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ABSTRACT

We demonstrate that the initial correlation between velocity and current density fluctuations can lead to the
formation of enormous current sheets in freely evolving magnetohydrodynamic (MHD) turbulence. These coherent
structures are observed at the peak of the energy dissipation rate and are the carriers of long-range correlations
despite all of the nonlinear interactions during the formation of turbulence. The size of these structures spans our
computational domain, dominating the scaling of the energy spectrum, which follows a E ∝ k−2 power law. As
the Reynolds number increases, the curling of the current sheets due to Kelvin–Helmholtz-type instabilities and
reconnection modifies the scaling of the energy spectrum from k−2 toward k−5/3. This transition occurs due to
the decorrelation of the velocity and the current density which is proportional to Re−3/2

λ . Finite Reynolds number
behavior is observed without reaching a finite asymptote for the energy dissipation rate even for a simulation of
Reλ � 440 with 20483 grid points. This behavior demonstrates that even state-of-the-art numerical simulations
of the highest Reynolds numbers can be influenced by the choice of initial conditions and consequently they are
inadequate to deduce unequivocally the fate of universality in MHD turbulence. Implications for astrophysical
observations are discussed.
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1. INTRODUCTION

Turbulence is a multi-scale phenomenon ubiquitous in nu-
merous astrophysical phenomena (Cho et al. 2003). The mag-
netohydrodynamic (MHD) description of astrophysical plasmas
is often invoked to theoretically model the spectra of veloc-
ity and magnetic fluctuations. The precise power law scaling
of these fluctuations has implications for the prediction of the
heating rates of the solar corona (Cranmer & van Ballegooijen
2003), the acceleration of the solar wind (Verdini & Velli 2007;
McIntosh et al. 2011), the transport of mass and energy into the
Earth’s magnetosphere (Sundkvist et al. 2005), the dynamics
of the interstellar medium (Spangler & Cordes 1998; Gaensler
et al. 2011), etc.

At high enough Reynolds numbers, a universal power law
of the energy spectrum is expected to be observed in strong
MHD turbulence. However, to date, theory, simulations, and
observations have been unable to provide a definitive answer
to the power-law scaling in the inertial range of strong MHD
turbulent flows (Iroshnikov 1964; Kraichnan 1965; Goldreich
and Sridhar 1995; Müller & Grappin 2005; Boldyrev 2005;
Mininni & Pouquet 2007; Podesta et al. 2007; Lee et al. 2010;
Beresnyak 2012). The power-law scaling exponents −2, −5/3,
and −3/2 have been observed in various studies of MHD
turbulence for both isotropic and anisotropic energy spectra.
Thus, universality in MHD has been questioned by many authors
(Schekochihin et al. 2008; Lee et al. 2010; Mininni 2011;
Wan et al. 2012; Dallas & Alexakis 2013a, 2013c) in terms
of various arguments such as dependence on initial conditions,
non-locality, strong anisotropy, and lack of self-preservation.

In this Letter, we present the impact of initial conditions
on freely evolving, homogeneous MHD turbulence. We show
that coherent flow structures can actually be the carriers of
initial cross-correlations and thus imply long-range effects of
initial conditions that can influence turbulent statistics such

as the power-law scaling of the energy spectrum. Moreover,
we demonstrate that correlations between the velocity and the
current field are responsible for the k−2 energy spectrum in
strong MHD turbulence. Our work also indicates that numerical
simulations with higher Reynolds numbers than those feasible at
the moment are imperative in order to avoid any finite Reynolds
number effects and to be able to infer unequivocally if strong
MHD turbulence is universal or not. Moreover, our results
suggest an alternative scenario for interpreting the k−2 energy
spectrum observed in the Jovian magnetosphere (Saur et al.
2002).

2. NUMERICAL SET-UP

To demonstrate these points, we perform high-resolution
simulations of the incompressible MHD equations,

(∂t − ν�)u = (u × ω) + ( j × b) − ∇P, (1)

(∂t − κ�)b = ∇ × (u × b), (2)

with u being the velocity, b being the magnetic field, ω ≡ ∇ ×
u being the vorticity, j ≡ ∇ × b as the current density,
P as the pressure, ν as the kinematic viscosity, and κ as
the magnetic diffusivity. If ν = κ = 0, then the total energy
E ≡ (1/2)〈|u|2 + |b|2〉, the cross helicity Hc ≡〈u · b〉, and the
magnetic helicity Hb ≡ 〈a · b〉 are conserved in time, where
b ≡ ∇ × a and a is the solenoidal magnetic potential. Note
that the angle brackets 〈.〉 here denote spatial averages. Using
the pseudo-spectral method, we numerically solve Equations (1)
and (2) in a three-dimensional periodic box of size 2π , satisfy-
ing ∇ · u = ∇ · b = 0. Aliasing errors are removed using the 2/3
de-aliasing rule, i.e., wavenumbers kmin = 1 and kmax = N/3,
where N is the number of grid points in each Cartesian coordi-
nate. For more details on the numerical code, see Gómez et al.
(2005) and Mininni et al. (2011).
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Table 1
Numerical Parameters and Values Obtained at the Peak of

the Energy Dissipation Rate

N ν = κ Re Reλ u′ b′ kmaxη

128 5 × 10−3 178.0 68.5 0.73 1.02 1.23
256 3 × 10−3 273.0 94.3 0.73 1.04 1.74
512 1 × 10−3 639.2 166.3 0.72 0.98 1.56
1024 4 × 10−4 1550.3 298.6 0.75 1.02 1.62
2048 2 × 10−4 2972.5 438.0 0.73 1.04 1.98

The resolutions that we report in this letter range from N =
128 to N = 2048 (see Table 1). The Reynolds number based
on the integral length scale L≡ (3π/4)

∫
k−1E(k)dk/

∫
E(k)dk

is Re = u′L/ν and that based on the Taylor micro-
scale λ ≡ (5

∫
E(k)dk/

∫
k2E(k)dk)1/2 is Reλ = u′λ/ν, where

u′ = 〈|u|2〉1/2 is the rms velocity. The smallest length scale in
our flows is defined based on Kolmogorov scaling η ≡ (ν3/ε)1/4,
where ε ≡ ν〈|ω|2〉 + κ〈| j |2〉 is the total energy dissipation rate.
The time we address in our analysis is tpeak, defined as the
time of maximum ε, when the highest scale separation occurs
L 	 	 	 η where 	 is a typical length scale in the inertial
range. Thus, the values provided in Table 1 correspond to tpeak.

Previous work on MHD flows with Taylor–Green (TG)
symmetries (Dallas & Alexakis 2013b, 2013c) has demonstrated
that a −2 power-law scaling of the energy spectrum can
originate from magnetic discontinuities corresponding to strong
amplitude current sheets. We notice that in these flows j initially
satisfied the same TG symmetries with u and b with ω. So,
here we consider random initial conditions with strong cross-
correlation between the velocity and the current density by
setting j ∝ u in order to investigate if the k−2 spectrum is a more
general solution and not only an effect of the TG symmetries
(Dallas & Alexakis 2013c). Initially, our fields are excited at
wavenumbers k = 1 and 2 with random phases and they are
normalized such that the kinetic energy Eu ≡ (1/2)〈|u|2〉 and the
magnetic energy Eb ≡ (1/2)〈|b|2〉 are in equipartition (namely,
Eu = Eb = 0.5) and all the helicities are zero including the
kinetic helicity Hu ≡ 〈u · ω〉. Note that the magnetic Prandtl
number is unity (i.e., ν = κ) for all the simulations.

3. RESULTS AND DISCUSSION

Here, we compare our results with the results by Mininni &
Pouquet (2009), who carried out direct numerical simulations
(DNSs) by superposing Fourier modes with random phases of
initially uncorrelated fields for N = 64 to N = 1536 (see
Mininni & Pouquet 2009 for more details). In Figure 1(a), we
plot the dissipation coefficient Cε ≡ εL0/u

′
0 for each Reλ, where

the value of ε is taken at tpeak and the integral length scale L0
as well as the rms velocity u′

0 are at time zero. The circles
represent our runs (see Table 1) and the triangles represent the
runs by Mininni & Pouquet (2009). At high enough Reλ, Cε is
expected to asymptote to a finite value. This is the so-called
dissipation anomaly of three-dimensional turbulence (Frisch
1995; Biskamp 2003), which is confirmed from the data by
Mininni & Pouquet (2009) with an asymptotic regime from
Reλ > 200 (see Figure 1(b)). In this regime, Cε = const and
Reλ ∝ Re1/2 as expected for a fully developed turbulent flow
that obeys Kolmogorov scaling (Frisch 1995). On the other hand,
our runs with initial j ∝ u cross-correlation have different high
Reynolds number asymptotics without reaching an asymptotic
regime for Cε even for the highest Reλ run with 20483 grid
points (note that this numerical simulation is at the cutting-edge

Figure 1. Top: dissipation rate coefficient Cε as a function of Reλ. Bottom: Reλ

compensated by Re−1/2 vs. Re. The circles © and the triangles 
 represent our
data (see Table 1) and the data from Mininni & Pouquet (2009), respectively.

of the current computational capabilities). It is interesting that
the Reλ seems to obey a different power-law scaling of the form
Reλ ∝ Re2/3 for this range of parameters. So, a question that
arises at this point is if this is a manifestation of non-classical
scalings or a finite Reynolds number effect.

High-resolution DNSs of MHD turbulence consist of a large
population of intense, dissipative, space-filling sheetlike struc-
tures in a wide range of length scales. This large population
also includes some structures that remain sparse but become
thinner as Cε becomes independent of ν and κ with increasing
Reynolds numbers (see also Mininni & Pouquet 2009). Visual-
izations of the current density amplitude in a slice of the entire
computational domain are illustrated in Figure 2 at tpeak for the
four highest Reλ runs of Table 1. In contrast to conventional
DNS, we observe enormous current sheets that span the size of
our periodic boxes. Note that these coherent structures are not
space filling with a thickness of order η and spanwise length
of order L. As Reλ increases, curling of these current sheets
takes place as a result of Kelvin–Helmoltz-type instabilities un-
til they become unstable and reconnect. Such instabilities have
been recently observed in the large population of current sheets
of typical random MHD turbulent simulations (Mininni & Pou-
quet 2009) but also at the large scales of solar wind observations
(Hasegawa et al. 2004). It is remarkable that these sheets are so
coherent that the appearance of a large population of smaller
space-filling intense dissipative structures is observed only for
the highest Reλ simulation after reconnection.
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Figure 2. Current density in a slice of the entire box at the peak of the energy
dissipation rate for the runs of Table 1. Top left: Reλ = 94.3, top right:
Reλ = 166.3, bottom left: Reλ = 298.6, and bottom right: Reλ = 438. High-
and low-intensity regions are denoted by white and black colors, respectively.

Figure 3. Total energy spectrum E(k) compensated by k2 for the four highest
Reλ simulations of Table 1.

Figure 3 presents the compensated total energy spectra k2E(k)
of the fields shown in Figure 2 with the power laws k−2, k−5/3,
and k−3/2 denoted in the plot. The amplitude of these large-
scale current sheets is strong enough to dominate the energy
spectrum, something that is not typically observed in DNS of
freely evolving MHD turbulence with random initial conditions.
The total energy spectrum seems to form a k−2 scaling at least for
the runs in which the large-scale current sheets are still coherent.
As the Reynolds number increases, the spectrum slowly deviates
from the k−2 power law toward the k−5/3 scaling. At high enough
Reynolds numbers, we anticipate that either the k−5/3 or the
k−3/2 will be reached. This result is in agreement with Dallas
& Alexakis (2013c), who demonstrated that the −2 power-law
scaling of the energy spectrum will deviate toward the −5/3
or the −3/2 scaling exponents when TG symmetries break at
Re 	 1. Note, however, that our result here belongs to a more

Figure 4. Time evolution of the correlation coefficient ρuj between the velocity
and the current density for all the runs of Table 1. The light gray curve denotes
the lowest Reλ run and the black curve the highest Reλ run. The crosses +
indicate the value of ρuj at the time of maximum dissipation rate tpeak. The inset
presents the values of ρuj at tpeak for all the different Reλ runs.

general class of flows with random initial conditions without
any symmetry constraints, allowing turbulence to evolve freely.

A measure of quantifying the effect of the initial condi-
tions j ∝ u on the flow is the time evolution of the corre-
lation coefficient between the velocity and the current density
ρuj = 〈u · j〉/(〈|u|2〉〈| j |2〉)1/2 that we show in Figure 4. Ini-
tially, the velocity and the current density are fully correlated
(i.e., ρuj = 1) and then as time evolves ρuj decays toward zero.
Note, however, that this decay rate is faster as Reλ increases.
The crosses in Figure 4 indicate the value of ρuj at the time
of the maximum energy dissipation rate. It is clear that for the
lower Reλ runs the cross-correlation between u and j is strong
with the current sheets having a spanwise length of the order of
the box size 2π and a k−2 power law for the energy spectra (see
Figures 2 and 3). For the highest Reλ runs, where the energy
spectrum deviates from the E ∝ k−2 scaling and the current
sheets become unstable, breaking down into a large population
of smaller scale structures, we observe that ρuj is negligible
compared to its initial value. Furthermore, the inset of Figure 4
presents the values of ρuj at tpeak for the different Reλ runs
of Table 1. The correlation coefficient exhibits a power law of
the form ρuj ∝ Re−3/2

λ , demonstrating the rate at which MHD
turbulence loses memory of initial conditions.

4. CONCLUSIONS

In summary, we performed high-resolution simulations of
freely evolving MHD turbulence with initial cross-correlations
of the type j ∝ u. These initial conditions were chosen in
order to investigate if the k−2 energy spectrum is not just
an effect of the TG symmetries (Lee et al. 2010; Dallas &
Alexakis 2013c) in strong MHD turbulence (Dallas & Alexakis
2013b) but instead a result of these special correlations. We
focus on the time when the peak of energy dissipation rate is
reached, which is when the largest scale separation occurs. At
this point, we observe current sheets with a spanwise length
of the order of the box size 2π and thickness of the order of
the Kolmogorov scale η. These structures remain coherent in
the flow even for high Reλ. These enormous and stable current
sheets dominate the energy spectrum particularly for our lower
resolution runs with a E ∝ k−2 power-law scaling as the best
fit. As soon as the correlation coefficient ρuj becomes negligible
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with increasing Reλ, Kelvin–Helmoltz-type instabilities kick
in, entailing the curling of the enormous current sheets that
spontaneously break down to smaller scales only for our run
with N = 20483, modifying the scaling of the energy spectrum
from k−2 toward k−5/3. Therefore, we deduce that the k−2 energy
spectrum manifests as a finite Reynolds number effect due to
correlation between u and j . Then, the debate on universality
in strong MHD turbulence returns to the distinction between the
k−5/3 and the k−3/2 scalings at high enough Reynolds numbers.

Overall, our work emphasizes the importance of cross-
correlation between the large scales of u and the small scales of b
in freely evolving MHD turbulence. The rate at which the cross-
correlation weakens is relatively slow as Reλ increases (i.e.,
ρuj ∝ Re−3/2

λ ) for the resolutions that can be achieved using
today’s most powerful supercomputers. We anticipate that for
higher Reλ, the energy dissipation rate will reach an asymptote
and the scaling Reλ ∝ Re2/3 will be modified.

The importance of cross-correlations has been reported in
various studies (Pouquet et al. 1986; Osman et al. 2011). So,
it is central to investigate if cross-correlations of the type we
considered in this study exist and can influence the turbulent
statistics in astrophysical observations. For example, the cross-
correlation 〈u · j〉 and the magnetic discontinuities might be a
way to interpret the k−2 scaling of the energy spectrum in the
Jovian magnetosphere (Saur et al. 2002).

Eventually, it is apparent that there is an urgent need for higher
resolutions in numerical simulations of strong MHD turbulence
to be able to deduce undoubtedly the fate of universality in
the high Reynolds number limit. The fact that MHD turbulence
retains certain information from the initial conditions at these
Reynolds numbers despite all of the complex nonlinear interac-
tions is an important issue that needs further investigation.
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Gómez, D. O., Mininni, P. D., & Dmitruk, P. 2005, AdSpR, 35, 899
Hasegawa, H., Fujimoto, M., Phan, T-D., et al. 2004, Natur, 430, 755
Iroshnikov, P. S. 1964, SvA, 7, 566
Kraichnan, R. H. 1965, PhFl, 8, 1385
Lee, E., Brachet, M. E., Pouquet, A., Mininni, P. D., & Rosenberg, D. 2010,

PhRvE, 81, 016318
McIntosh, S. W., De Pontieu, B., Carlsson, M., et al. 2011, Natur, 475, 477
Mininni, P. D. 2011, AnRFM, 43, 377
Mininni, P. D., & Pouquet, A. 2007, PhRvL, 99, 254502
Mininni, P. D., & Pouquet, A. 2009, PhRvE, 80, 025401
Mininni, P. D., Rosenberg, D., Reddy, R., & Pouquet, A. 2011, ParC, 37, 316
Müller, W. C., & Grappin, R. 2005, PhRvL, 95, 114502
Osman, K. T., Wan, M., Matthaeus, W. H., Breech, B., & Oughton, S. 2011, ApJ,

741, 75
Podesta, J. J., Roberts, D. A., & Goldstein, M. L. 2007, ApJ, 664, 543
Pouquet, A., Meneguzzi, M., & Frisch, U. 1986, PhRvA, 33, 4266
Saur, J., Politano, H., Pouquet, A., & Matthaeus, W. H. 2002, A&A,

386, 699
Schekochihin, A. A., Cowley, S. C., & Yousef, T. A. 2008, in Computational

Physics and New Perspectives in Turbulence, IUTAM Symp. Comput. Phys.
and New Perspectives in Turb., Vol. 4, ed. Y. Kaneda, G. M. L. Gladwell, &
R. Moreau (IUTAM Bookseries; Berlin: Springer), 347

Spangler, S. R., & Cordes, J. M. 1998, ApJ, 505, 766
Sundkvist, D., Krasnoselskikh, V., Shukla, P. K., et al. 2005, Natur, 436, 825
Verdini, A., & Velli, M. 2007, ApJ, 662, 669
Wan, M., Oughton, S., Servidio, S., & Matthaeus, W. H. 2012, JFM, 697, 296

4

http://dx.doi.org/10.1111/j.1365-2966.2012.20859.x
http://adsabs.harvard.edu/abs/2012MNRAS.422.3495B
http://adsabs.harvard.edu/abs/2012MNRAS.422.3495B
http://dx.doi.org/10.1086/431649
http://adsabs.harvard.edu/abs/2005ApJ...626L..37B
http://adsabs.harvard.edu/abs/2005ApJ...626L..37B
http://adsabs.harvard.edu/abs/2003LNP...614...56C
http://dx.doi.org/10.1086/376777
http://adsabs.harvard.edu/abs/2003ApJ...594..573C
http://adsabs.harvard.edu/abs/2003ApJ...594..573C
http://adsabs.harvard.edu/abs/2013PhFl...25j5106D
http://adsabs.harvard.edu/abs/2013PhFl...25j5106D
http://adsabs.harvard.edu/abs/2013PhRvE..88e3014D
http://adsabs.harvard.edu/abs/2013PhRvE..88e3014D
http://adsabs.harvard.edu/abs/2013PhRvE..88f3017D
http://adsabs.harvard.edu/abs/2013PhRvE..88f3017D
http://dx.doi.org/10.1038/nature10446
http://adsabs.harvard.edu/abs/2011Natur.478..214G
http://adsabs.harvard.edu/abs/2011Natur.478..214G
http://dx.doi.org/10.1086/175121
http://adsabs.harvard.edu/abs/1995ApJ...438..763G
http://adsabs.harvard.edu/abs/1995ApJ...438..763G
http://adsabs.harvard.edu/abs/2005AdSpR..35..899G
http://adsabs.harvard.edu/abs/2005AdSpR..35..899G
http://dx.doi.org/10.1038/nature02799
http://adsabs.harvard.edu/abs/2004Natur.430..755H
http://adsabs.harvard.edu/abs/2004Natur.430..755H
http://adsabs.harvard.edu/abs/1964SvA.....7..566I
http://adsabs.harvard.edu/abs/1964SvA.....7..566I
http://adsabs.harvard.edu/abs/1965PhFl....8.1385K
http://adsabs.harvard.edu/abs/1965PhFl....8.1385K
http://adsabs.harvard.edu/abs/2010PhRvE..81a6318L
http://adsabs.harvard.edu/abs/2010PhRvE..81a6318L
http://dx.doi.org/10.1038/nature10235
http://adsabs.harvard.edu/abs/2011Natur.475..477M
http://adsabs.harvard.edu/abs/2011Natur.475..477M
http://adsabs.harvard.edu/abs/2011AnRFM..43..377M
http://adsabs.harvard.edu/abs/2011AnRFM..43..377M
http://adsabs.harvard.edu/abs/2007PhRvL..99y4502M
http://adsabs.harvard.edu/abs/2007PhRvL..99y4502M
http://adsabs.harvard.edu/abs/2009PhRvE..80b5401M
http://adsabs.harvard.edu/abs/2009PhRvE..80b5401M
http://adsabs.harvard.edu/abs/2005PhRvL..95k4502M
http://adsabs.harvard.edu/abs/2005PhRvL..95k4502M
http://dx.doi.org/10.1088/0004-637X/741/2/75
http://adsabs.harvard.edu/abs/2011ApJ...741...75O
http://adsabs.harvard.edu/abs/2011ApJ...741...75O
http://dx.doi.org/10.1086/519211
http://adsabs.harvard.edu/abs/2007ApJ...664..543P
http://adsabs.harvard.edu/abs/2007ApJ...664..543P
http://adsabs.harvard.edu/abs/1986PhRvA..33.4266P
http://adsabs.harvard.edu/abs/1986PhRvA..33.4266P
http://dx.doi.org/10.1051/0004-6361:20020305
http://adsabs.harvard.edu/abs/2002A&A...386..699S
http://adsabs.harvard.edu/abs/2002A&A...386..699S
http://dx.doi.org/10.1086/306172
http://adsabs.harvard.edu/abs/1998ApJ...505..766S
http://adsabs.harvard.edu/abs/1998ApJ...505..766S
http://dx.doi.org/10.1038/nature03931
http://adsabs.harvard.edu/abs/2005Natur.436..825S
http://adsabs.harvard.edu/abs/2005Natur.436..825S
http://dx.doi.org/10.1086/510710
http://adsabs.harvard.edu/abs/2007ApJ...662..669V
http://adsabs.harvard.edu/abs/2007ApJ...662..669V
http://dx.doi.org/10.1017/jfm.2012.61
http://adsabs.harvard.edu/abs/2012JFM...697..296W
http://adsabs.harvard.edu/abs/2012JFM...697..296W

	1. INTRODUCTION
	2. NUMERICAL SET-UP
	3. RESULTS AND DISCUSSION
	4. CONCLUSIONS
	REFERENCES

