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Shear flow with an applied cross-stream magnetic field is studied using dissipative incompressible
magnetohydrodynamics. The study incorporates exact solutions, the energy stability method, and
exact bounds on the total energy dissipation rate. Two physical configurations are examined:
magnetic Couette flow and Hartmann flow, the latter being Poiseuille flow with the existence of a
perpendicular magnetic field. Explicit expressions are derived for energy stability regions in the
parameter space and these expressions are compared with numerically obtained results. For large
enough Reynolds numbers the energy dissipation rate is shown to be bounded by a function of the
magnetic Prandtl number. The bounds obtained on the dissipation rate are compared with
experimental results. @003 American Institute of Physic§DOI: 10.1063/1.1613962

I. INTRODUCTION mentally, was Hartmanr(see Refs. 1 and)2 Hartmann
showed that the magnetohydrodynanildHD) equations
Sheared flow of conducting fluids across magnetic fieldsupport laminar solutions that exhibit boundary layer struc-
lines appears in many physical situations ranging from astroture, and he carried out experiments with flowing liquid met-
physical to industrial. For instance, accretion in stronglyals in rectangular ducts, so-called Hartmann flow. The inves-
magnetized compact stars is assumed to take place in thigation of Hartmann flow has been further extended
polar caps, where the magnetic field is vertical with respecexperimentally by many researchéesg., Refs. 3—6 One of
to the surface of the star and the accreted material spreadse primary quantities that has been measured is the depen-
along the surface perpendicular to the field lines. A similardence of the friction coefficient on the magnetic field, which
situation appears when the solar wind meets a magnetize@ds shown beloWwis a function of the total energy dissipation
object and the flow has to do work in bending the magnetiqate. Furthermore, experimental results indicate that the criti-
field lines emanating from the object. In industry, cross-cal Reynolds number, above which the flow becomes turbu-
stream magnetic fields are used in production-line crystalent, is in the range 150Re/Ha< 250, where Re and Ha are
growth to stabilize flow and to control the dopant distributionthe Reynolds and Hartmann numbers, respectiisde Eqgs.
of the final product. In metallurgy such fields are used as &4) and(6) below]. The ratio Re/Ha can be interpreted as an
dumping mechanism, and in fusion plasma devices a liquigffective Reynolds number inside the Hartmann layer Ref. 7.
metal blanket subject to a strong magnetic field is proposethis is because the thickness of a Hartmann layer scales as
for reactors. The above mentioned cases have the commefiHa, which when used as the length scale in the Reynolds
feature that a thin layer, known as the Hartmann layer, isiumber gived)d/Ha/v=Re/Ha.
formed at the boundary even when the flow is laminar. The  The linear stability of both Hartmann flow, which is
stability as well as the properties of the dissipation rate oksometimes called magnetic Poiseuille flow, and magnetic
both the laminar and the turbulent Hartmann layer are impor€ouette flow, has been investigated in Refs. 8—10. In Refs. 9
tant for the subsequent evolution of the astrophysical sysand 10 the critical Reynolds number for linear instability was
tems, and the same is true for the control in the industriafound to be Re/Ha 48 311, which is much higher than what
applications. is observed experimentally. This led Lingwood and Albous-
Among the first to examine the effect of a cross-streansiere in Ref. 11 to examine the so-called energy stability of
magnetic field on shear flow, both theoretically and experithe Hartmann layer. They found that the Hartmann layer for
small Prandtl numbers is energy stable when Re/Bla.
aElectronic mail: alexakis@mhd11.uchicago.edu Due to the fact that both the Couette and Hartmann lami-
YElectronic mail: morrison@physics.utexas.edu nar (equilibrium) solutions are not trivial, both the linear
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stability and the energy stability equations must be solved A -
numerically. This restricts the range in the parameter space / I|\ . %4
that can be examined, especially since these flows have three " B=jB,

Y

independent nondimensional numbers. Furthermore, the
analysis of Ref. 11 is restricted to small Prandtl numbers by , X
v
B=jB,
d Lx
)

using an approximation of the MHD equations that is appli- -0
cable to liquid metals R,,~10 ®) and moderate magnetic / /
fields, but not to plasmasP(,~ 10 6—10"°) or strong mag-

netic fields. In the present paper we give estimates of the

energy stability boundaries of the two types of Hartmann and (@

magnetic Couette flows examined in Refs. 9 and 10, and we

compare with numerical results. » BB v=0
Furthermore we derive bounds on the energy dissipation k)

rate of the two aforementioned flows, when the flow is in the L F=iF

turbulent regime. The procedure for bounding such quantities 5 - —

has been developed considerably in recent years. Two main B=jB, ' >

approaches exist, both of which incorporate a splitting of the Lz

velocity and magnetic fields into two components, a back- '(‘L) Lx

ground field and a perturbation field. The main difference of

the approaches lies in the extremizing procedures. The firstiG. 1. Panela) shows the setup for magnetic Couette flow and pébel

approach uses a mean field in the manner of Reynolds débows the setup for Hartmann flow.

composition, and was first formulated and carried out suc-

cessfully by Howard in Refs. 12 and 13 and applied widely

and effectively by Bussdsee, for example, Ref. 14In  B(x,y,z)=iB,+|B,+kB,, where bothv and B are mea-

plasma physics in the context of MHD it was used in Refs.sured in units of velocity. The system is assumed to be gov-

15-17. In the second approach, the one we adopt here, tkgned by MHD equations,

background field plays a more central role in the variational

procedures. This method, which is called thackground —V+v-Vv=—VP+ B-VB+ vV2v+F, (1)

methog was developed by Doering and Constantin in Refs. It

18 and 19. The background method has close ties to energyhere P:=p+B%/2, with p being the hydrodynamic pres-

stability theory and it too has been applied to a number okyre, and- is an applied force,

fluid problems. Here and in a companion paffRef. 20 the B

packground meth_od is used for the first time in plasma phy_s— — +V.VB=B.Vv+ 7V?B, )

ics. The companion paper can be consulted for further dis-  Jt

cussion of the background method and additional referencegq the divergence-free constraints,

We note, Kerswell in Ref. 21 has elucidated a formal math-

ematical connection between these two approaches for the V-v=0, V-B=0. 3

case of driven shear flows. We assume periodic boundary conditions in xhandz
The present paper is structured as follows. In Sec. Il Wejjrections for all fields. For thg direction we use no slip for

describe the problems to be studied, define the quantities wge velocity fieldv(x, —d,z) =0 andv(x,d,z) =iU, whereU

are going to estimate, and present the laminar solutions. I the velocity of the top plate. For the magnetic field we use

Sec. lll we derive estimates for the energy stability boundype  “line-tied” boundary conditions, B(x, =d,z) =By,

aries. In Sec. IV we derive b_ounds for the energy.dissipati(_)r@\,here B, is the imposed cross-stream magnetic figBee

rate of the flows. A comparison of our results with experi-Ref, 20 for a discussion of the physical relevance of these

mental data is made in Sec. V, where we summarize angng other boundary conditions used for MBID.

conclude. We consider two problems with the configurations de-
picted in Fig. 1. For the first one, magnetic Couette flow, we
setF=0 andU #0. The setup for this problem is shown in
Fig. 1(@. We nondimensionalize lengths by (so ye

Il. FORMULATION [—1,1]) and velocities byJ. Three independent nondimen-

sional numbers emerge from this scaling: the Reynolds num-

ber
To investigate the influence of a cross-stream magnetic
field on shear flows, we consider a layer of an incompress- Re=— (4)
ible conducting fluid of densitp=1, constant kinematic vis- v
cosity », and constant magnetic diffusivitiresistivity) », e magnetic Reynolds number
confined between parallel rigid plates of sizg, L, located
at y=—d and y=d. The velocity field is designated by _U_d

v(X,y,2) =ivytjuy+kv,, and the magnetic field by Rim= 7’ ®

A. Preliminaries
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and the Hartmann number given by .

—eeeeeeee
Byd i iBc+jBy
Ha:= . (6) —
R/ —
—
We note that instead of the magnetic Reynolds number we — ——* ly
could equivalently use the magnetic Prandtl numBgf . x

=l n; the two are related bR,,=ReP,,.
For the second problem, that of Hartmann fldws=0 FIG. 2. Velocity profile and the magnetic field lines for magnetic Couette
andF=iF. This setup is shown in Fig.()). For this prob- flow.
lem again we use the length scale but the velocities are
now scaled by/Fd. The nondimensional numbers that result
are the Grashoff number, If we define the energy dissipation rate for the Hartmann
E flow problem as

GI’:Z—Q—, (7) o U_3

v D= _< (;(> &, (15

the magnetic Grashoff number,
Fqe we obtain the following relation between the two nondimen-

=— (8)  sional dissipations:

14

! : . b=y 2 (16)

and the Hartmann number given by H&). The magnetic ) o o ) )
Grashoff number and the magnetic Prandtl are related b@nally, the friction coefficientC; that is often measured in

G, =GrP,. experiments can be shown to be equalftin this scaling,
The time and space averaged total rate of energy dissi- Fd
pation, viscous plus Ohmic, for both problems is defined to  Cy:= == ¢. (17)
be (vy)
Di=v(|VV[*)+ 7(|VB[?), (9 B. Laminar solutions
where we introduce our notation for space averages, First we consider magnetic Couette flow. Equatiohs
1 L, L I and (2) have a laminar solution given by=iU. and B
f =—J' dxf dzf dy f 10 =iB¢+)Bg where
< > 2 dLXLZ 0 0 _d y ( ) cT]bo .
d i U U 14 sinh(Hay) 18
and time space averages, cly)= 0 m (18
_ 1 (T
(fy= IimTJ (f)dt. (11 and
T 00 U _,J cost{Ha) - costHay)
A nondimensional form of the dissipation rate can be defined Be(y) = 2 'm sinh(Ha) (19)
as
This flow reduces to ordinary Couette flow in the limit Ha
D U_3 12 —0. The laminar velocity and the magnetic field lines are
=q?¢ 12 shown in Fig. 2.
Th f this laminar flow is gi
for Couette flow and by e energy dissipation rate of this laminar flow is given
D=F32d¥2 (13 U® Ha

Dc=-— ——coth(Ha). 20
for Hartmann flow, where obtaining information about the € 4d Re hHa) (20

functions ¢ and ¢ is one of our main goals.

) Similarly, Hartmann flow has the laminar solution
Many works use the Reynolds number prescribed by the y

mean flow Re=(v,)d/v instead of the Grashoff number. A Un = \/—dG"m cost{Ha) —cost{Hay) 21
relationship between the Grashoff number and the Reynolds H Ha sinh(Ha)

number can be obtained by taking the scalar product of Eda

(1) with v and Eq.(2) with B, time and space averaging, and

then adding t@ together. This gives the energy conserva- B ﬁG%Z sinh(Hay) 09
tion equationF(v,)="D, where it is assumed that the energy H™Y" " Ha | sinhHa) 22

qf the ﬂO.W remains bounded in time a_nd consequ_ently theI'he laminar velocity and the magnetic field lines of this flow
time derivative term drops out upon time averaging. The

energy conservation equation can be rearranged to give oc shown in Fig. 3. Again the limit Ha 0 brings us back to
oy q 9 9 ordinary Poiseuille flow. The dissipation rate of this laminar

Re=y Gr'’2 (14)  solution is
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— . d(‘: ’ ’ !

E—»lUH a:<uxBOBb>+<beOUb>+<(bxby_uxuy)Ub>

—_—

E_» iBH+jB0 ’ 2 2

> +<(Uxby_uybx)Bb>_ 7]<|Vb| >_V<|Vu| >

—

: Iy ' + V<uxult;>+ 7(byBp) + (uxF), (29

> where many terms have dropped out due to the boundary

conditions(28).

|

FIG. 3. Velocity profile and the magnetic field lines for Hartmann flow.
Il. STABILITY

The stability or instability of a steady laminar flow de-
coth(Ha) — i _ (23) termines its realizability. The linear stability of the magnetic
Ha Couette and Hartmann laminar solutions can be investigated
y expanding about them, dropping the nonlinear terms in
26) and (27), assuming a dependence of the form
e”e’xtikZ for all fields, and solving the resulting eigen-
value problem fory. This problem has been investigated for
both the magnetic Couette and the Hartmann flows by
C. Background decomposition Takashima in Refs. 9 and 10. He examined a wide region of

A device that we are going to use throughout this pape};he parameter space (Rg,,Ha) and found for small mag-

. _ _8 . g
is to decompose the velocity and the magnetic fields intd'etic Prandtl numbersi,=10"") that the effective critical

steady background componeiits, andiB,, which depend Reynolds number is given by Re/Hal.8311x 10* for both

only on they coordinate, and perturbation fieldsand b, problem_f,. This number was shpwn to decrease as the.I?rar_ldtI

which depend on all space coordinates and time as foIIowsr:‘umber increases. The experimental value for instability is
two orders of magnitude smaller than Takashima’s result and

r1/ 2

Dy = F3dG
H™ Ha

The Reynolds number for the laminar flow can be obtaine
using Eqgs(14) and(23).

v=iU,(y)+u, (24) lies in the range 158 Re/Ha<250.
_ _ In this section we consider a different kind of stability,
B=iBy(y)+jBo+b, (25 so-called energyor nonlineay stability. Lingwood and Al-

whereB is constant. The background fields satisfy the Samé)oussiere in Ref. 11 fi_rst investi_g_at_eq the energy stabili_ty_of
boundary conditions as the fiel#sandB, but they need not the Hartmann layer with a semi-infinite dqr_nam in the limit
be equal to the laminar solutions of Sec. I B. The time evo-°f Small Prandtl number, and found a critical value of the
lution of the fieldsu andb are given, respectively, by effective Reynplds number of Re/H&6. T_h|s value is one
order of magnitude smaller than that obtained by experiment.
As Lingwood and Alboussiere note, this value should be in-
terpreted as a lower bound for instability to occur. We obtain
energy stability results for both magnetic Couette and Hart-
mann flows with extended parameter ranges, and for the sake
of comparison the linear stability of Hartmann flow has been

analyzed.

My Vu+U M i U
—TUu-vu — T+ IU
ot bgx YD

b b
:be_‘_Bb&—FIBOBbd}—BOW

+ibyBp+ v(iUp+ V2u) - VP +iF (26)
A. Energy stability

and
In order to investigate energy stability we suppose that

the two background fields if24) and (25) are either of the
magnetic Couette or Hartmann laminar solutions, i.e., we
supposeU,(y)=U,(y) and B,(y)=B,(y), wherel=C or

u H. Thus, Eqs(26) and(27) reduce to

Iy

A vbrU, 2 i B!
—+u-Vb+Up,—+
gt U by " 'UyBb

au

0"U au ) ,
+ibyUp+ 7(iBy+V2b), op g TuVutUig tiny,
where prime denotes differentiation with respecytdothu

b db
_ H ’ 2
andb satisfy the divergence-free constraint and the boundary ~ Y P ¥Bio  + BO@ +ibyBj +b-Vb+»Veu, (30)

conditions
b oo
u(x,+d,z)=0 andb(x,*+d,z)=0. (28  Zptu-Vb+U —— +iuB,
Taking the scalar product of E¢26) with u and (27) au ou
with b, adding, and then taking the space average we obtain =B;——+By— +ib,U/+b-Vu+ V2D, (31
the equation for the evolution @f:=(u?+b?)/2, an energy- X %
like quantity for the fluctuating fields, and Eq.(29) for £ can be written as
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FIG. 4. Critical Reynolds number for Couette flow as a function of Ha for

P,=1. The solid line is the numerical solution (&9) and the dashed lines
are the derived bounds ¢44) and(46). The bounds of Sec. Il B imply that
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100

Energy Unstable

Re/Ha

100

FIG. 5. Stability boundary for large Ha for Couette flow. The solid line is a
numerical solution for Ha& 100 and the dashed line is the derived bound of

the laminar solution is energy stable for points below either of the dashed46).

curves.
dé’_ Flu,b 32
a_ |[U, ]! ( )
where the functional
Filu,b]:=(v|Vul>+ 5| Vb|?+ (u,uy—byby)U{
+ (bxuy_ uxby) BII> (33)

is @ homogeneous quadratic formurandb that depends on
the laminar solution&), andB; .

Energy stability rests on the observation thatfifis a
strongly positive quadratic form, thehdecays exponentially
in time. Strong positivity off; means that there is a positive
number\ such that

Flub]=\E (34)

for all divergence-free vector fields and b satisfying the
boundary condition$28). If (34) is fulfilled then & satisfies
the inequality

d5< \E
a\

and according to Gronwall's lemma, this implies tisate-
cays at least exponentially, i.e.,

E(t)<&0)e M. (36)

The largest possible value dfthat satisfies Eq.34) is given
by

(39

We numerically solve for the stability boundary. Fourier
expanding inx and z and setting\ andk, to zero give an
eigenvalue problem for RB(,,Ha). The reason we sd,
=0 is because it can be shown that down stream rddjs (
=0) are local minima. It is believed, and assumed here, that
the global minima of interest also hakg=0. We solve the
resulting eigenvalue problem using a Chebyshev collocation
technique. The results are shown in Figs. 4, 5, and 6, where
they are compared with the explicit results obtained in the
next section.

B. Absolute stability

Without solving the variational problem for the energy
stability boundary in the parameter space, we may derive
explicit bounds on its location by analyzing the quadratic
form directly using various inequalities described in detail in
the Appendix. First we note that any divergence-free vector
field u that vanishes ag= + d satisfies Poincai®inequality

a

<|Vu|2>>s(2d)2<u2>,

wheres=3.757. .. for divergence-free fields ase 1 with-
out this constraint. The quadratic functionglu,b] can be
further restricted by using

(40

5, . —
_Flu,b] 104 Linearly Unstables"
N(ReRy Ha)=inf ==, @7 R Sk -
3 £
g . . 107 ¢ 3
where the infimum is taken over all divergence-free vector . 5[ Energy Unstable
fields u and b satisfying the boundary condition@8). Ef- A
fecting the minimization procedure leads to the following 10 NCH) S =a(47]
eigenvalue problem fox: ot e Tl
191 P et Energy Stable™~.
Re 1 V2u+ (iu,+ju,) U/ 12+ (jb,—iby) B/ /2= Vp=]\u, 10 Lt : : :
(38) 0.01  0.10 1.00 10.00 100.00
Ha

Ry 1V2b— (iby+jb,) U] 12+ (iu,—ju,) B/ /2— Vg=\b, (39)

FIG. 6. Critical Reynolds number for Hartmann flow as a function of Ha for

where p and q are Lagrange multipliers that impose the Pm=0.05. The solid line is the numerical solution @9), and the dashed

divergence-free condition for the two fields. The energy sta;

lines are the derived bounds @) and(47). The bounds of Sec. Il B imply
that the laminar solution is energy stable for points below either of the

bility boundary in the parameter space is given by thoSjashed curves. The dotted curve indicates the linear stability threshold ob-

values of ReR,,, and Ha where\(ReR,,,Ha)=0.

tained by numerical solution.
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by . u?> cb? a1 1Gz Ha+ 2 taniHa/2)|?
< u- >\Suq| |) E_'—T ’ ( ) E m Ha.2
wherec is an arbitrary positive number. Inequalittl) is %2‘@_ % i_ - - 1
valid for arbitrary fieldsu, b and any functionf. Applying HalHa sinh(Ha)
the Poincarénequality (40) to the dissipation terms aB3) Grl 1 1
and inequality(41) to the sign indeterminant terms gives R [P ——
quality(41) g g x| 2va- | o ShAa) | | (47)
m\? 1 c ) .
F=|vs 2d) Esuq|U,’|)— Esum B/|)[(u?) Figure 4 shows the critical Reynolds number for Couette

flow as a function of Ha foP,=1. The solid line is the
7\2 1 ) 1 ) ) numerically obtained result, which is compared with the two
E) —ESUF(|U| |)—%SUF(|B| D}(b )- derived bounds 0f44) and (46) (dashed lines Figure 5
shows the asymptotic behavior of the energy stability bound-
(42) ary for large Hartmann number, which is compared with the
, i ) . bound of (46). The asymptotic value for large,, is
The quadratic functionaF; is guaranteed to be strongly posi- R../Ha=24 and for smallP,, is Re/Ha=39. These results

tlvg |f.each term in th? square brackets is positive. Uporyigter from those of Ref. 11, which used insulating boundary
adjus_tmg the L_mdetermlned numberwe can show that the conditions as opposed to our line-tied conditions. Finally,
flow is stable if Fig. 6 shows the critical Reynolds number for Hartmann
2 4 flow (14) as a function of Ha foP,,=0.05. We note that
vs(l) — —sur(|U|’|)} unlike Couette flow, the critical Reynolds number is propor-
2d) 2 tional to Ha only in the range<<¥Ha<P_'. The reason is
that Hartmann flow has magnetic shear in the bulk of the
, (43)  fluid (not at the boundary layerthat can give rise to tearing
instabilities (see, for example, Ref. 20 and references
. therein. In liquid metal experiments this can only be ob-
8erved for Hartmann numbers of the order~He®. For
both flows the derived bounds seem to capture the depen-
dence of the stability boundary up to a prefactor of order less
than 10.
Energy stability is sufficient but not necessary for linear
or absolute stability, while linear stability is necessary but

+| s

1 2
ol =

X

m\% 1 ,
2d —ESUF(|U||)

pendently positive.
Applying the above result to Couette flow we obtain the
following condition for energy stability:

Ha? R2<[sm?— Re Ha cotliHa)]

X[sm2— Ry, Hacoti{Ha)]. (44)  not sufficient for absolute or energy stability. Thus, as de-
picted in Fig. 6(dotted ling, we expect the threshold for
Likewise, Hartmann flow is seen to be energy stable if linear Stabl|lty to lie above that for energy Stablllty This

linear threshold was obtained by numerically solving the ei-
G2[Ha cotl{Ha) — 1]12<Ha?[ s7%/2— Gr|[ sm2/2— G ). genvalue problem with the line-tied boundary conditions.

(49)

Although inequalitieg44) and (45) guarantedabsolute
energy stability, the regions in parameter space that they im-
ply have the unphysical property that for large Hartmann!V. BOUNDS ON THE ENERGY DISSIPATION RATE
number the Reynolds number must decrease like Rea.
The reason for this behavior is that our analysis did not take ~Next we turn to the derivation of bounds on the energy
in to account the boundary layers that would occur in anydissipation ratep or equivalentlyys. We use the decomposi-
physical realization. A complementary bound on the locatiorfions of (24) and (25) of Sec. IIC, but this time the back-
of the curve of marginal stability can be derived by focusingground fieldsU,(y) and By(y) are initially unspecified, to
on the behavior ofi andb near the boundaries. This analysis b€ chosen later to our advantage.

is carried out in the Appendix, where it is shown tifatis Using (9), (24), and (25) we write the space averaged
positive definite for Couette flow if energy dissipation rate as
1 2 taniHa/2) Ay
7 [ —— -R—— D=y |Vu|?+2U{ — +U/?
2R Ha sinh(Ha) <|4V2=Rn Ha v\ [Vul b gy b
tanh(Ha/2 b
X 4\/2—ReL (46) +n<|Vb|2+2Bg,—X+Bg,2>. (48
Ha ay
and for Hartmann flow if Dividing (48) by two and adding it tg29) gives
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d¢ D
a—i_ E:<uxBOBt,J>+<beOUt,)>+<(bxby_uxuy)Ul,J> A Ub(y)
’ v 2 U 2
+<(uxby_uybx)Bb>_§<|Vu| >_§<|Vb| >

un2

+ (U 5 By +(Fuy). (49

In (49) the first two terms are linear in the perturbed quanti-
ties, which is undesirable for our subsequent procedure. Thus 5 : 5
we remove them with the transformations . ' ' |

U=w=iVy(y), b=h=iHy(y), 0 @
whereV, andH,, satisfy A H,(y)
blY

Wi=BoB, and yH!=BoU}, (51) .

with the condition that they vanish at the boundary. Inserting
(50) into (49) results in

d¢ D / !
dt + 25~ + <(hxhy_Wny) Up) + <(thy_ h,awy) Bp)

' . v
—§<|VW|2>—E<|Vh|2>+ E(sz'f'vbz : 0 : Y
-d o-d d-o6 d

+ (B2 HZ)+ (Fuy). (52 ®)
FIG. 7. Panela shows the background field,(y) and panellb) shows
Upon time averaging52), the termdé&/dt vanishes and we  Ho(y), whereH :=Bq5/47.
are left with an expression for the time averaged rate of
dissipation,D.
For Couette flow, wher& =0, we obtain

In the next two sections we identify background fields that
make Q[ w,h] a strongly positive functional and thus deter-
5C:Db_ éb, (53) mine the bounds on the time average energy dissipation rates
of the two flows.
where

= [VWIR + 2(|VhI2) = 2¢(h.ho— Wow ) U/ A. Bounds on the dissipation rate of the magnetic
Op V<| | > 77<| | > <( xMy X y) b Couette flow

+(wyhy—h,wy)By) (54 The form of Q, suggest8,=0 as the natural choice for

the background magnetic field. This choice gives the small-
est possible background dissipation and decreases the abso-
lute size of the sign indeterminant term . For U, we
Dy=(U2+ V2 + p(BL2+HL?) (55  choose the piecewise linear profile

is a functional only of the background fields. For Hartmann (U26)(d+y) if —dsy<-—d+34,
flow (52) can be written as Up(y)=4{ U2 if —d+ésy=d—4, (59

(U/26)(d—y) if d—o<y=d,

is a quadratic functional ofr andh that depends obJy, and
By, and

Dy=2F(Up)—Dy+ Qp, (56)
which is shown in Fig. @). Here § is a free parameter that

where we used the identitv) =(iUy) +(iuy). will be determined later.

The remaining analysis rests on the fact that if we find  From (51) and the boundary conditions we see thigt
two background field&J,,, B, such thatQ,, is positive defi- =g and
nite, then the following inequalities hold for the two flows: B

o[ : '

5p, sn = [ Ty upay, (60
and which is shown in Fig. ).

o With the above choices, the dissipation of the back-

Dy=2F(Up)—D,. (58  ground fields,D,, is found to be
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FIG. 8. Upper bound on dissipation rate for Couette flow as a function of HaF|G. 9. Upper bound on dissipation rate for Couette flow as a function of Re
for different Prandtl numbers. The dashed line shows the dissipation of theyr different values of Ha. The Prandtl numbRg,=1 for all cases.

laminar solution. The Reynolds number-R&0 000 for all cases.

. 4 min{y,7}Bg
wU2(1  B2s T —m,
Dp=—r —+—). (61) o
4d \ 6 3wy . )
then Do — 2 us | min{v, 7} ByU 66
Note, D, obtains its minimum value foémm=\/377v/Boz, en Pe= min{v, n} 16d 7 3d (66)
giving min{D,} =UBy/(3v3d). o .
Now we focus on the quadratic ter@, and try to de- or in dimensionless form
termine the values of the free paramesdhat make it posi- if 4 Ha<v3 maxRe Ry},
tive definite. Formally, we wish to minimiz€,,, and this 1 1 He?
leads to an eigenvalue problem similar to that of our stability  then ¢o< —maxP, L+ =—————— (67)
16 ™ 3 RemaXR,,,Re’

analysis of Sec. Ill, which we would have to solve numeri-

cally. Instead of following this procedure, here we obtainywherev3<Ha and AKma){ReRm} is assumed in the above
estimates for the values @fthat guarantee the positivity of nequalities so thad<d is guaranteed.

Qy, similar to the ones derived in Sec. Il B. Using the fun- In the first inequality(65) we have shown that for large
damental theorem of calculus and the Cauchy—Schwartz inenough magnetic field the dissipation is bounded by a func-
equality it is shown in the Appendix th&,, is positive defi-  tion with the same dependence on Re and Ha as that of the

nite if laminar case. The prefactor has only a 15% difference. This
gives an indication that the flow should be close to the lami-
min v, 7} — U_520. 62 har solution which can be_ ve_rified at Iea_st in_ the large Ha

' 4 limit from (45). This behavior is exhibited in Figs. 8 and 9.

On the other hand, if the magnetic field is not strong
enough (H&Re), then as shown in Fig. 8 for small Ha and
in Fig. 10 for large Re, the dissipation becomes independent
of the Reynolds number Re and depends only on the Prandtl
numberP,. This agrees with the bound found in Ref. 20 for
flows aligned with the magnetic field. Note that we have the
same behavior even if the initial magnetic field is zero. That
the bound increases with increasing Prandtl number is an

Therefore, Qp[w,h]=0 if we choose §<4 min{v,7}/U
=4d/maxXReR,}. This is the maximum value of that our
estimates allow, i.e.,

5$M:

U :Sg.- (63

The smallest value db,, consistent withQ, being positive is
obtained foré=min{dy,,d.d}. So we end up with our final

result for the Couette flow that 6, <5y We usedy;, to 106
evaluate the background dissipation. Therefore, 4
10°r P,,=10,000
4 min{v, 7B — u%B, [v 102+ _
Uy3vy 2v3d Y7 107 | \ P, =1
_2 L DN i
or in dimensionless form 10
1074t .
Ha -5 0 5 10
if 4Ha>v3maxXReR,}, then ¢c=< . (65 10 10 10 10
XRe Ry} b= e .

FIG. 10. Upper bound on dissipation rate for Couette flow as a function of
Re for different Prandtl numbers. The dashed line depicts the dissipation rate
for the laminar solution. The Hartmann number=HED for all cases.

On the other hand, ib,,,>do We are forced to uség in the
evaluation of the background dissipation. Therefore
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A U, bounds below[viz. —39G~%(32H&) in Eq. (71) and
—2[1—Ha/(4 maXGr,G,,}) /maXGr2 G¥2 in Eq. (73)].
The last expression ab69) takes its maximum value when
U ' 8= Spmin=\3v5/Bg andU = U ,,:=(V3/2) (Fd/Bg) V7! v.
Now we turn to the quadratic ter@,, and try to deter-
mine the constraints odandU. The calculation is identical
to that for Couette flow and givesQ,=0 if U§
<2 min{r,7}=(Ud)q. Thus, we need only find the values of
U and § that give the maximum possible value ofF @J)
—D, without violating the constrain@,=0. If U ,,nmin
y - <(Ud)q, then the obvious choices far and s areU ,;, and
Smin» respectively. Therefore,

d é-d

@ ) 3Fdy ]
if Umin‘smin:W$2 min{v, 7},
0

— V3Fd [y
then Dy= 2B, e (70

B.(y)

or in dimensionless form

| V3 Gri2

if 3max{Gr,G,,)<4 H&, then V=5 (71)

wherev3<Ha is assumed again so thétd. If the condi-
tion U mindmin<(Ud)q is violated then we have to maximize
() 2F(U,)—D, over U and &, with the constraintUs
=(Ud)q. After some algebra we obtain

FIG. 11. Panela) shows the background field,(y) and panelb) shows
Hi(y).

.f3Fn> .
i 482 =min{v, n},

interesting result, yet at present we do not know if it is due to

the fact that our estimates are not sharp o if there exists a _— _ 8Vd - BEmin{v, 7}\**  [min{v, 7}
physical mechanism for the increase of the dissipation. en Pn= 3v3 3y v

(72
B. Bounds on the dissipation of Hartmann flow or in dimensionless form
The procedure for Hartmann flow is similar. Again we .
make the natural choice for the background magnetic field it 3 Max{Gr,Gp}=4 He,
B,=0. ForU,, we use the piecewise linear profile 8 He? 3
(U/8)(d+y) if —dsy<-d+34, then yr,= %(1— m) min{1,P,, ",
Up(y)=9q U if —d+dsy=d-y, (68) (73

(U79)(d=y) it d=d<y=d, where the extra condition 6&ZmaxXGr,G,,} is assumed so
whereU and § are free parameters. The background fieldsthat 5<d.

U,(y) andH(y) are shown in Figs. X&) and 11b), respec- As in the Couette case, for strong enough magnetic field
tively. Evaluating the background dissipation af¢U,) we  the first inequality(71) indicates that the bound is very close
get (within 15%) of the laminar dissipation rate. On the other
s U2/ d hand, for small enough magnetic fields the bound on the
2F<Ub)—Db:2FU—FU(—>—V—2<—) dissipation becomes independent of Ha and Gr, and de-
d d= \é creases as the inverse square root of the Prandtl number for
B2U2[2/ § 512 P,>1. This result is not in contradiction with the related
i _(_) - (_) } result for Couette flow which has a linear increase with the
2n [3l2d 2d Prandtl number. The reason for the difference lies in the defi-

U2/ d BSUZ 5 nition of the dimensionless dissipation. If we usg instead
~2ru- (55 14

35" 3,13 (69  of ¢y, as given by Eq(16), the lower bound becomes an

n upper bound and we obtain the same scaling with the Prandtl
For convenience, we have dropped the teffi$s/d and  number. Figures 12, 13, and 14 summarize these results for
B3U26%/87d?, which lead to additional small terms in the Hartmann flow.
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FIG. 12. Lower bound on the dissipation rate for Hartmann flow as a funcIG. 14. Lower bound on the dissipation rate for Hartmann flow as a func-
tion of Ha for different Prandtl numbers. The dashed line shows the dissition of Gr for different values of Ha wittP,=1 for all cases.
pation rate of the laminar solution. The Grashoff numbe+®® 000 for all

cases.
Finally we note that a number of unresolved issues re-
main. First, better estimates of the bounds in Sec. IV can be
V. DISCUSSION made by solving directly the eigenvalue problem. Further-

more, only energy constraints were used to restrict the dissi-

We have studied the energy stability boundary and proppation rate, and it would be interesting to investigate the
erties of the dissipation rate for two MHD flows with an possibility that the helicity and cross-helicity constraints
imposed cross-stream magnetic field, magnetic Couette flomight improve our results. Last, the relevance of the depen-
and Hartmann flow. The flows were determined to be energylence of the bound i67) and(73) with the Prandtl number
stable in the regions in the parameter space determined 3hould be further investigated, either in experiments or nu-
inequalities(44), (45), (46), and (47). The energy stability merical simulations.
equations were solved numerically and the same qualitative
behavior, up to a numerical prefactor, as that of the analytio ckNOWLEDGMENTS
results was obtained. We derived bounds on the dissipation . ] ) )
rates and determined their behavior at high Reynolds and Ve would like to acknowledge helpful discussions with
magnetic Reynolds numbers. One of our basic results is thdt Busse and R. Kerswell.
the dissipation tends to the laminar value if the magnetic ~ 1he hospitality and support of the 2002 GFD Summer
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Figure 15 shows a quantitative comparison of experi-Supported in part by US NSF Award PHY-9900635.

mental data from Ref. 5 with our bound. The data show

measurements of the drag coeffici€y that is equal tapy APPENDIX: PROOFS OF EQS. (46), (47), AND (62)

as a functlon of Ha/Re. Although there IS a two orders _Of For any functionf(x,y,z) that satisfiesf(x,—d,z)=0,

magnitude discrepency with our bound, which is not surpris-

: . we have from fundamental theorem of calculus
ing because of the rough estimates used, the bound appears

to capture the behavior of the dissipation up to a prefactor. y df(x,y’,z)
P pation up to a p iy.2- [ 200 ay (A1)
-4 9y
2
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e e P_=100 103
S 107 h — = ) 1 — 1
s, pa P.=10,00q 5 g
10 r 3 8_ 107 F L 3
1072 / . o'k 4 ]
-4 i ° ° >
19 g 109k ]
10" 0 5 10 1071
107 10 10 10 - - : ‘
Gr 1072 109 10?2 10t a0®
Ha/Re 10*

FIG. 13. Lower bound on the dissipation rate for Hartmann flow as a func-

tion of Gr for different Prandtl numbers. The dashed line shows the dissiFIG. 15. Drag coefficienC; as a function of Ha/Re. The diamonds are
pation rate of the laminar solution. The Hartmann number=H@ for all experimental data from Ref. 5 for R&x10°. The dashed line is the drag
cases. coefficient for the laminar solution and the solid line is the upper bound.
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Using the Schwartz inequality we can show that c +d/2| | d |2
, - = B/|| 5~y |dy|{|VDb|). (AB)
o |of(x,y',2)[2 |2 2] ' (2 )
A=yra| [ 12502 ay 82

- . . This functional is positive definite if each term in the square
and similarly for the upper boundaryt(d). Using the in- brakets is positive. Eliminating from the resulting inequali-

equality|ab| <a*/(2c) + cb?/2 for anyc>0 and combining ties and performing the integrations leads(4®) and (47).

the up_per_W|th thg lower p"%” of the domain we can pr.ove theAn identical calculation usinty, andB,, instead of the lami-
following inequality for a piece of the functional ¢83):

nar solutions for the functiona®,, leads to the result i(62).
2 2
(Ujuuy)y< L[ 98 c My EJO|U’|(d+y)dy
PEEYI= e gy ay | [2 ] 4! ’
(A3)
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