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ABSTRACT

A nonlocal cascade model for anisotropic magnetohydrodynamic (MHD) turbulence in the presence of a uniform
magnetic field B is proposed. The model takes into account that (1) energy cascades in an anisotropic manner,
and as a result a different estimate for the cascade rate in the direction parallel and perpendicular to the B field
is made, and (2) the interactions that result in the cascade are between different scales. Eddies with wavenumbers

and interact with eddies with wavenumbers qk, q⊥ such that a resonance condition between the wavenumbersk kk ⊥
qk, q⊥ and kk, k⊥ holds. As a consequence, energy from the eddy with wavenumbers and cascades due tok kk ⊥
interactions with eddies located in the resonant manifold whose wavenumbers are determined by q �k

and , and energy will cascade along the lines . For a uniform energy injection1/3 2/3 2/3 1/3e k /B q � k k � k � k e /B⊥ ⊥ ⊥ k 0 ⊥
rate in the parallel direction, the resulting energy spectrum is . For a general forcing, however,2/3 �1 �5/3E(k ,k ) � e k kk ⊥ k ⊥
the model suggests a nonuniversal behavior. The connections with previous models, numerical simulations and
weak turbulence theory are discussed.

Subject headings: magnetic fields — MHD — solar wind — turbulence

1. INTRODUCTION

Magnetic fields are met very often in astrophysics: the in-
terstellar medium, accretion disks, and the interiors of stars and
planets. In most of these cases, the magnetic fields are strong
enough to play a dynamical role in the evolution of the involved
astronomical objects (Zeldovich et al. 1990). The fluid and
magnetic Reynolds numbers are large enough so that a large
number of scales are exited and coupled together, making it
very difficult to calculate the evolution of these systems, even
with the power of present-day computers. As a result, a tur-
bulence theory that models the behavior of the small unresolved
scales is needed. The simplest set of equations that describes
the evolution of the flow and the magnetic field when the two
are coupled together are the magnetohydrodynamic (MHD)
equations that are written in the Elsässer formulation as

� � � � 2 �� z p �B · �z � z · �z � �P � n� z , (1)t

where with u as the velocity, b as the magnetic�z p u � b
field, n as the molecular viscosity, assumed here equal to the
magnetic diffusivity , B is a uniform magnetic field, andh p n
incompressibility has been assumed.�� · z p 0

For zero viscosity the above equations conserve three qua-
dratic invariants: the magnetic helicity (which we are not going
to be concerned with in the present work) and the two energies

. The question then arises in the limit of in-� � 2 3E p (z ) dx∫
finite Reynolds number; is there a physical process under which
the two energies cascade to sufficiently small scales so that
they can be dissipated?

For hydrodynamic turbulence a description of such a process
exists and was given by Kolmogorov (1941, hereafter K41).
In his phenomenological description the energy at a scale l2zl

interacts with similarly sized eddies and cascades in a timescale
. As a result in a statistically steady state, the energy cascadesl/zl

in a scale-independent way at a rate that leads to the3e � z /ll

prediction or, in terms of the one-dimensional energy1/3z ∼ ll

spectrum, . Since the phenomenological description�5/3E(k) ∼ k
of the energy cascade in hydrodynamic turbulence, there have
been attempts to derive similar results for MHD flows. How-

ever, nontrivial difficulties arise when a uniform magnetic field
is present.

1. The MHD equations are no longer isotropic, resulting
in an anisotropic energy flux and energy spectrum. Simple
dimensional arguments cannot be used to estimate the degree
of anisotropy that is a dimensionless quantity.

2. The MHD equations are no longer scale invariant; as a
result simple power-law behavior of the energy spectrum is
expected only in the small or large B limit that scale similarity
is recovered.

3. It is not clear that interactions of similarly sized eddies
(local interactions) dominate the cascade. Differently sized ed-
dies could play an important role in cascading the energy.

The first model for MHD turbulence was proposed by Irosh-
nikov (1964, hereafter I64) and by Kraichnan (1965, hereafter
K65). The K65 model assumes isotropy and that the timescale
of the interactions of two wavepackets of size l is given by the
Alfvén timescale . The energy cascade due to a singlet ∼ l/BA

collision is given by . The number of random2 3Dz ∼ (z /l)tA

collisions that would be required then to cascade the energy is
going to be . As a result, the energy will cascade2 2 2N ∼ (z /Dz )
in a rate , and therefore, . The4 1/4 1/4e ∼ E/Nt ∼ z /(Bl) z ∼ (eB) lA l

resulting one-dimensional energy spectrum is then given by
. The assumption of isotropy however has1/2 �3/2E(k) ∼ (eB) k

been criticized in the literature and anisotropic models have
been proposed for the energy spectrum. Goldreich & Sridhar
(1995, hereafter GS95) proposed that in strong turbulence the
cascade happens for eddies such that the Alfvén timescale

is of the same order as the nonlinear timescale�1t ∼ BkA k

(the so-called critical balance relation), where and�1t ∼ zk kNL ⊥ k

are the parallel and perpendicular to the mean magnetic fieldk⊥
wavenumbers, respectively. Repeating the Kolmogorov argu-
ments, one then ends up with the energy spectrum

with the parallel and perpendicular waven-�5/3E(k ,k ) ∼ kk ⊥ ⊥
umbers following the relation . A generalization of this2/3k ∼ kk ⊥
result was proposed by Galtier et al. (2005), where the ratio
of the two timescales was kept fixed, but not necessarilyt /tA NL

of order 1, in an attempt to model MHD turbulence in both
the weak and the strong limits. Bhattacharjee & Ng (2001,
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hereafter BN01) repeated the K65 model arguments replacing
the nonlinear timescale by and the Alfvén timescalet ∼ l /zNL ⊥ l

by . Further assuming that the cascade is only in thet ∼ l /BA k

-direction, they obtained the energy spectrumk E(k) ∼⊥
. Finally, Zhou et al. (2004) suggested using as a1/2 �2 �1/2(eB) k k⊥ k

timescale that given by the inverse average of the Alfvén and
nonlinear timescales to obtain a smooth�1 �1 �1t p (t ) � tA NL

transition from the K41 to the I64 and K65 models, and the
anisotropic BN01 result depends on the amplitude of B.

Although this large variety of models exists, the agreement
with observations (Goldstein et al. 1995) and with the results
of numerical simulations (Mason et al. 2007; Müller & Grappin
2005; Ng et al. 2003; Dmitruk et al. 2003; Maron & Goldreich
2001; Cho & Vishniac 2000; Biskamp & Müller 2000; Ng &
Bhattacharjee 1996) is only partially satisfactory and seems to
be case dependent. Furthermore, all these models assume lo-
cality of interactions (i.e., only similarly sized eddies interact
and only one length scale is needed in each direction in the
phenomenological description). Locality of interactions, how-
ever, has been shown to be in question by both theoretical
arguments and analysis of data in numerical simulations, even
in the isotropic case (Alexakis et al. 2005; Debliquy et al. 2005;
Verma et al. 2005; Yousef et al. 2007), and there have been
attempts to capture these nonlocal effects in recent shell and
closure models (Plunian & Stepanov 2007; Gogoberidze 2007).
Furthermore, in weak turbulence theory (Galtier et al. 2000,
2002), to first-order approximation for the interaction of three
eddies (say ), only the modes that satisfy the resonance� � �z ,z ,zk p q

condition and are effectivek � p � q p 0 Bk � Bp � Bq p 0k k k

in cascading the energy. This restricts the values of . Forq p 0k

sufficiently large B, one then expects . In otherk k q � 0k k

words, short eddies ( ) interact with long eddies ( ) in the�1 �1k qk k

parallel direction. In that sense the cascade is nonlocal. It seems
reasonable, therefore, that nonlocality is an essential ingredient
of MHD turbulence that needs to be taken into account in a
model. In addition we expect that the energy will not cascade
isotropically, so not only the amplitude of the energy cascade
rate is of importance but also the direction. With these two
points in mind (anisotropy and nonlocality), we try to construct
a nonlocal model for the energy cascade.

2. NONLOCAL CASCADE MODEL

To begin the new model, let us consider a MHD flow in a
statistically steady turbulent state forced at large scales in the
presence of uniform field B. We denote the two, two-dimen-
sional energy spectra as E�(k⊥, kk) and E�(k⊥, kk), where the total
energy is given by . For simplicity, assume� �E { E dk dk∫T ⊥ k

(i.e., negligible cross helicity) and drop� �E (k ,k ) ∼ E (k ,k )⊥ k ⊥ k

the � indexes, leaving the case to be investigated� �E K E
in the future. To shorten the notation, we write E pk

. The index k denotes that depends on the waven-E(k ,k ) E⊥ k k

umbers and .k kk ⊥
Let us now consider two eddies of different scales and�zk

interacting. Let us assume that the eddy has wavenumbers� �z zq k

∼ and the eddy has wavenumbers ∼ . Here we focus�k ,k z q ,q⊥ k q ⊥ k

on the cascade of the energy of the eddy; the cascade of�zk

can be obtained by changing the indexes k, q, and �. From�zq

the form of the nonlinear term we expect by a dimensional
analysis argument that the rate of energy cascade of the �zk

eddy will be and� 2 � 1/2E(k) ∼ (z ) (z )q ∼ (k k E ) (q q E ) qk q ⊥ k k ⊥ k q

likewise for the energy cascade rate of the eddy. However,�zq

in such an interaction the energy will not cascade isotropically,
but it will depend on the value of q. In a interaction of the two

eddies, the energy of the eddy will move from the wave-�zk

number k to the wavenumber . If , then most ofk � q q K qk ⊥
the cascade will be in the -direction. As a result, we needq⊥
to separately define the rate energy cascades to larger

and the rate energy cascades to larger ask : E (k) k : E (k)⊥ ⊥ k k

1/2( ) ( )E ∼ k k E q q E q , (2)⊥ ⊥ k k ⊥ k q ⊥

1/2( ) ( )E ∼ k k E q q E q . (3)k ⊥ k k ⊥ k q k

Note that in writing the equations above we have not taken
into account possible scale-dependent correlations between the
two fields that could reduce the energy cascade. Such an effect
has been taken into account by Boldyrev (2005) based on the
GS95 model and could be incorporated in the present model.
However, we do not make such an attempt here, since we want
to present the model in its simplest form. Equations (2) and
(3) express the rate energy cascades in the absence of a uniform
magnetic field B and are valid only when , becauseFqF ! FkF
small eddies, although they have a stronger shear rate ,z qq

decorrelate, making them less effective in cascading the energy.
However, in the presence of B, not all wavenumbers q are as
effective in cascading the energy . Because the two eddiesEk

, travel in opposite directions, the time available for the� �z zk q

eddy to cascade the energy of the eddy is the Alfvén� �z zq k

time , where we have assumed here that .�1t ∼ [q B] q ≤ kA k k k

On the other hand the time needed to cascade the energy is
. Therefore, from all the� �1 1/2 �1t ∼ (z FqF) ∼ [FqF (q q E ) ]NL ⊥ k q

available wavenumbers, only the wavenumbers with t � tA NL

will be effective in cascading the energy. This restriction leads
to

�q B � q q q E , (4)k ⊥ ⊥ k q

where we used as a first-order approximation ofFqF � q⊥
for large B. This relation looks very similar to the criticalFqF

balance relation of the GS95 model. However, in this case the
relation (4) gives the wavenumbers that the eddy will interact�zk

with and does not restrict the location of in spectral space.�zk

In this sense this model is nonlocal, because it allows eddies
of different sizes in the parallel direction to interact. We are
going to refer to the set of wavenumbers that satisfy the relation
above as the resonant manifold and use this relation as an
equality. Finally, since the mean magnetic field does not di-
rectly effect the perpendicular direction, we assume that sim-
ilarly sized and are the most effective in cascading thek q⊥ ⊥
energy (in that sense we assume locality in the -q ∼ k k⊥ ⊥ ⊥
direction). Equation (4) is written as

3 2q � k E /B . (5)k ⊥ q

We are now ready to impose the constant energy flux condition
that would lead to a stationery spectrum. Because the cascade
is anisotropic, constant energy flux now reads

� E � � E p 0. (6)k ⊥ k k⊥ k

Equations (2), (3), (5), and (6) form the basis of our model. It
is worth noting that in this model the cascade of energy de-
creases with the introduction of B, not because the individual
interactions weaken, but because the number of modes that are
able to cascade the energy decreases due to the resonance con-
dition (eq. [5]). A sketch of the mechanisms involved in the
model is shown in Figure 1.
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Fig. 1.—Illustration of the nonlocal model. An eddy at interacts(k ,k )k ⊥
(nonlocally) with an eddy at the resonant manifold cascading the(q (k ) , k )k ⊥ ⊥
energy in the direction of the arrow. The energy injected at the axisk p 0⊥
at a rate cascades along the drawn lines.e(k p k )k 0

First, let us consider the weak turbulence limit that is ob-
tained in the limit . For large B based on equation (5),B r �
the resonant manifold becomes very thin, . Further-q /k K 1k ⊥
more, because , we can neglect the cascadeE /E ∼ q /k K 1k ⊥ k ⊥
in the parallel direction. If is also nonsingular at , weE k p 0k k

have that . Substituting from equation (5) inE � E(k ,0) qq ⊥ k

equation (2) and imposing the constant flux condition (eq. [6]),
we obtain

4E ∼ k k E E(k ,0)/B p e(k ), (7)⊥ ⊥ k k ⊥ k

where is the energy injection rate at each planee(k ) k pk k

. Note that the spectrum depends on the energyconstant E(k ,k )⊥ k

of the resonant manifold just like the weak turbulenceE(k ,0)⊥
result and unlike what the BN01 local theory for weak tur-
bulence predicts. If the energy spectrum for and forE(k ,k )⊥ k

the resonant manifold scale like and , respectively,n mE(k ,0) k k⊥ ⊥ ⊥
then we end up with the weak turbulence prediction (Galtier
et al. 2000)

m � n p �4. (8)

Assuming that the two spectra are smooth around , wek p 0k

obtain

� �2�E ∼ k Be(k )/k . (9)⊥ k k

For large but not infinite B, we need to take into account
that the energy cascade in the parallel direction is nonzero. In
this case, energy does not cascade in the perpendicular direc-
tion, but cascades along the lines that are tangent to the direc-
tion of E and satisfy , ordk /dk p E /E p q /kk ⊥ k ⊥ k ⊥

k⊥ ′q (k )k ⊥ ′k p dk � k , (10)k � ⊥ 0′k0 ⊥

where expresses the intersection of these lines with thek 0

axis (see Fig. 1). Different correspond to differentk p 0 k⊥ 0

lines. It is important to note that since these lines do not cross
the axis at the origin, but at some point (k p 0 k p 0,⊥ ⊥

), we need to assume that energy is injected at thatk p kk 0

point. Let l be the length along such a curve; then we can

move to a new coordinate system given by ( ). In this newl,k 0

coordinate system, the constant flux relation to first order in
readsqk

dFEF d 1/2( )p [k k E ][q q E ] FqF p 0, (11)⊥ k k ⊥ k qdl dl

1/2or [k k E ][k q E ] k p e(k ), (12)⊥ k k ⊥ k q ⊥ 0

where only terms up to order are kept and expressesq e(k )k 0

the rate that energy is injected into the system at small k � 0⊥
and . Letting , we obtain the equation for thek � k k r qk 0 k k

resonant manifold,

1/2( ) [ ] ( )k q E k q E k p e 0 { e . (13)⊥ k q ⊥ k q ⊥ 0

Substituting from (eq. [5]) and solving for , we obtainq Ek q

1/3 �7/3E p E(q (k ),k ) p e Bk . (14)q k ⊥ ⊥ 0 ⊥

The equations (5) and (10) then give us

32/3 1/3 2/3 1/3q p k e /B and k p k e /B � k . (15)k ⊥ 0 k ⊥ 0 02

Returning to the equation for the energy (eq. [12]), we get

�1/3 �5/3 �1E p e(k )e k k , (16)k 0 0 ⊥ k

where is given by equation (10) and the predicted spectrumk 0

(eq. [16]) is valid in the range . For smaller valuesq ! k ! �k k

of , the condition that we initially assumed is notk k ! qk k k

satisfied. The energy of the modes inside the resonant manifold
is given by equation (14), and no singularity at exists.k p 0k

In the special case in which is a constant, ,e(k ) e(k ) p e0 0 0

that corresponds to a uniform injection rate per unit of wave-
number ( ) at the large scales , the spectrum reducesk k r 0k ⊥
to

2/3 �5/3 �1E p e k k , (17)k 0 ⊥ k

but in general the spectrum will depend on the way that energy
is injected in the system. The nonuniversality that the model
suggests is due to the fact that we assumed that the energy
cascades in a deterministic way only along the lines in the
( )-plane given by (eq. [10]). In reality, energy will notk ,kk ⊥
cascade strictly along the lines (eq. [10]), but there is going to
be some exchange of energy between lines that could bring the
energy spectrum in the form of equation (17). However, if and
how fast a universal spectrum can be obtained in MHD is not
an easy question to answer. This question is related to the return
to isotropy of an anisotropic forced flow in hydrodynamic tur-
bulence, which is still an open question. If in MHD turbulence
in the presence of a uniform magnetic field there is a universal
spectrum, this is expected to happen at smaller scales than in
hydrodynamic turbulence, because nonlinear interactions are
weaker.

So far we concerned ourselves with only large values of B.
In principle, we could extend our results to smaller values of
B without making some of the approximations used to arrive
at the results (eqs. [16] and [17]). However, such procedure
leads to more complex equations that prevent us from deriving
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the energy spectrum in a compact form, and we do not make
such an attempt at present.

It is worth emphasizing the similarities the current model
has with the GS95 model. Both models emphasize the role of
the manifold , obtained by the resonance con-2/3 1/3k � k e /Bk ⊥ 0

dition (eq. [5]) in out model or the critical balance condition
in the GS95 model. However, in this model the cascade is not
restricted in this manifold, but instead all modes in the ( )-k ,kk ⊥
plane cascade due to nonlocal interactions with the modes in
this manifold.

Another point we need to emphasize is that taking B r �
does not reduce the predicted spectra in equation (16) to the
weak turbulence limit (eq. [9]). This is due to the two different
limiting procedures followed. In the first case (eq. [9]), first
the limit was taken, and then the one-dimensional fluxB r �
was determined; while in the second case (eq. [16]), we first
obtained the two-dimensional energy flux, and then the limit

was taken. Note, however, that the condition (8) is sat-B r �
isfied in both cases and the spectrum is also smooth at k pk

, because although the resonant manifold scales like �7/3q kk ⊥
while the rest of the spectrum scales like , the resonant�5/3 �1k k⊥ k

manifold widens as increases. It is possible, as we discussk⊥
below, that in different (numerical) setups either of the two

limiting procedures can be valid and different spectra could be
obtained.

In numerical simulations a finite discrete number of modes
is kept. Based on this model, the cascade rate is reduced in the
presence of a mean magnetic field, not because the individual
interactions themselves are weakened, but because the number
of modes that interact effectively is reduced. If the modes in
a numerical simulation with the smallest nonzero wavenumber

(where L is the box height) is larger than the res-k p 2p/L1

onant manifold ( ), then if B is further increased, thek 1 q1 k

scaling of the energy dissipation rate with B will be lost, and
the spectrum exponents could change, since the number of
modes in the resonant manifold already have taken their min-
imum value (i.e., the number of modes that have ). Ak p 0k

difference in the energy spectrum exponents can also be ex-
pected in numerical simulations if the modes inside the resonant
manifold are not forced. The sensitivity of the model to the
way the system is forced could in part explain the disagreement
in the measured spectrum exponents.
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