the velocity and magnetic

fields as

Au ¼
E?u

2E
k
u

; Ab ¼
E?b

2E
k
b

; (3)

where E?u ¼ hu2
x þ u2

yi=2 and Eku ¼ hu2
z i=2, where the angu-

lar brackets stand for spatial average. The quantities E?u and

Eku represent the kinetic energies of the perpendicular and

parallel components of the velocity field. Similar definitions

are employed for the magnetic field. The anisotropy parame-

ter Au,b measures the degree of anisotropy among the differ-

ent components of the velocity and magnetic field. It is

defined such that Au,b¼ 1 for isotropic flow with

hu2
xi ¼ hu2

yi ¼ hu2
z i, but it deviates from unity for anisotropic

flows. In Table I, we list Au and Ab for the two runs. For

B0¼ 2, both Au and Ab are smaller than unity, i.e., E?u < 2Eku
(due to the particular choice of forcing used), while for

B0¼ 10, their magnitude is substantially higher than unity

(E? > 2Ek) that as we shall show later is due to the presence

of an inverse cascade: the flow is quasi two-dimensional,

hence it exhibits a strong inverse cascade of kinetic energy

leading to buildup of kinetic energy at large scales.

Further insight can be obtained by studying the distribu-

tion of energy among the different components and different

modes in the Fourier space. For isotropic flows, the energies

of all the modes and all components within a thin spherical

shell in Fourier-space are statistically equal. Hence, sum of

the energies of all the Fourier modes in a spherical shell of

radius k is often reported as a one-dimensional energy spec-

trum E(k). It provides information about the distribution of

energy at different scales. The one-dimensional spectra for

the velocity and the magnetic field are shown in Fig. 3. For

the B0¼ 10 case, the kinetic energy peaks at the large scales

while the magnetic fluctuations are suppressed. This is due

to the presence of an inverse cascade of energy as discussed

in Ref. 19 (further discussions in Sec. V). For B0¼ 2, the

inverse cascade is reasonably weak, if at all. This is also con-

sistent with the values of Au and Ab (presented in Table I) for

the two cases and is discussed in detail in Secs. IV and V.

FIG. 1. Isosurfaces of magnitudes of

vorticity jxj for mean magnetic field

(a) B0¼ 2 and (b) B0¼ 10.

FIG. 2. For B0¼ 10, a horizontal cross-sectional view of (a) density plot of jxj (arrows) along with the velocity vectors (gray background), The “grayscale”

and “hot-cold” (shown by “dark red/brown”) colorcode correspond to the magnitude of velocity field and vorticity respectively. (b) A zoomed view of area

inside the black rectangle of subplot (a).
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The dashed line indicates the k�5=3 power-law scaling; our

inertial range is too short to fit with this spectrum. As dis-

cussed in the introduction in this paper, our attempt is not to

differentiate between the exponents �3/2 and �5/3, but

rather study the effects of large B0 on the global statistics of

the flow.

To explore the nature of the anisotropy at different

length scales, we work in the Fourier space, in which the

equations are

d

dt
þ �k2

� �
ui kð Þ � i B0 � kð Þbi kð Þ

¼ �ikiP kð Þ � ikj

X
k¼pþq

uj qð Þui pð Þ

þikj

X
k¼pþq

bj qð Þbi pð Þ þ f kð Þ; (4)

d

dt
þ gk2

� �
bi kð Þ � i B0 � kð Þui kð Þ

¼ �ikj

X
k¼pþq

uj qð Þbi pð Þ þ ikj

X
k¼pþq

bj qð Þui pð Þ; (5)

where ûðkÞ; b̂ðkÞ are the Fourier transform of u, b respec-

tively. First we compute the wavenumber-dependent anisot-

ropy parameters:

Au kð Þ ¼ E?u kð Þ
2E
k
u kð Þ

; Ab kð Þ ¼ E?b kð Þ
2E
k
b kð Þ

; (6)

where E?u ðkÞ represents the sum of energy of the Fourier

transform of u? in the shell ðk � 1 : k�. Similar definitions

hold for other spectra. Figs. 4(a) and 4(b) exhibit the plots of

Au(k) and Ab(k) respectively. For B0¼ 2, Au(k)> 1 for k¼ 1,

and AuðkÞ 	 1=2 for k> 1. However for B0¼ 10, Au(k) is

strongly anisotropic with AuðkÞ 
 1 for k< kf, but AuðkÞ � 1

for k> kf. Thus, for B0¼ 10, the two-dimensional components

in the large-scale velocity field dominate, consistent with the

flow profile of Figs. 1 and 2. Note that uk dominates over u?
at large wavenumbers. This behavior is very similar to aniso-

tropic behavior in quasi-static MHD reported by Reddy and

Verma20 and Favier et al.28 For magnetic field b, Ab(k) is very

large for k¼ 1, but Ab(k)� 1 for 1< k< kf, while it is less

than unity for k> kf. The large peak at k¼ 1 for the ratio

E?b =E
k
b is caused not due to excess of E?b energy but rather

due to the almost absence of E
k
b in the large scales. Indeed the

quasi-2D motions of the flow are not able to amplify E
k
b and

thus the ratio Ab almost diverges at k¼ 1. For Alfvenic turbu-

lence where there is only a forward cascade, it is observed

that jdB?j2 
 jdBkj2 (see Refs. 29 and 30). However, in our

case, as we explain later in our text part of E?u and E?b cas-

cades inversely, while Eku and E
k
b cascade forward causing an

excess of E
k
b and Eku in the small scales.

A different measure of anisotropy is provided by look-

ing at the distribution of energy in spectral space using a ring

decomposition shown in Fig. 5 that we now discuss. A spher-

ical shell in Fourier space is divided into rings such that each

ring is characterized by two indices—the shell index k, and

the sector index b.20,24 The energy spectrum of a ring, called

the ring spectrum, is defined as

E k; bð Þ ¼ 1

Cb

X
k � 1 < k0 � k;

fb�1 < / k0ð Þ � fb

1

2
jû k0ð Þj2; (7)

where /k0 is the angle between k0 and the unit vector ẑ, and

the sector b contains the modes between the angles fb�1 to

fb. When Df is uniform, the sectors near the equator contain

more modes than those near the poles. Hence, to compensate

FIG. 3. Plots of (a) Kinetic energy spec-

trum, Eu(k) and (b) Magnetic Energy

Spectrum, Eb(k) for B0¼ 2 and 10.

FIG. 4. Plots of anisotropy spectrum of

the velocity field AuðkÞ ¼ E?u ðkÞ
2E
k
uðkÞ

and

magnetic field AbðkÞ ¼ E?b ðkÞ
2E
k
b
ðkÞ

.
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for the above, we divide the sum
P

k jûðk0Þj
2=2 by the factor

C(b) given by

Cb ¼ j cos ðfb�1Þ � cos ðfbÞj: (8)

For the ring spectrum computations, we divide the spec-

tral space in the “northern” hemisphere into thin shells of unit

widths (see Eq. (7)), which are further subdivided into 15 thin

rings from h¼ 0 to h¼p/2. For the ring spectrum, we vary k
from 1 to 512� (2/3)¼ 341; the factor 2/3 arising due to alias-

ing. Taking benefit of the h ! (p � h) symmetry, we do not

compute the energy of the rings in the “southern” hemisphere.

In Fig. 6, we show the density plots of the kinetic and mag-

netic ring spectrum E(k, b) for B0¼ 2 and 10. From the plots,

it is evident that the kinetic and magnetic energy is stronger

near the equator than the polar region, and the anisotropy

increases with B0. The anisotropy is greater for B0¼ 10, but

the energy is concentrated near the equator even for B0¼ 2.

For further illustration, in Fig. 7, we show the normal-

ized ring spectra Eðk; hÞ=Eðk ¼ 20Þ vs. h for B0¼ 2 and 10

for k¼ 20, which is a generic wavenumber in the inertial

range. Clearly E(k, h), which is strongest for h¼ p/2, devi-

ates strongly from a constant value, indicating anisotropy of

the flow. The deviation is stronger for B0¼ 10 than B0¼ 2,

which is consistent with the earlier discussion.

FIG. 5. Illustration of the ring decomposition in the spectral space. This fig-

ure is taken from Ref. 21. [Reprinted with permission from Phys. Plasmas

21, 102310 (2014). Copyright 2014 AIP Publishing LLC].

FIG. 6. The ring spectra in log scale: logðEuðk; hÞÞ (left) and logðEbðk; hÞÞ (right) for (a) B0¼ 2 and (b) B0¼ 10.
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IV. ENERGY FLUX AND SHELL-TO-SHELL ENERGY
TRANSFERS

In this section, we will study the energy transfers that

provide insights into the two-dimensionalization process in

MHD turbulence. To delve into the anisotropy of the flow and

its causes, we investigate the energy flux and energy exchange

between the perpendicular and parallel components of the

velocity field. Earlier, energy transfers in the Fourier space

have been studied in detail by various groups.8,31–33 Herein,

we present an in-depth investigation of the energy transfers

with comparatively stronger mean magnetic field amplitudes.

In hydrodynamics, for a basic triad of interacting wave-

numbers (k, p, q) that satisfy k¼ pþq, the mode-to-mode

energy transfer rate from the mode p to the mode k via medi-

ation of the mode q is given by

Sðk j p j qÞ ¼ =f k � ûðqÞ� ûðpÞ � û�ðkÞ�g;
��

(9)

where = and * denote respectively the imaginary part and

complex conjugate of a complex number. To investigate the

energy transfer rate from a set of wave numbers Dp to a set

of wave numbers Dk we sum over all the possible triads

k¼ pþq

T ðDk;DpÞ ¼
X
k2Dk

X
p2Dp

Sðk j p j qÞ ¼ �
ð

ukðu � rÞ�updx3;
�

(10)

where ukðxÞ; upðxÞ express the velocity field filtered so that

only the modes in Dk;Dp are kept respectably. The energy

flux P(k0) then can be defined as the rate of energy transfer

from the set Ds of modes inside a sphere of radius k0 to

modes outside the same sphere, i.e.,

Pðk0Þ ¼
X
k<k0

X
p
k0

Sðk j p j qÞ: (11)

Similarly, we can define the shell-to-shell energy transfer

rate Tm
n ¼ T ðDn;DmÞ as the energy transfer rate from the

modes in a spherical shell Dm to the modes in the spherical

shell Dn.

MHD turbulence has six kinds of energy fluxes, namely,

the energy flux from inner u-sphere to outer u-sphere

(Pu<
u>ðk0Þ), energy flux from inner u-sphere to outer b-sphere

(Pu<
b>ðk0Þ), energy flux from inner b-sphere to outer b-sphere

(Pb<
b>ðk0Þ), energy flux from inner b-sphere to outer u-sphere

(Pb<
u>ðk0Þ), energy flux from inner u-sphere to inner b-sphere

(Pu<
b<ðk0Þ), and energy flux from outer u-sphere to outer

b-sphere (Pu>
b>ðk0Þ). These fluxes can be computed using the

following formulae:8,31–34

Pu<
u>ðk0Þ ¼

X
k<k0

X
p�k0

=f½k � ûðqÞ�½ûðpÞ � û�ðkÞ�g ¼ þ
ð

u<k ðu � rÞu>k dx3;

Pu<
b>ðk0Þ ¼ �

X
k<k0

X
p�k0

=f½k � b̂ðqÞ�½ûðpÞ � b̂�ðkÞ�g ¼ �
ð

u<k ðb � rÞb>k dx3;

Pb<
u>ðk0Þ ¼ �

X
k<k0

X
p�k0

=f½k � b̂ðqÞ�½b̂ðpÞ � û�ðkÞ�g ¼ �
ð

b<k ðb � rÞu>k dx3;

Pb<
b>ðk0Þ ¼

X
k<k0

X
p�k0

=f½k � ûðqÞ�½b̂ðpÞ � b̂�ðkÞ�g ¼ þ
ð

b<k ðu � rÞb>k dx3;

(12)

where u<k ; b
<
k express the velocity and magnetic fields where

only the modes inside a sphere of radius k are kept while

u>k ; b
>
k express the velocity and magnetic fields where only

the modes outside the same sphere are kept. The total energy

flux, which is the total energy transfer from the modes inside

the sphere to the modes outside the sphere, is

Pðk0Þ ¼ Pu<
u>ðk0Þ þPu<

b>ðk0Þ þPb<
u>ðk0Þ þPb<

b>ðk0Þ: (13)

In the present paper, we compute the energy fluxes for

19 concentric spheres with their centres at k¼ (0, 0, 0). The

radii of the first three spheres are 2, 4, and 8, and those of the

last two spheres are rmax�1¼ 170.5 and rmax¼ 512� 2/3

¼ 341. Here, the factor 2/3 is introduced due to dealiasing.

The intermediate shells are based on the powerlaw

expression

ri ¼ r3

rmax

16:0

� � i�3
n�4

; (14)

where r3¼ 8 is radius of the third sphere, rmax is the radius

of the last sphere, and n¼ 19 is the total number of spheres.

FIG. 7. Plot of Eðk ¼ 20; hÞ=Eðk ¼ 20Þ vs. h for (a) B0¼ 2 (thick line) and

(b) B0¼ 10 (thin line).
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Hence, the radii of the spheres are 2.0, 4.0, 8.0, 9.8, 12.0,

14.8, 18.1, 22.2, 27.2, 33.4, 40.9, 50.2, 61.5, 75.4, 92.5,

113.4, 139.0, 170.5, and 341.0. In the inertial range, we bin

the radii of the shells logarithmically keeping in mind the

powerlaw physics observed here. The inertial range however

is too short since the forcing band is shifted to k¼ [8, 10].

For B0¼ 2 and 10, the total energy flux is shown in

Fig. 8, while the individual fluxes (see Eq. (12)) are exhib-

ited in Fig. 9. The plots are for a given snapshot during the

evolved state. Due to aforementioned reason (lack of averag-

ing) and relatively smaller resolution, we do not observe

constant energy fluxes.

The most noticeable feature of the plots is the dominance

of the inverse cascade of Pu<
u>ðk0Þ for k< kf when B0¼ 10.

This result is due to the quasi two-dimensionalization of the

flow, and it is consistent with a large kinetic energy at the

large-scales near the equatorial region, discussed in Section

III. The other energy fluxes are several orders of magnitudes

smaller than the maximum value of Pu<
u>ðk0Þ.

In addition to the inverse cascade of kinetic energy, we

observe that for k> kf, all the energy fluxes are positive,

which is consistent with the earlier results by Debliquy et al.33

for B0¼ 0. Interestingly, Pb<
b> < 0 for small wavenumbers

(k< kf) indicating an inverse cascade of magnetic energy as

well. It is important to note however that for k > kf ; Pu<
u>ðk0Þ

is the most dominant flux, and it is positive. This is in contrast

to the two-dimensional fluid turbulence in which the kinetic

energy flux Pu<
u> 	 0 for k> kf. The above feature is due to

the forward energy transfer of uk.
For anisotropic flows, Reddy et al.21 showed how to

compute the energy fluxes for the parallel and perpendicular

components of the velocity fields. They showed that these

fluxes are

Pu
k ¼

X
k<k0

X
p>k0

SkðkjpjqÞ; (15)

Pu
? ¼

X
k<k0

X
p>k0

S?ðkjpjqÞ; (16)

where

Su
kðkjpjqÞ ¼ =f k � ûðqÞ� û�kðkÞûkðpÞ�g;

hh
(17)

Su
?ðkjpjqÞ ¼ =f k � ûðqÞ� û�?ðkÞ � û?ðpÞ�g;

��
(18)

where = and * stand for the imaginary and complex conju-

gate of the arguments. Note that Pu<
u> ¼ Pu

k þPu
?. It is easy

to derive the corresponding formulae for the magnetic

energy by replacing ûk and û? in Eqs. (17) and (18) by b̂k
and b̂? respectively. In this paper, we report the above fluxes

only for the velocity field since the magnetic energy is much

smaller than the kinetic energy. In Fig. 10, we plot Pu
k

that exhibits a forward energy cascade of uk at large

FIG. 9. Plots of energy fluxes

Pu<
u>; Pu<

b>; Pb<
b>, and Pb<

u> vs. k.

FIG. 8. Plot of the total energy flux P(k) vs. k.
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wavenumbers. The energy flux of the perpendicular compo-

nent, Pu
? (not shown here), exhibits an inverse cascade. The

above observation is very similar to the quasi two-

dimensional behaviour reported for quasi-static MHD turbu-

lence by Reddy et al.21 and Favier et al.28—û? exhibiting an

inverse cascade at low wavenumbers, while uk a forward

cascade at large wavenumbers. We further note that kinetic

helicity H ¼ hu � r � ui in this quasi two-dimensional is a

result of the correlation of the vertical velocity and the two

dimensional vorticity wz ¼ @xuy � @yux thus the forward cas-

cade of helicity is controlled by the forward cascade of

energy of the vertical component. The forward cascade of

Helicity has been shown recently to alter the exponent of the

energy spectrum.35

However E?u and Eku are not independently conserved

quantities. E?u energy can be transferred to Eku and vice versa

via pressure. This transfer can be quantified by

PkðkÞ ¼ =f kkûkðkÞ�PðkÞg;
�

(19)

as shown in Ref. 21. A sum of the above over a wavenumber

shell yields the energy transfer from u? to uk for that shell.

The above energy transfer, plotted in Fig. 11, reveals that

this energy transfer is relatively weak for B0¼ 10. This fea-

ture may be due to a relatively weak pressure and velocity

fields. The energy transfer from u? to uk enhances Eku, which

is advected to larger wavenumbers. Such features have been

observed for the quasi-static MHD.21 The energy of the per-

pendicular component (E?u ) however grows in large scales in

the presence of an inverse cascade. This is not very signifi-

cant for B0¼ 2 that has no inverse cascade, but it is dominant

for B0¼ 10. Thus, Eku � E?u for B0¼ 2, but Eku � E?u for

B0¼ 10 (see Table I). As described above and exhibited in

Fig. 10, uk cascades forward to larger wavenumbers, which

is the cause for the AuðkÞ ¼ E?u ðkÞ=ð2EkuðkÞÞ < 1 for large k.

We also observe that the energy transfers for the magnetic

field may be coupled to the above transfers of kinetic energy;

this aspect needs to be investigated in detail.

The energy flux describes the net energy emanating

from a sphere. More details on energy transfer are revealed

by the shell-to-shell energy transfer rates. For fluid turbu-

lence, we have shell-to-shell transfers for the velocity field.

However, for MHD turbulence, we have velocity-to-velocity

(U2U), magnetic-to-magnetic (B2B), and kinetic-to-mag-

netic (U2B) shell-to-shell energy transfers.24,31–33 The

energy transfer from wavenumber shell m of field X to wave-

number shell n of field Y is defined as (X, Y are either veloc-

ity or magnetic field)

T u;u
n;m ¼

X
k2Dn

X
p2Dm

=f½k � ûðqÞ�½ûðpÞ � û�ðkÞ�g

¼ �
ð

ukðu � rÞ½ �updx3; (20)

T b;b
n;m ¼

X
k2Dn

X
p2Dm

=f½k � ûðqÞ�½b̂ðpÞ � b̂�ðkÞ�g

¼ �
ð

bkðu � rÞ�bpdx3;
�

(21)

T b;u
n;m ¼ �

X
k2Dn

X
p2Dm

=f½k � ûðqÞ�½ûðpÞ � b̂�ðkÞ�g

¼ þ
ð

bkðb � rÞ�updx3:
�

(22)

For the shell-to-shell energy transfers, we divide the wave-

number space into 19 concentric shells with their centres at

k¼ (0, 0, 0). The inner and outer radii of the nth shell are

kn�1 and kn, respectively, where kn¼ 0, 2.0, 4.0, 8.0, 9.8,

12.0, 14.8, 18.1, 22.2, 27.2, 33.4, 40.9, 50.2, 61.5, 75.4, 92.5,

113.4, 139.0, 170.5, and 341.0. The aforementioned radii are

chosen using the same algorithm as those used for computing

the radii of the spheres for flux computations. In Fig. 12, we

present the shell-to-shell energy transfer rates, Tuu
nm; Tbb

nm, and

Tbu
nm for B0¼ 2 (left column) and B0¼ 10 (right column).

The U2U and B2B transfers for B0¼ 2, exhibited in

Fig. 12(a) is similar to those reported by Alexakis et al.,32

Debliquy et al.,33 and Carati et al.36 for B0¼ 0 forward and

local U2U and B2B transfers, that is, the most energy trans-

fers are from shell m � 1 to shell m. The U2B transfer is

from shell m of the velocity field to shell m of the magnetic

field, which is because the velocity field dominates the mag-

netic field;33 this feature is exactly opposite to that of B0¼ 0

(Refs. 32, 33, and 36) because Eb>Eu for the B0¼ 0 case.

For B0¼ 10 (see Fig. 12), U2U is the most dominant

transfer, and the U2U and B2B shell-to-shell transfer exhibits

inverse energy transfers for the 3rd and 4th shell (k< kf), i.e.,

from the 4th shell to the 3rd shell. This result is consistent

with the inverse cascades of kinetic and magnetic energies

for k< kf (see Fig. 9). The U2B transfers are nonzero only

for k< kf.FIG. 11. Plot of PkðkÞ, the energy transfer rate from u? to uk via pressure.

FIG. 10. Plot of the energy flux Pu
k of the parallel component of the velocity

field, uk.
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V. SUMMARY AND DISCUSSION

In this paper, we analyzed the anisotropy induced by a

constant magnetic field in MHD turbulence. Here we provide

a semiquantitative picture of the above phenomena. Shear

Alfv�en modes are linear excitations of MHD flows, and they

are governed by equations

dû kð Þ
dt
¼ i B0 � kð Þb̂ kð Þ; db̂ kð Þ

dt
¼ i B0 � kð Þû kð Þ: (23)

The above equations have valid wave solutions when

B0 � k 6¼ 0, that is, for wave vectors off from the plane per-

pendicular to the mean magnetic field. For such modes, in

Eqs. (4) and (5), ðB0 � kÞuðkÞ and ðB0 � kÞbðkÞ dominates the

nonlinear term. Earlier, Galtier et al.18 had analysed the

weak turbulence limit of MHD turbulence for large B0 and

showed that Eðk?Þ � k�2
? .

For the Fourier modes with kk ¼ 0, the linear terms

dropout of Eqs. (4) and (5) and the nonlinear terms dominate

the flow with dynamics. In addition, for large B0, b2 � u2

(see Table I). Since kk ¼ 0 for such modes, the modes have

interactions similar to two-dimensional hydrodynamic turbu-

lence. These interactions lead to two-dimensionalization of

the flow. The reason for b2� u2 is not obvious at present. It

may be due to the absence of shear Alfv�en waves for modes

with kk ¼ 0. To sum up, for the Fourier modes with kk 6¼ 0,

we obtain Alfv�enic fluctuations, which are described by Eq.

(23) in the linear limit. However, for large B0, the fluctua-

tions corresponding to these modes are weak compared to

the vortical structures. Thus the flow is dominated by the

kk ¼ 0 modes. These arguments provide a qualitative picture

for the emergence of quasi two-dimensional vortices in

MHD turbulence with strong B0. The above behaviour has

strong similarities with the vortical structures observed in

rotating and quasi-static MHD turbulence.20

The dominance of these modes leads then to an aniso-

tropic distribution of the velocity components with the per-

pendicular components dominating in large scales due to the

inverse cascade of E? while the parallel components domi-

nate in small scales due to the forward cascade of Ek. This

leads to the formation of the observed vortical structures.

In summary, we show how strong mean magnetic field

makes the MHD turbulence quasi two-dimensional. This con-

clusion is borne out in the global-energy anisotropy parameter,

ring spectrum, energy flux, and shell-to-shell energy transfers.

The flow has strong similarities with those observed in rotating

and quasi-static MHD turbulence. Detailed dynamical connec-

tions between these flows need to be explored in a future work.
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FIG. 12. Shell-to-shell energy transfers

(a) U2U, (b) B2B, and (c) U2B for

B0¼ 2 (left column) and B0¼ 10 (right

column). Here m is the giver shell, and

n is the receiver shell.
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