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ABSTRACT

We study the inverse cascade of magnetic helicity in conducting fluids, as pertinent to the generation and dynamics
of magnetic fields as observed, e.g., in the solar corona, by investigating the detailed transfer of helicity between
different spherical shells in Fourier space in direct numerical simulations of three-dimensional magnetohydrody-
namics (MHD). Two different numerical simulations are used, one in which the system is forced with an electro-
motive force in the induction equation and one in which the system is forced mechanically with an ABC flow and the
magnetic field is solely sustained by a dynamo action. The magnetic helicity cascade at the initial stages of both
simulations is observed to be inverse and local (in scale space) at large scales and direct and local at small scales.
When saturation is approached, most of the helicity is concentrated at large scales and the cascade is nonlocal.
Helicity is transferred directly from the forced scales to the largest scales. At the same time, a smaller in amplitude
direct cascade is observed from the largest scale to small scales.

Subject headings: magnetic fields — MHD

1. INTRODUCTION

The generation of magnetic fields in various astrophysical
objects ranging from planets (e.g., the geodynamo; Glatzmaier
& Roberts 1996; Kono & Roberts 2002) to stars (e.g., the solar
dynamo; Dikpati & Charbonneau 1999; Nandy & Choudhuri
2002; Bushby&Mason 2004) and spiral galaxies (e.g., the inter-
stellar dynamo; Shukurov&Dormy 2005) is mostly attributed to
dynamo action due to motions of a conducting fluid (Moffatt
1978). Because of magnetic flux conservation in ideal magneto-
hydrodynamics (MHD), the stretching of magnetic field lines by
a conducting flow amplifies the magnetic energy at small scales.
To further explain how magnetic fields end up in scales much
larger than the outer scales offluid motions, one of the theoretical
arguments used is the inverse cascade ofmagnetic helicity inMHD
turbulence. It is worth mentioning here that the presence of helic-
ity in the flow, although helpful, is not required to generate large-
scale magnetic fields. In some circumstances, large-scale fields can
be sustained solely by helicity fluctuations (Gilbert et al. 1988), by
anisotropic flows (Nore et al. 1997), or by large-scale shear (Urpin
2002). However, magnetic helicity plays a fundamental role in the
long-term evolution of stellar and galactic magnetic fields.

The solar case is of particular interest because theories on the
generation of helical magnetic fields can be tested by a large num-
ber of observations. Direct measurements ofmagnetic helicity can
be made in coronal mass ejections (CMEs). The S-shaped (and
their mirror symmetric Z-shaped) structures observed in the Sun
in soft X-rays (see Kurokawa 1987; Leka et al. 1996; Ishii et al.
1998), known as sigmoids, are attributed to the emergence of heli-
cal magnetic tubes (see Low 1994;Mandrini et al. 2004; Zhang&
Low 2005). It is the twist of the magnetic field lines that results in
sigmoid observation (Low & Berger 2003; Fan & Gibson 2003,
2004;Gibson et al. 2004;Manchester et al. 2004).A correlation be-
tween twisting and the occurrence of CMEs has also been reported
in Nindos et al. (2003) and Nindos & Andrews (2004). The
further evolution of CMEs can be followed from the Sun’s photo-
sphere to the interplanetary medium, where direct measurements
of magnetic helicity can also be made (Smith 1999; Green et al.

2002; Démoulin et al. 2002; Mandrini et al. 2005). The observa-
tionsmade over the last two solar cycles have shown thatS-shaped
sigmoids appear preferentially in the southern hemisphere and
Z-shaped sigmoids in the northern. This implies that structures in
the northern and southern hemisphere have opposite signs ofmag-
netic helicity. The origin of these helical magnetic fields with dif-
ferent signs of helicity in the northern and southern hemispheres is
of fundamental interest in solar physics.

Since magnetic helicity is a conserved quantity, CMEs and
magnetic clouds (MCs) in the interplanetary medium preserve
the sign of the magnetic helicity of the active region where they
were generated (Mandrini et al. 2005). The possible sources of
magnetic helicity in stars such as the Sun are the � effect (asso-
ciated with differential rotation in the base of the convective re-
gion), the � effect (associated with helical motions induced by
the Coriolis force in the convective region), and surface photo-
spheric motions (Berger & Ruzmaikin 2000).

Recent studies showed that surface photospheric motions can-
not provide enoughmagnetic helicity to explain the observations
(Démoulin et al. 2002) or else give the wrong sign of magnetic
helicity (Green et al. 2002). As a result, magnetic helicity is ex-
pected to be generated by subphotospheric motions, deep in the
stellar convective region. Berger & Ruzmaikin (2000) estimated
the amount of magnetic helicity generated by the � effect and
found that both the sign and the injection rate of magnetic helic-
ity in each hemisphere is in good agreement with observations.
On the other hand, estimations of the injection of magnetic helic-
ity by helical motions of the flow (the � effect) are a matter of
controversy. Kinetic helicity does not inject net helicity in the
magnetic field but rather injects opposite signs ofmagnetic helic-
ity at large and small scales (through kink and twist of the flux
tubes). The evolution of the magnetic helicity at small scales is
unclear. Direct numerical simulations of helical dynamo action
(Brandenburg 2001) are done at moderate values of the mag-
netic Reynolds number, and as a result the small-scale magnetic
helicity is dissipated relatively fast. The end result is a system
dominated by the large-scale magnetic helicity. If the magnetic
Reynolds number is much larger (as in the case in astrophysics)
and both signs of magnetic helicity are assumed to cascade to
large scales, the transfer of small-scale magnetic helicity to the
dissipation length is expected to be inhibited. As a result, the
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injection of helicity by the � effect takes place in too large
timescales (Berger & Ruzmaikin 2000). However, the answer
would be different if the fate of the small-scale magnetic helicity
is different from the fate of the large-scale helicity.

In the galactic dynamo, the evolution of small-scale magnetic
helicity also plays a fundamental role. The saturation level of the
magnetic field, as well as the saturation timescale, in several mod-
els (Kleeorin et al. 2002, 2003) depends on assumptions on the
diffusion ofmagnetic helicity by small-scale velocity fluctuations.
The results we discuss here can help to enhance such models.

The generation and cascade of magnetic helicity has been in-
vestigated in early studies using mean field theory (Steenbeck
et al. 1966; Krause & Rädler 1980; Blackman & Field 2002) and
turbulent closure models (Frisch et al. 1975; Pouquet et al. 1976).
It was shown within the framework of the approximations made
thatmagnetic helicity cascades inversely from small scales to large
scales. Direct numerical simulations (DNSs; Pouquet & Patterson
1978;Meneguzzi et al. 1981; Kida et al. 1991; Brandenburg 2001;
Maron & Blackman 2002; Gómez &Mininni 2004) have verified
the inverse cascade of magnetic helicity including in the highly
compressible case (Balsara & Pouquet 1999) and have shown the
generation of large-scale magnetic fields from small-scale helical
force. A detailed examination of the cascading process was in-
vestigated in Brandenburg (2001), in which the rate of transfer
of magnetic energy among different scales was measured from
DNSs. The results showed evidence of nonlocal energy transfer of
magnetic energy from the small scales to the large scales, also sug-
gesting a nonlocal transfer ofmagnetic helicity. However, in three-
dimensional MHD turbulence the ideal invariant that can display
an inverse cascade, sensu stricto, is the magnetic helicity, not the
magnetic energy, and no direct attempt to measure its transfer in
simulations has been done so far.

In this paper we focus on helical flows and revisit the problem
of the inverse cascade of the magnetic helicity by analyzing two
DNSs: one forced through the induction equation by an external
electromotive force and one forced mechanically. Although our
motivation is the origin of large-scale magnetic fields in astro-
physical objects, the complexity of the problem forces us to
study themagnetic field inmuch simpler triple periodic domains.
In both simulations, the force was applied at small scales so that
enough large scales were available for an inverse cascade to
develop. Note that this election naturally limits the Reynolds
numbers we can resolve, and as a result only moderate Reynolds
numbers are considered in this work. Extending the formalism
used by Dar et al. (2001), Debliquy et al. (2005), Alexakis et al.
(2005), and Mininni et al. (2005) for the transfer of the magnetic
and kinetic energy, we directly measured the transfer rate of
magnetic helicity among different scales, in those both larger and
smaller than the forcing scales.

The outline of the paper is as follows. In x 2 we present a brief
review of the equations and the definition of transfer functions
needed to study this problem. In x 3 we give the results from the
magnetically forced simulation, and in x 4we give the results from
the mechanically forced simulation. Finally, we discuss the impli-
cations of our results in x 5, where we also give our conclusions.

2. THEORY AND DEFINITIONS

To a good approximation the equations that describe the dy-
namics of an incompressible conducting fluid coupled to a mag-
netic field are given by

@tuþ u =9u ¼ �:P þ b = 9bþ �92uþ f ; ð1Þ

@tb ¼ :< u < bð Þ þ �92bþ:<E; ð2Þ

where u is the velocity field, b is the magnetic field, � is the kine-
matic viscosity, � is themagnetic diffusivity,P is the total pressure,
f is an external mechanic force, and E is an external electromotive
force. The equations are written in the familiar Alfvénic dimen-
sionless units. These equations are accompanied by the conditions
:=u ¼ 0 ¼ :=b. This last condition allows us to write the mag-
netic field in terms of a vector potential b ¼ :< a. Removing a
curl from equation (2), the evolution equation for the vector po-
tential reads

@t a ¼ u < bþ �92a�:�þ E; ð3Þ

where the Coulomb gauge (: =a ¼ 0) is assumed and:� is de-
termined by the solenoidal condition on a. There are three qua-
dratic invariants in the absence of dissipation and force: the total
energyE ¼

R
(b2 þ u2)/2 dx3, the cross helicityHc ¼

R
b =u dx3,

and the magnetic helicity Hm ¼
R
b = a/2 dx3. (Note that a factor

of 1
2
has been introduced in the definition of magnetic helicity,

following the notation of Pouquet et al. [1976].) To the best of our
knowledge the magnetic helicity, which is the quantity under in-
vestigation in this paper, was first introduced as an invariant of the
MHD equations by Woltjer (1958). It is proportional to the num-
ber of linkages of the magnetic field lines (Moffatt 1978), as re-
flected by its relationwith topological quantities such as theGauss
linking number (Wright & Berger 1989; Berger 1997). The con-
servation ofmagnetic helicity is relatedwith the frozen-in theorem
of Alfvén. Being magnetic field lines material, a link can only
change through reconnection offield lines, and therefore breaking
of the frozen-in condition (e.g., through dissipation) is needed.
As we stated in x 1, we want to quantify the rate at which

helicity is transferred among the different scales of the magnetic
field. To define the magnetic field and vector potential at dif-
ferent scales, we introduce the shell-filtered magnetic field and
vector potential components bK(x) and aK(x). Here aK(x), bK(x)
are real vector functions of space (x) and the subscript K in-
dicates that the field has been filtered to keep only the modes
whose wavevectors are in the Fourier shell ½K;K þ 1) (hereafter
called shell K ):

aK xð Þ ¼
X
k2K

ã kð Þeik = x and bK xð Þ ¼
X
k2K

b̃ kð Þeik = x; ð4Þ

where ã(k) and b̃(k) are the Fourier transforms of a(x) and b(x),
respectively, and the sum is taken over all wavenumbers whose
moduli belong to shell K, i.e., K � kj j < K þ 1. Clearly, the
sum of all the K-components gives back the original field,
b ¼

P
K bK , and the filtering operation commutes with the curl

operator, :< aK ¼ bK . Any two fields aK, bQ with K 6¼ Q are
orthogonal, i.e.,

R
aK =bQ dx3 ¼ 0, since the two shells contain

no common wavenumbers. A similar decomposition has been
used by Alexakis et al. (2005) andMininni et al. (2005) to study
the cascade of energy.
We are interested in the rate at which magnetic helicity at a

given shellQ is transferred into a different shellK. From theMHD
equations, taking the dot product of equation (3) with bK /2, taking
the dot product of equation (2) with aK /2, adding them, and in-
tegrating over space, we finally obtain the evolution of the mag-
netic helicity Hm(K ) ¼ 1

2

R
aK = bK dx3 in shell K:

@tHm Kð Þ ¼
X
Q

Z
bK = u < bQ

� �
dx3

� �

Z
bK =: < bK dx3 þ

Z
bK =EK dx3: ð5Þ
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The total magnetic helicity is given by the sumHm ¼
P

K Hm(K ).
We can rewrite equation (5) in a more compact form,

@tHm Kð Þ ¼
X
Q

Th K;Qð Þ � �Dh Kð Þ þ Fh Kð Þ; ð6Þ

where we have introduced the transfer function Th(Q, K ), the
helicity injection Fh(K ), and the helicity dissipation Dh(K ) as
defined below.

The dissipation of magnetic helicity in shell K is given by

Dh Kð Þ ¼
Z

bK = : < bKð Þ dx3: ð7Þ

Note, however, that unlike the energy dissipation this is not a
positive definite quantity.

The injection rate of magnetic helicity in shell K by the ex-
ternal electromotive force E is given by

Fh Kð Þ ¼
Z

bK =EK dx3: ð8Þ

Note that the mechanical force f does not inject magnetic
helicity in the system, as follows from equation (5). However,
as discussed below, if the external mechanical force is helical,
the velocity field can generate helical magnetic fields locally
through the Th(Q, K ) term.

The transfer rate of magnetic helicity at shell Q into magnetic
helicity at shell K is defined as

Th K;Qð Þ ¼
Z

bK = u <bQ
� �

dx3; ð9Þ

where Th(K, Q) expresses the transfer rate of positive helicity
from shell Q to shell K or, equivalently, the transfer rate of
negative helicity from shell K into shell Q. Positive values of
Th(K, Q) imply that positive helicity is transferred from shell Q
to shell K, while negative values imply the reverse transfer. The
transfer term is a conservative term and does not generate or
destroy total magnetic helicity. However, this term is respon-
sible for the redistribution of magnetic helicity among different
scales. This fact is expressed by the antisymmetric property of
Th(Q, K ):

Th K;Qð Þ ¼ �Th Q;Kð Þ: ð10Þ

We stress that helicity (unlike energy) is not a positive definite
quantity, so care needs to be taken when we interpret results.We
do not attempt here a separation of its different sign components
(see, e.g., Waleffe [1992] and Chen et al. [2003a, 2003b] for the
kinetic helicity in hydrodynamic turbulence). As an example, if
in some shell K the helicity is positiveHb(K ) > 0 with a positive
rate of change @tHb(K ) > 0, then the magnetic field becomes
more helical in that shell as the system evolves. If, however, the
helicity is negative Hb(K ) < 0, then positive rate of change im-
plies that the field becomes less helical in that shell. In the same
spirit, if positive helicity is transferred from scales with negative
helicity to scales with positive helicity, the field becomes more
helical at both scales even if the total helicity at all scales remains
constant. On the other hand, if positive helicity is transferred from
scales with positive helicity to scales with negative helicity, the
field becomes less helical at each scale, since the absolute value of
magnetic helicity at each scale is decreased.

3. MAGNETICALLY FORCED RUN

We begin with the magnetically forced simulations. This case,
although less physically motivated, provides a reference frame
for the study of the inverse cascade of the magnetic helicity. Mag-
netic helicity is not a positive definite quantity, and as a result the
interpretation of its transfer is complex. While in astrophysical
dynamos magnetic energy is believed to be sustained by motions
of a conducting fluid, the injection ofmagnetic energy and helicity
directly in the induction equation allows us to have systems
dominated by only one sign of magnetic helicity at all scales. As a
result, the interpretation of the transfer is straightforward, and the
results in this section can be used as a reference to validate the
direction of the cascades in the more realistic simulations of x 4.

In the numerical simulation, a helical ABC electromotive force
E is used, while keeping the mechanical force equal to zero. The
flow evolution is solved using a pseudospectral method with the
two-thirds rule for dealiasing on a N 3 ¼ 2563 grid. No uniform
magnetic fields are allowed in the periodic box, and therefore
magnetic helicity conservation is satisfied in the ideal case
(Berger 1997).

The viscosity and diffusivity are set to � ¼ � ¼ 5 ; 10�4.
Only wavenumbers in shells 8 and 9 are forced. The phase of the
external ABC electromotive force is changed randomly with a
correlation time � ¼ 1:25 ; 10�2, and the time step to satisfy the
Courant-Friedrichs-Levy (CFL) condition is set to �t ¼ 2:5 ;
10�3. The integral length scale of the flow L ¼ 2�

R
E(K )/K dk/E

[where E(K ) is the kinetic energy in shell K and E is the total
kinetic energy] in the steady state of the simulation is L � 1:42,
and the large-scale turnover time T ¼ U /L (where U is the rms
velocity) is T � 0:25. Based on these numbers, the resulting ki-
netic Reynolds number Ree and magnetic Reynolds number Rem
are Ree � Rem � 700. The simulation is well resolved, in the
sense that the Kolmogorov kinetic [k� ¼ (� /�3)1/4, where � is the
total energy injection rate] and magnetic [k� ¼ (� /�3)1/4] dissipa-
tion wavenumbers are smaller than the maximum resolved wave-
number kmax � N /3.

The magnetically forced case is easier to analyze because only
one sign of helicity appears to dominate all scales. In Figure 1 we

Fig. 1.—Kinetic (solid line) and magnetic (dashed line) energy spectra for the
magnetically forced simulation for two different times: (a) t1, before saturation is
reached, and (b) t2, close to saturation. Spectra are shown up to k ¼ 40; note,
however, that the maximum wavenumber resolved in the code is kmax � 85.
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show the resulting spectra at two different times t1 and t2, up to
wavenumber k ¼ 40. The former time is early (before the sys-
tem comes close to saturation), and the latter time is when the
flow is almost saturated. Note that the maximumwavenumber in
the code is kmax � 85 and that the dissipative range in the sim-
ulation extends to larger wavenumbers than what is shown in
Figure 1. However, the transfer function Th(K, Q) is only com-
puted up to K;Q ¼ 40, a range that includes all scales larger
(wavenumbers smaller) than the injection band, as well as the
scales smaller than the injection band where a turbulent scaling
can still be identified.We follow this convention in the following
figures.

3.1. Early Times

The spectrum of magnetic helicity for t ¼ t1 is shown in Fig-
ure 2a in log-log scale and is positive at all scales. At this stage,
the magnetic helicity spectrum peaks at wavenumber K ’ 5, a
scale slightly larger than the scale where the system is forced.
Figures 2b–2e show the transfer of magnetic helicity Th(K,Q) at
different values ofQ, normalized by the total magnetic helicity in
that shell. The dotted lines in these panels indicate the shell where
the force is applied, while the dashed lines indicate the mode that
is examined.

Since the helicity is positive for all scales, we only need to
interpret Th as a transfer of positive helicity. Figure 2b shows the
transfer Th(K, Q) for wavenumbers at the peak of the energy
spectrum (K ¼ 5). For smaller wavenumbers (K < 5) the trans-
fer is positive,while it is negative for largerwavenumbers (K > 5).
This picture indicates that the shell K ¼ 5 is giving/transferring
helicity to its close neighbors on the left, while it receives helicity
from its neighbors on the right.

Similar behavior is observed for the modes with wavenum-
bers between the peak of magnetic helicity in Fourier space and
the forcing wavenumber (see Fig. 2a). The transfer of magnetic
helicity for a value of Q in this range (Q ¼ 7) is shown in Fig-
ure 2c, suggesting the picture of a local inverse cascade. Indeed,
the shell Q ¼ 7 gives most of its helicity to the shell K � 6
(positive peak), while it receives helicity from the shell K � 8
(negative peak).

The forced wavenumbers [the transfer Th(K, Q) for Q ¼ 8 is
shown in Fig. 2d] are giving helicity to both smaller and larger
scales, with a preference toward the larger scales (smaller wave-
numbers). Finally, wavenumbers larger than the forced scale
(Fig. 2e) have a different behavior. Unlike the large scales, the
small scales (K ¼ 20 is displayed here) receive helicity from
larger scales (but smaller than the forced scale) and give helicity
to smaller scales. This suggests a local direct cascade of positive
magnetic helicity. In addition, there is a nonlocal transfer of helic-
ity to much larger scales (K ’ 5), probably associated with re-
connection events.

3.2. Late Times

The picture of a local cascade of helicity is changed at later
times, as the peak of the helicity spectrum moves to the largest
possible scale (K ¼ 1). The helicity spectrum and the transfer
functions at this stage are shown in Figure 3. The helicity spec-
trum peaks strongly at K ¼ 1 (see Fig. 3a). As shown in Fig-
ure 3b, the largest scales are now receiving magnetic helicity
directly from the forced scales, the remaining scales giving al-
most zero contribution. This behavior suggests a nonlocal inverse
cascade. Intermediate scales between the largest available and the
forced scales have also changed their behavior (Fig. 3c). These
scales (1 < K < 8) now are receiving positive helicity mostly

from the largest modes and giving it to the smaller scales. This
suggests a direct cascade of positivemagnetic helicity in the range
1 < K < 8. Therefore, it appears that once the magnetic helicity
has reached the largest possible scale there may be some ‘‘re-
flection’’ at K ¼ 1, and helicity then cascades to smaller scales
with the exception of the forced modes that continue feeding the
magnetic helicity at the largest scale (see Fig. 3d). Scales smaller
than the injection band transfer the positive magnetic helicity to
smaller scales as at early times, with the exception of a nonlocal
direct input to the largest scale.
The ‘‘reflection’’ of magnetic helicity in Fourier space when it

reaches the largest scale in the box suggests that the late time
evolution is strongly dependent on the boundary conditions. In
our case, the periodic boundary conditions do not allow mag-
netic helicity to grow at even larger scales and forbid the system
to eject magnetic helicity outside the box. Similar behavior has
been observed in two-dimensional hydrodynamic turbulence, in

Fig. 2.—(a) Magnetic helicity spectrum and (b–e) its transfer Th(K, Q) from
shellQ to shellK, normalized by the total magnetic helicity for the magnetically
forced run at time t1. Panels (b–e) correspond to Q ¼ 5, 7, 8, and 20, respec-
tively. The dashed vertical line indicates the location of the examined value of
Q, while the dotted lines give the width of the forcing band. Note that the
transfer for Q ¼ 20 is significantly smaller.
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which the quantity that has an inverse cascade is the energy
(Smith & Yakhot 1994; Borue 1994; Boffetta et al. 2000). For
this latter problem, evidence of nonlocal and irregular transfer of
the inverse cascading invariant was also found in simulations
(Danilov & Gurarie 2001). We come back to this issue below.

4. MECHANICALLY FORCED RUN

Wemove next to the case in which the system is mechanically
forced and the magnetic field is solely amplified and sustained
against ohmic dissipation by dynamo action. This case is more
relevant to most physical situations. In this case, we perform a
numerical simulation using a grid ofN3 ¼ 2563 points under the
following procedure. First, a hydrodynamic simulation was
performed, mechanically forcing at wavenumber K ¼ 10, with
an ABC flow to obtain a turbulent steady state. The kinetic helic-
ity of the flow Hk ¼

R
u =: <u/2 d3x in the steady state is pos-

itive and close to maximal. Unlike the previous section, here
the phases of the ABC flow are kept constant as a function of
time.

After reaching the hydrodynamic steady state, a random,
nonhelical, and small magnetic field was introduced and the
simulation was carried keeping the force fixed to observe the
evolution of the system from the initial exponential amplification
of the magnetic energy until the large-scale saturation. The kine-
matic viscosity and magnetic diffusivity were � ¼ � ¼ 2:5 ;
10�3. In the hydrodynamic steady state, the integral scale of the
flowwas L � 0:6 and the large-scale eddy turnover timeT � 0:6.
Based on these numbers, the mechanic and magnetic Reynolds
numbers were Ree ¼ Rem ¼ 240.

From equations (6) and (8), we note that a helical mechanical
force cannot inject net magnetic helicity in the system. However,
a flowwith positive kinetic helicity in the forcing band generates
equal amounts of magnetic helicity at large and small scales with
opposite signs. This generation can be understood in a geomet-
rical way from the stretch-twist-fold (STF) dynamo (Zel’dovich
et al. 1983). As magnetic flux tubes at large scales are twisted in
one direction (generating one sign of magnetic helicity), magnetic
field lines at small scales are twisted in the opposite direction.

This generation of opposite signs of magnetic helicity at dif-
ferent scales is also a signature of the� effect (Seehafer 1996). In
mean field theory (see, e.g., Krause & Rädler 1980) the equation
for the evolution of the mean magnetic helicity Hm is

@tHm ¼
Z

�B
2 � �B =: <B

� �
d3x; ð11Þ

where � � �� v =: < vh i is proportional to minus the kinetic
helicity of the flow (here v is the fluctuating velocity field and �
is a correlation time). The coefficient � is a positive turbulent
diffusivity. As a result, the � effect injects magnetic helicity
with a sign opposite that of the kinetic helicity into the mean
( large scale) magnetic field. As its counterpart, at small scales
the fluctuating magnetic field receives magnetic helicity of the
same sign as the kinetic helicity.

We investigate three different times. In the first case, the dy-
namo is still kinematic (i.e., the magnetic energy is smaller than
the kinetic energy at all scales, and the effect of the Lorentz force
on the velocity field can thus be neglected). In the second, kinetic
and magnetic energies are of the same order, but the peak of the
magnetic helicity is not yet at the largest scales. In this regime,
scales smaller than the energy injection band have reached satu-
ration, while the large-scale magnetic field keeps growing slowly.
Finally, we investigate the saturated stage at which the magnetic
helicity spectrum peaks at the largest attainable scale.

The energy spectra for these three cases are shown in Figure 4.
As in x 3, the maximum wavenumber resolved in the simulation
was kmax � 85, and at all times the Kolmogorov dissipation
wavenumbers were smaller than kmax. Since the transfer between
different shells is only studied up toK;Q ¼ 40, all spectral quan-
tities in the figures are shown up to this wavenumber.

4.1. Kinematic Regime

We begin with the kinematic regime. The magnetic helicity
spectrum is shown in Figure 5a. Unlike the magnetically forced
case, the magnetic helicity spectrum changes sign. For scales
smaller than the forced scales, the magnetic helicity spectrum is
positive, while at large scales the magnetic helicity is negative.
The positive and negative peaks are close on either side of the
forced band. The transfer of helicity Th(K,Q) for various shellsQ
is shown in Figures 5b–5e.

The large scales (Q ¼ 5 is shown in Fig. 5b), where the neg-
ative peak of the magnetic helicity spectrum is located, receive

Fig. 3.—Same as Fig. 2, but at later times and with panels (b–e) corre-
sponding to Q ¼ 1, 3, 8, and 20, respectively. Note the different values on the
vertical axis.
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some negative helicity from smaller scales, but most of the
transfer is from the forced scales (K � 10). These scales also
give (negative) helicity to larger scales (see Figs. 5b and 5c).
Note that because helicity is negative in the large scales, a posi-
tive value of Th(K, Q) means that shell K receives negative
magnetic helicity from shell Q, increasing the absolute value of
the magnetic helicity in shell K, and the other way around if
Th(K, Q) is negative.

The forced scale (see Q ¼ 10 in Fig. 5d ), as described in the
beginning of this section, is giving negative magnetic helicity to
large scales and positive magnetic helicity to the small scales.
This is the largest amplitude transfer and is the main source of
‘‘absolute’’ magnetic helicity. At scales smaller than the energy
injection band (see Fig. 5e), like in the magnetically forced case,
(positive) magnetic helicity appears to cascade to smaller scales,
where it is finally dissipated.

4.2. Small-Scale Saturated Regime

As the amplitude of the magnetic field is increased by dynamo
action, the growth of magnetic energy at scales smaller than the
forcing band saturates. Meanwhile, the negative peak of the
magnetic helicity moves to larger scales (see Fig. 6a). The large
scales in the system (K > 10) receive (negative) magnetic he-
licity both locally from slightly smaller scales and nonlocally
from the forced scales and give negative magnetic helicity to
slightly larger scales if available (see Figs. 6b–6c). The forced
scale (corresponding to Q ¼ 10; see Fig. 6d ) gives most of the
negative magnetic helicity to the shell where the magnetic he-
licity spectrum peaks (K � 2). At the same time, the forced shell
gives positive magnetic helicity to slightly smaller scales. Finally,
the small scales (Fig. 6e) cascade the positive magnetic helicity
to even smaller scales, where it is dissipated. In addition, a con-
siderable amount of magnetic helicity is destroyed by transferring
positive helicity from the small scales (where the magnetic he-
licity is mostly positive) directly into the large scales (where he-
licity is negative; see the positive peak at K � 2 in Fig. 6e), as a

result decreasing the absolute value of magnetic helicity in both
scales. We believe this behavior may be related to reconnection
events.

4.3. Saturated Regime

When the system is close to saturation at all scales, the helic-
ity spectrum peaks at the largest available scale (K ¼ 1; see
Fig. 7a). At this stage the large scales receive magnetic helic-
ity directly from the forced scales by a nonlocal process (see
Figs. 7b and 7d ). Such behavior has also been observed for
the transfer of magnetic energy in helical dynamo runs by
Brandenburg (2001).
In the intermediate scales, between the largest available scale

in the box and the forced scale (see Fig. 7c), there seems to be a
direct cascade of helicity from the large scales to smaller scales.

Fig. 5.—(a) Spectrum and (b–e) transfer of magnetic helicity Th(K, Q)
normalized by the total magnetic helicity at shell Q for the mechanically
forced run in the kinematic regime. Panels (b–e) correspond to Q ¼ 5, 7, 10,
and 20, respectively. The dashed vertical line indicates the location of the ex-
amined value of Q, while the dotted line indicates the shell where the system
was forced.

Fig. 4.—Same as Fig. 1, but for the mechanically forced simulation for
three different times: (a) t1, during the kinematic stage, (b) t2, when small scales
are saturated, and (c) t3, when large scales are also close to saturation.
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This direct cascade of helicity at large scales is similar to the
‘‘reflection’’ of magnetic helicity at K ¼ 1 observed in the
magnetically forced run (see x 3) and is also expected to be
dependent on the boundary conditions.

The forcing band keeps injecting magnetic helicity of oppo-
site signs at large and small scales (Fig. 7d ), but while positive
magnetic helicity is injected at wavenumbers slightly larger than
the forcing shell Q ¼ 10, most of the negative magnetic helicity
is injected nonlocally into the shell K ¼ 1. Scales smaller than
the forced scale (see Fig. 7e) cascade the positive magnetic he-
licity to smaller scales, where it is dissipated. Again, there is a
nonlocal transfer of positive helicity from the small scales to the
largest scale (see the positive peak at K ¼ 1) leading to the
decrease in the absolute value of the magnetic helicity in both
scales. Note that as the result of the inverse cascade of one sign of
magnetic helicity at large scales and the direct cascade of mag-
netic helicity of the opposite sign at small scales, the system is
finally dominated by magnetic helicity of sign opposite that
of the kinetic helicity injected by the mechanical force. This

has been observed by Brandenburg (2001) and in closures by
Pouquet et al. (1976).

5. DISCUSSION AND CONCLUSIONS

The results presented above stemming from two numerical
simulations have some important implications that need to be
discussed.We start by giving a brief summary of what is observed
in the simulations. At the early stages of the evolution of the mag-
netic field, in both runs, the peak of themagnetic helicity spectrum
appears to be close to the forcing scales although in scales that are
slightly larger. Magnetic helicity inversely cascades in the large
scales, both locally by transfer of helicity from the closest neigh-
bor shells and nonlocally by direct transfer from the forced shells.
As the systems evolve, the inverse cascade of magnetic helicity
leads the magnetic helicity spectrum to peak at the largest avail-
able scale in the domain. At this stage, the direct input coming
from the nonlocal transfer of magnetic helicity from the forced
scales to the largest attainable scales becomes dominant. At the
same time, the local transfer of helicity at intermediate scales
changes direction, and magnetic helicity cascades locally to small

Fig. 6.—Same as Fig. 5, but when the small scales in the system are saturated
and with panels (b–e) corresponding to Q ¼ 1, 2, 10, and 20, respectively.

Fig. 7.—Same as Fig. 5, but close to saturation at large scales and with panels
(b–e) corresponding to different values of Q ¼ 1, 2, 10, and 20, respectively.
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scales. This direct cascade between the largest scale in the box and
the forcing band can be expected to be sensitive to the boundary
conditions and is a nonuniversal feature common to other systems
displaying inverse cascade. Similar behavior has been observed
in two-dimensional hydrodynamic turbulence (Smith & Yakhot
1994; Borue 1994; Boffetta et al. 2000; Danilov & Gurarie 2001).
However, we note that the nonlocal transfer from the forced scales
to the large scales ismuch greater in amplitude than the local direct
cascade. This behavior raises the interesting question of which
process, the local or nonlocal cascade, is dominant in open sys-
tems such as stars or galaxies where no largest available scale can
be clearly defined or where stellar or galactic winds can eject part
of the magnetic helicity out of the system.

The small scales behave differently. Unlike the large scales, in
the small scales there is a noticeable direct cascade of magnetic
helicity to the dissipation scale. This implies that in the limit
of infinite Reynolds number in a helically forced flow, at the
saturated stage there is still going to be a finite global magnetic
helicity, since one sign of magnetic helicity at scales larger than
the forced scales will cascade inversely, while the opposite sign
of magnetic helicity at small scales will cascade to smaller and
smaller scales until it is dissipated. This is important when com-
paring the results from numerical simulations with astrophysical
objects, since the typical Reynolds numbers in the latter case are
much larger.

It can be argued that this direct cascade of small-scale mag-
netic helicity is counterintuitive (in the sense of self-similarity),
since at a given scale the flow ‘‘does not know’’ if it is at scales
smaller or larger than the forcing scale. Therefore, the flow could
have been expected to see the same direction of cascade at all
scales. This kind of argument, however, assumes that each scale
is completely independent, but this is not the case for MHD.
Magnetic helicity at scales larger than the integral scale of a
helical flow is generated by the twisting and folding offlux tubes,
forcing them to interpenetrate (Zel’dovich et al. 1983). At the
same time, at small scales the twisting causes the magnetic field
lines to spiral around each other, generating small-scale mag-
netic helicity of the sign opposite that at the large scale. Any
further stretching of the flux tube will cause the small-scale
magnetic helicity (i.e., the twisting of the field lines around the
flux tube) to cascade to even smaller scales, even if the large-
scale helicity is cascading to larger scales. Furthermore, recon-

nection at small scales changes the topology and the linkage of
the field lines at large scales, which explains the nonlocal trans-
fer of helicity from small scales to large scales, ‘‘destroying’’
in that way the large-scale helicity as it is observed in Figures 6
and 7e.
Therefore, while we confirm the well-known inverse cascade

of magnetic helicity in a dynamo (Pouquet et al. 1976) at scales
larger than the energy injection scale, we observe a novel direct
cascade ofmagnetic helicity of the opposite sign for scales smaller
than the forcing scale. As a result of the direct cascade ofmagnetic
helicity at small scales, estimations of the diffusion time of the
small-scale magnetic helicity (Berger & Ruzmaikin 2000) should
be revisited. Assuming there is an inverse cascade at all scales, the
small-scale magnetic helicity dissipates in long times (of the order
of the large-scale diffusion time L2/�, where L is a characteristic
large scale of the system). However, if the small-scale helicity
cascades to smaller scales, the dissipation timescale is of the same
order as the dissipation timescale of the magnetic energy, a much
faster process. As a result, the � effect can be expected to inject
magnetic helicity even for large magnetic Reynolds numbers as is
the case in astrophysics.
We also note that the direct cascade of magnetic helicity at

small scales also is of relevance for several galactic dynamo
models, in which diffusion of magnetic helicity by the turbulent
fluctuations is required (Kleeorin et al. 2002, 2003).
We conclude by remarking that the overall picture of the

cascade of magnetic helicity appears to be more complicated
than that of the energy and crucially depends on the scale and the
domain size. Simple assumptions carried over from hydrody-
namic turbulence phenomenology do not seem to apply here.
Boundary effects and flux transfer are other issues that should
be investigated. Future numerical simulations, experiments, and
refined theoretical arguments are needed in order to further il-
luminate the understanding of MHD turbulence and improve the
modeling of turbulent flows.
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