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Shear flow with an applied cross-stream magnetic field is studied using dissipative incompressible
magnetohydrodynamics. The study incorporates exact solutions, the energy stability method, and
exact bounds on the total energy dissipation rate. Two physical configurations are examined:
magnetic Couette flow and Hartmann flow, the latter being Poiseuille flow with the existence of a
perpendicular magnetic field. Explicit expressions are derived for energy stability regions in the
parameter space and these expressions are compared with numerically obtained results. For large
enough Reynolds numbers the energy dissipation rate is shown to be bounded by a function of the
magnetic Prandtl number. The bounds obtained on the dissipation rate are compared with
experimental results. ©2003 American Institute of Physics.@DOI: 10.1063/1.1613962#
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I. INTRODUCTION

Sheared flow of conducting fluids across magnetic fi
lines appears in many physical situations ranging from as
physical to industrial. For instance, accretion in stron
magnetized compact stars is assumed to take place in
polar caps, where the magnetic field is vertical with resp
to the surface of the star and the accreted material spr
along the surface perpendicular to the field lines. A sim
situation appears when the solar wind meets a magnet
object and the flow has to do work in bending the magne
field lines emanating from the object. In industry, cros
stream magnetic fields are used in production-line cry
growth to stabilize flow and to control the dopant distributi
of the final product. In metallurgy such fields are used a
dumping mechanism, and in fusion plasma devices a liq
metal blanket subject to a strong magnetic field is propo
for reactors. The above mentioned cases have the com
feature that a thin layer, known as the Hartmann layer
formed at the boundary even when the flow is laminar. T
stability as well as the properties of the dissipation rate
both the laminar and the turbulent Hartmann layer are imp
tant for the subsequent evolution of the astrophysical s
tems, and the same is true for the control in the indust
applications.

Among the first to examine the effect of a cross-stre
magnetic field on shear flow, both theoretically and expe
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mentally, was Hartmann~see Refs. 1 and 2!. Hartmann
showed that the magnetohydrodynamic~MHD! equations
support laminar solutions that exhibit boundary layer str
ture, and he carried out experiments with flowing liquid m
als in rectangular ducts, so-called Hartmann flow. The inv
tigation of Hartmann flow has been further extend
experimentally by many researchers~e.g., Refs. 3–6!. One of
the primary quantities that has been measured is the de
dence of the friction coefficient on the magnetic field, whi
~as shown below! is a function of the total energy dissipatio
rate. Furthermore, experimental results indicate that the c
cal Reynolds number, above which the flow becomes tur
lent, is in the range 150,Re/Ha,250, where Re and Ha ar
the Reynolds and Hartmann numbers, respectively@see Eqs.
~4! and~6! below#. The ratio Re/Ha can be interpreted as
effective Reynolds number inside the Hartmann layer Ref
This is because the thickness of a Hartmann layer scale
d/Ha, which when used as the length scale in the Reyno
number givesUd/Ha/n5Re/Ha.

The linear stability of both Hartmann flow, which i
sometimes called magnetic Poiseuille flow, and magn
Couette flow, has been investigated in Refs. 8–10. In Ref
and 10 the critical Reynolds number for linear instability w
found to be Re/Ha548 311, which is much higher than wha
is observed experimentally. This led Lingwood and Albou
siere in Ref. 11 to examine the so-called energy stability
the Hartmann layer. They found that the Hartmann layer
small Prandtl numbers is energy stable when Re/Ha,26.

Due to the fact that both the Couette and Hartmann la
nar ~equilibrium! solutions are not trivial, both the linea
4 © 2003 American Institute of Physics
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stability and the energy stability equations must be sol
numerically. This restricts the range in the parameter sp
that can be examined, especially since these flows have t
independent nondimensional numbers. Furthermore,
analysis of Ref. 11 is restricted to small Prandtl numbers
using an approximation of the MHD equations that is app
cable to liquid metals (Pm;1026) and moderate magneti
fields, but not to plasmas (Pm;1026– 1016) or strong mag-
netic fields. In the present paper we give estimates of
energy stability boundaries of the two types of Hartmann a
magnetic Couette flows examined in Refs. 9 and 10, and
compare with numerical results.

Furthermore we derive bounds on the energy dissipa
rate of the two aforementioned flows, when the flow is in t
turbulent regime. The procedure for bounding such quanti
has been developed considerably in recent years. Two m
approaches exist, both of which incorporate a splitting of
velocity and magnetic fields into two components, a ba
ground field and a perturbation field. The main difference
the approaches lies in the extremizing procedures. The
approach uses a mean field in the manner of Reynolds
composition, and was first formulated and carried out s
cessfully by Howard in Refs. 12 and 13 and applied wid
and effectively by Busse~see, for example, Ref. 14!. In
plasma physics in the context of MHD it was used in Re
15–17. In the second approach, the one we adopt here
background field plays a more central role in the variatio
procedures. This method, which is called thebackground
method, was developed by Doering and Constantin in Re
18 and 19. The background method has close ties to en
stability theory and it too has been applied to a number
fluid problems. Here and in a companion paper~Ref. 20! the
background method is used for the first time in plasma ph
ics. The companion paper can be consulted for further
cussion of the background method and additional referen
We note, Kerswell in Ref. 21 has elucidated a formal ma
ematical connection between these two approaches for
case of driven shear flows.

The present paper is structured as follows. In Sec. II
describe the problems to be studied, define the quantities
are going to estimate, and present the laminar solutions
Sec. III we derive estimates for the energy stability boun
aries. In Sec. IV we derive bounds for the energy dissipa
rate of the flows. A comparison of our results with expe
mental data is made in Sec. V, where we summarize
conclude.

II. FORMULATION

A. Preliminaries

To investigate the influence of a cross-stream magn
field on shear flows, we consider a layer of an incompre
ible conducting fluid of densityr[1, constant kinematic vis
cosity n, and constant magnetic diffusivity~resistivity! h,
confined between parallel rigid plates of sizeLx , Lz located
at y52d and y5d. The velocity field is designated b
v(x,y,z)5 ivx1 jvy1kvz , and the magnetic field by
Downloaded 28 Sep 2007 to 192.54.174.116. Redistribution subject to AIP
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B(x,y,z)5 iBx1 jBy1kBz , where bothv and B are mea-
sured in units of velocity. The system is assumed to be g
erned by MHD equations,

]v

]t
1v•¹v52¹P1B•¹B1n¹2v1F, ~1!

where Pªp1B2/2, with p being the hydrodynamic pres
sure, andF is an applied force,

]B

]t
1v•¹B5B•¹v1h¹2B, ~2!

and the divergence-free constraints,

¹•v50, ¹•B50. ~3!

We assume periodic boundary conditions in thex andz
directions for all fields. For they direction we use no slip for
the velocity fieldv(x,2d,z)50 andv(x,d,z)5 iU, whereU
is the velocity of the top plate. For the magnetic field we u
the ‘‘line-tied’’ boundary conditions, B(x,6d,z)5 jB0 ,
whereB0 is the imposed cross-stream magnetic field.~See
Ref. 20 for a discussion of the physical relevance of th
and other boundary conditions used for MHD.!

We consider two problems with the configurations d
picted in Fig. 1. For the first one, magnetic Couette flow,
setF50 andUÞ0. The setup for this problem is shown i
Fig. 1~a!. We nondimensionalize lengths byd ~so yP
@21,1#) and velocities byU. Three independent nondimen
sional numbers emerge from this scaling: the Reynolds n
ber

Reª
Ud

n
, ~4!

the magnetic Reynolds number

Rmª
Ud

h
, ~5!

FIG. 1. Panel~a! shows the setup for magnetic Couette flow and panel~b!
shows the setup for Hartmann flow.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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4326 Phys. Plasmas, Vol. 10, No. 11, November 2003 Alexakis et al.
and the Hartmann number given by

Haª
B0d

Anh
. ~6!

We note that instead of the magnetic Reynolds number
could equivalently use the magnetic Prandtl numberPm

5n/h; the two are related byRm5RePm.
For the second problem, that of Hartmann flow,U50

andF5 iF. This setup is shown in Fig. 1~b!. For this prob-
lem again we use the length scaled, but the velocities are
now scaled byAFd. The nondimensional numbers that res
are the Grashoff number,

Grª
Fd3

n2 , ~7!

the magnetic Grashoff number,

Gmª
Fd3

nh
, ~8!

and the Hartmann number given by Eq.~6!. The magnetic
Grashoff number and the magnetic Prandtl are related
Gm5Gr Pm .

The time and space averaged total rate of energy d
pation, viscous plus Ohmic, for both problems is defined
be

D̄ªn^u¹vu2&1h^u¹Bu2&, ~9!

where we introduce our notation for space averages,

^ f &5
1

2 dLxLz
E

0

Lx
dxE

0

Lz
dzE

2d

1d

dy f ~10!

and time space averages,

^ f &5 lim
T→`

1

T E
0

T

^ f &dt. ~11!

A nondimensional form of the dissipation rate can be defin
as

D̄5
U3

d
f ~12!

for Couette flow and

D̄5F3/2d1/2c ~13!

for Hartmann flow, where obtaining information about t
functionsf andc is one of our main goals.

Many works use the Reynolds number prescribed by
mean flow Reª^vx&d/n instead of the Grashoff number.
relationship between the Grashoff number and the Reyn
number can be obtained by taking the scalar product of
~1! with v and Eq.~2! with B, time and space averaging, an
then adding them together. This gives the energy conse
tion equationF^vx&5D̄, where it is assumed that the ener
of the flow remains bounded in time and consequently
time derivative term drops out upon time averaging. T
energy conservation equation can be rearranged to give

Re5c Gr1/2. ~14!
Downloaded 28 Sep 2007 to 192.54.174.116. Redistribution subject to AIP
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If we define the energy dissipation rate for the Hartma
flow problem as

D̄5
^vx&

3

d
f, ~15!

we obtain the following relation between the two nondime
sional dissipations:

f5c22. ~16!

Finally, the friction coefficientCf that is often measured in
experiments can be shown to be equal tof in this scaling,

Cfª
Fd

^vx&
2

5f. ~17!

B. Laminar solutions

First we consider magnetic Couette flow. Equations~1!
and ~2! have a laminar solution given byv5 iUC and B
5 iBC1 jB0 where

UC~y!5
U

2 F11
sinh~Hay!

sinh~Ha! G ~18!

and

BC~y!5
U

2
Pm

1/2Fcosh~Ha!2cosh~Hay!

sinh~Ha! G . ~19!

This flow reduces to ordinary Couette flow in the limit H
→0. The laminar velocity and the magnetic field lines a
shown in Fig. 2.

The energy dissipation rate of this laminar flow is giv
by

DC5
U3

4d

Ha

Re
coth~Ha!. ~20!

Similarly, Hartmann flow has the laminar solution

UH5AFd
Gr1/2

Ha Fcosh~Ha!2cosh~Hay!

sinh~Ha! G ~21!

and

BH5AFd
Gm

1/2

Ha Fsinh~Hay!

sinh~Ha!
2yG . ~22!

The laminar velocity and the magnetic field lines of this flo
are shown in Fig. 3. Again the limit Ha→0 brings us back to
ordinary Poiseuille flow. The dissipation rate of this lamin
solution is

FIG. 2. Velocity profile and the magnetic field lines for magnetic Coue
flow.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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D̄H5AF3d
Gr1/2

Ha Fcoth~Ha!2
1

HaG . ~23!

The Reynolds number for the laminar flow can be obtain
using Eqs.~14! and ~23!.

C. Background decomposition

A device that we are going to use throughout this pa
is to decompose the velocity and the magnetic fields i
steady background componentsiUb and iBb , which depend
only on they coordinate, and perturbation fieldsu and b,
which depend on all space coordinates and time as follo

v5 iUb~y!1u, ~24!

B5 iBb~y!1 jB01b, ~25!

whereB0 is constant. The background fields satisfy the sa
boundary conditions as the fieldsv andB, but they need not
be equal to the laminar solutions of Sec. II B. The time e
lution of the fieldsu andb are given, respectively, by

]u

]t
1u•¹u1Ub

]u

]x
1 iuyUb8

5b•¹b1Bb

]b

]x
1 iB0Bb81B0

]b

]y

1 ibyBb81n~ iUb91¹2u!2¹P1 iF ~26!

and

]b

]t
1u•¹b1Ub

]b

]x
1 iuyBb8

5b•¹u1Bb

]u

]x
1 iB0Ub81B0

]u

]y

1 ibyUb81h~ iBb91¹2b!, ~27!

where prime denotes differentiation with respect toy. Bothu
andb satisfy the divergence-free constraint and the bound
conditions

u~x,6d,z!50 and b~x,6d,z!50. ~28!

Taking the scalar product of Eq.~26! with u and ~27!
with b, adding, and then taking the space average we ob
the equation for the evolution ofEª^u21b2&/2, an energy-
like quantity for the fluctuating fields,

FIG. 3. Velocity profile and the magnetic field lines for Hartmann flow
Downloaded 28 Sep 2007 to 192.54.174.116. Redistribution subject to AIP
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5^uxB0Bb8&1^bxB0Ub8&1^~bxby2uxuy!Ub8&

1^~uxby2uybx!Bb8&2h^u¹bu2&2n^u¹uu2&

1n^uxUb9&1h^bxBb9&1^uxF&, ~29!

where many terms have dropped out due to the bound
conditions~28!.

III. STABILITY

The stability or instability of a steady laminar flow de
termines its realizability. The linear stability of the magne
Couette and Hartmann laminar solutions can be investiga
by expanding about them, dropping the nonlinear terms
~26! and ~27!, assuming a dependence of the for
egteikxx1 ikzz for all fields, and solving the resulting eigen
value problem forg. This problem has been investigated f
both the magnetic Couette and the Hartmann flows
Takashima in Refs. 9 and 10. He examined a wide region
the parameter space (Re,Pm,Ha) and found for small mag
netic Prandtl numbers (Pm51028) that the effective critical
Reynolds number is given by Re/Ha.4.83113104 for both
problems. This number was shown to decrease as the Pr
number increases. The experimental value for instability
two orders of magnitude smaller than Takashima’s result
lies in the range 150,Re/Ha,250.

In this section we consider a different kind of stabilit
so-called energy~or nonlinear! stability. Lingwood and Al-
boussiere in Ref. 11 first investigated the energy stability
the Hartmann layer with a semi-infinite domain in the lim
of small Prandtl number, and found a critical value of t
effective Reynolds number of Re/Ha526. This value is one
order of magnitude smaller than that obtained by experim
As Lingwood and Alboussiere note, this value should be
terpreted as a lower bound for instability to occur. We obt
energy stability results for both magnetic Couette and H
mann flows with extended parameter ranges, and for the s
of comparison the linear stability of Hartmann flow has be
analyzed.

A. Energy stability

In order to investigate energy stability we suppose t
the two background fields in~24! and ~25! are either of the
magnetic Couette or Hartmann laminar solutions, i.e.,
supposeUb(y)5Ul(y) and Bb(y)5Bl(y), where l 5C or
H. Thus, Eqs.~26! and ~27! reduce to

]u

]t
1u•¹u1Ul

]u

]x
1 iuyUl8

52¹P1Bl

]b

]x
1B0

]b

]y
1 ibyBl81b•¹b1n¹2u, ~30!

]b

]t
1u•¹b1Ul

]b

]x
1 iuyBl8

5Bl

]u

]x
1B0

]u

]y
1 ibyUl81b•¹u1h¹2b, ~31!

and Eq.~29! for E can be written as
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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dE
dt

52Fl@u,b#, ~32!

where the functional

Fl@u,b#ª^nu¹uu21hu¹bu21~uxuy2bxby!Ul8

1~bxuy2uxby!Bl8& ~33!

is a homogeneous quadratic form inu andb that depends on
the laminar solutionsUl andBl .

Energy stability rests on the observation that ifFl is a
strongly positive quadratic form, thenE decays exponentially
in time. Strong positivity ofFl means that there is a positiv
numberl such that

Fl@u,b#>lE ~34!

for all divergence-free vector fieldsu and b satisfying the
boundary conditions~28!. If ~34! is fulfilled thenE satisfies
the inequality

dE
dt

<2lE ~35!

and according to Gronwall’s lemma, this implies thatE de-
cays at least exponentially, i.e.,

E~ t !<E~0!e2lt. ~36!

The largest possible value ofl that satisfies Eq.~34! is given
by

l~Re,Rm ,Ha!5 inf
Fl@u,b#

E , ~37!

where the infimum is taken over all divergence-free vec
fields u and b satisfying the boundary conditions~28!. Ef-
fecting the minimization procedure leads to the followi
eigenvalue problem forl:

Re21 ¹2u1~ iuy1 jux!Ul8/21~ jbx2 iby!Bl8/22¹p5lu,
~38!

Rm
21¹2b2~ iby1 jbx!Ul8/21~ iuy2 jux!Bl8/22¹q5lb, ~39!

where p and q are Lagrange multipliers that impose th
divergence-free condition for the two fields. The energy s
bility boundary in the parameter space is given by tho
values of Re,Rm , and Ha wherel(Re,Rm,Ha)50.

FIG. 4. Critical Reynolds number for Couette flow as a function of Ha
Pm51. The solid line is the numerical solution of~39! and the dashed lines
are the derived bounds of~44! and~46!. The bounds of Sec. III B imply that
the laminar solution is energy stable for points below either of the das
curves.
Downloaded 28 Sep 2007 to 192.54.174.116. Redistribution subject to AIP
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We numerically solve for the stability boundary. Fouri
expanding inx and z and settingl and kx to zero give an
eigenvalue problem for Re(Rm,Ha). The reason we setkx

50 is because it can be shown that down stream rollskx

50) are local minima. It is believed, and assumed here,
the global minima of interest also havekx50. We solve the
resulting eigenvalue problem using a Chebyshev colloca
technique. The results are shown in Figs. 4, 5, and 6, wh
they are compared with the explicit results obtained in
next section.

B. Absolute stability

Without solving the variational problem for the energ
stability boundary in the parameter space, we may de
explicit bounds on its location by analyzing the quadra
form directly using various inequalities described in detail
the Appendix. First we note that any divergence-free vec
field u that vanishes aty56d satisfies Poincare´’s inequality

^u¹uu2&>sS p

2dD 2

^u2&, ~40!

wheres53.757 . . . for divergence-free fields ands51 with-
out this constraint. The quadratic functionalFl@u,b# can be
further restricted by using

r

d

FIG. 5. Stability boundary for large Ha for Couette flow. The solid line is
numerical solution for Ha5100 and the dashed line is the derived bound
~46!.

FIG. 6. Critical Reynolds number for Hartmann flow as a function of Ha
Pm50.05. The solid line is the numerical solution of~39!, and the dashed
lines are the derived bounds of~45! and~47!. The bounds of Sec. III B imply
that the laminar solution is energy stable for points below either of
dashed curves. The dotted curve indicates the linear stability threshold
tained by numerical solution.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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^ f u"b&<sup~ u f u! K u2

2c
1

cb2

2 L , ~41!

wherec is an arbitrary positive number. Inequality~41! is
valid for arbitrary fieldsu, b and any functionf . Applying
the Poincare´ inequality ~40! to the dissipation terms of~33!
and inequality~41! to the sign indeterminant terms gives

Fl>FnsS p

2dD 2

2
1

2
sup~ uUl8u!2

c

2
sup~ uBl8u!G^u2&

1FhsS p

2dD 2

2
1

2
sup~ uUl8u!2

1

2c
sup~ uBl8u!G^b2&.

~42!

The quadratic functionalFl is guaranteed to be strongly pos
tive if each term in the square brackets is positive. Up
adjusting the undetermined numberc, we can show that the
flow is stable if

F1

2
sup~ uBl8u!G2

<FnsS p

2dD 2

2
1

2
sup~ uUl8u!G

3FhsS p

2dD 2

2
1

2
sup~ uUl8u!G , ~43!

where each of the terms in square brackets has to be i
pendently positive.

Applying the above result to Couette flow we obtain t
following condition for energy stability:

Ha2 Rm
2 <@sp22Re Ha coth~Ha!#

3@sp22Rm Ha coth~Ha!#. ~44!

Likewise, Hartmann flow is seen to be energy stable if

Gm
2 @Ha coth~Ha!21#2<Ha2@sp2/22Gr#@sp2/22Gm#.

~45!

Although inequalities~44! and~45! guarantee~absolute!
energy stability, the regions in parameter space that they
ply have the unphysical property that for large Hartma
number the Reynolds number must decrease like Re;1/Ha.
The reason for this behavior is that our analysis did not t
in to account the boundary layers that would occur in a
physical realization. A complementary bound on the locat
of the curve of marginal stability can be derived by focusi
on the behavior ofu andb near the boundaries. This analys
is carried out in the Appendix, where it is shown thatFl is
positive definite for Couette flow if

2Rm
2 F 1

Ha
2

1

sinh~Ha!G
2

<F4&2Rm

tanh~Ha/2!

Ha G
3F4&2Re

tanh~Ha/2!

Ha G ~46!

and for Hartmann flow if
Downloaded 28 Sep 2007 to 192.54.174.116. Redistribution subject to AIP
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1

2
Gm

2 FHa12 tanh~Ha/2!

Ha2 G2

<F2&2
Gm

Ha S 1

Ha
2

1

sinh~Ha! D G
3F2&2

Gr

HaS 1

Ha
2

1

sinh~Ha! D G . ~47!

Figure 4 shows the critical Reynolds number for Coue
flow as a function of Ha forPm51. The solid line is the
numerically obtained result, which is compared with the tw
derived bounds of~44! and ~46! ~dashed lines!. Figure 5
shows the asymptotic behavior of the energy stability bou
ary for large Hartmann number, which is compared with t
bound of ~46!. The asymptotic value for largePm is
Rm /Ha524 and for smallPm is Re/Ha539. These results
differ from those of Ref. 11, which used insulating bounda
conditions as opposed to our line-tied conditions. Fina
Fig. 6 shows the critical Reynolds number for Hartma
flow ~14! as a function of Ha forPm50.05. We note that
unlike Couette flow, the critical Reynolds number is prop
tional to Ha only in the range 1!Ha!Pm

21 . The reason is
that Hartmann flow has magnetic shear in the bulk of
fluid ~not at the boundary layers! that can give rise to tearing
instabilities ~see, for example, Ref. 20 and referenc
therein!. In liquid metal experiments this can only be o
served for Hartmann numbers of the order Ha;106. For
both flows the derived bounds seem to capture the dep
dence of the stability boundary up to a prefactor of order l
than 10.

Energy stability is sufficient but not necessary for line
or absolute stability, while linear stability is necessary b
not sufficient for absolute or energy stability. Thus, as d
picted in Fig. 6~dotted line!, we expect the threshold fo
linear stability to lie above that for energy stability. Th
linear threshold was obtained by numerically solving the
genvalue problem with the line-tied boundary conditions.

IV. BOUNDS ON THE ENERGY DISSIPATION RATE

Next we turn to the derivation of bounds on the ener
dissipation ratef or equivalentlyc. We use the decomposi
tions of ~24! and ~25! of Sec. II C, but this time the back
ground fieldsUb(y) and Bb(y) are initially unspecified, to
be chosen later to our advantage.

Using ~9!, ~24!, and ~25! we write the space average
energy dissipation rate as

D5n K u¹uu212Ub8
]ux

]y
1Ub8

2L
1h K u¹bu212Bb8

]bx

]y
1Bb8

2L . ~48!

Dividing ~48! by two and adding it to~29! gives
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dE
dt

1
D
2

5^uxB0Bb8&1^bxB0Ub8&1^~bxby2uxuy!Ub8&

1^~uxby2uybx!Bb8&2
n

2
^u¹uu2&2

h

2
^u¹bu2&

1
n

2
^Ub8

2&1
h

2
^Bb8

2&1^Fux&. ~49!

In ~49! the first two terms are linear in the perturbed quan
ties, which is undesirable for our subsequent procedure. T
we remove them with the transformations

u5w2 iVb~y!, b5h2 iHb~y!, ~50!

whereVb andHb satisfy

nVb95B0Bb8 and hHb95B0Ub8 , ~51!

with the condition that they vanish at the boundary. Insert
~50! into ~49! results in

dE
dt

1
D
2

51^~hxhy2wxwy!Ub8&1^~wxhy2hxwy!Bb8&

2
n

2
^u¹wu2&2

h

2
^u¹hu2&1

n

2
^Ub8

21Vb8
2&

1
h

2
^Bb8

21Hb8
2&1^Fux&. ~52!

Upon time averaging~52!, the termdE/dt vanishes and we
are left with an expression for the time averaged rate
dissipation,D̄.

For Couette flow, whereF50, we obtain

D̄C5Db2Q̄b , ~53!

where

Qbªn^u¹wu2&1h^u¹hu2&22^~hxhy2wxwy!Ub8

1~wxhy2hxwy!Bb8& ~54!

is a quadratic functional ofw andh that depends onUb and
Bb , and

Dbªn^Ub8
21Vb8

2&1h^Bb8
21Hb8

2& ~55!

is a functional only of the background fields. For Hartma
flow ~52! can be written as

D̄H52F^Ub&2Db1Q̄b , ~56!

where we used the identitŷv&5^ iUb&1^ iux&.
The remaining analysis rests on the fact that if we fi

two background fieldsUb , Bb such thatQb is positive defi-
nite, then the following inequalities hold for the two flows

D̄C<Db ~57!

and

D̄H>2F^Ub&2Db . ~58!
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In the next two sections we identify background fields th
makeQb@w,h# a strongly positive functional and thus dete
mine the bounds on the time average energy dissipation r
of the two flows.

A. Bounds on the dissipation rate of the magnetic
Couette flow

The form ofQb suggestsBb[0 as the natural choice fo
the background magnetic field. This choice gives the sm
est possible background dissipation and decreases the a
lute size of the sign indeterminant term ofQb . For Ub we
choose the piecewise linear profile

Ub~y!5H ~U/2d!~d1y! if 2d<y<2d1d,

U/2 if 2d1d<y<d2d,

~U/2d!~d2y! if d2d<y<d,

~59!

which is shown in Fig. 7~a!. Hered is a free parameter tha
will be determined later.

From ~51! and the boundary conditions we see thatVb

[0 and

Hb~y!5
B0

h E
0

y

@Ub~y8!2^Ub&#dy8, ~60!

which is shown in Fig. 7~b!.
With the above choices, the dissipation of the bac

ground fields,Db , is found to be

FIG. 7. Panel~a! shows the background fieldUb(y) and panel~b! shows
Hb(y), whereHªB0d/4h.
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Db5
nU2

4d S 1

d
1

B0
2d

3nh D . ~61!

Note, Db obtains its minimum value fordmin5A3hn/B0
2,

giving min$Db%5UB0 /(3)d).
Now we focus on the quadratic termQb and try to de-

termine the values of the free parameterd that make it posi-
tive definite. Formally, we wish to minimizeQb , and this
leads to an eigenvalue problem similar to that of our stabi
analysis of Sec. III, which we would have to solve nume
cally. Instead of following this procedure, here we obta
estimates for the values ofd that guarantee the positivity o
Qb , similar to the ones derived in Sec. III B. Using the fu
damental theorem of calculus and the Cauchy–Schwartz
equality it is shown in the Appendix thatQb is positive defi-
nite if

min$n,h%2
Ud

4
>0. ~62!

Therefore, Qb@w,h#>0 if we choose d<4 min$n,h%/U
54d/max$Re,Rm%. This is the maximum value ofd that our
estimates allow, i.e.,

d<
4 min$h,n%

U
5..dQ . ~63!

The smallest value ofDb consistent withQb being positive is
obtained ford5min$dmin ,dQ ,d%. So we end up with our fina
result for the Couette flow that ifdmin,dQ we usedmin to
evaluate the background dissipation. Therefore,

if
4 min$n,h%B0

UA3nh
.1, then D̄C<

U2B0

2)d
An

h
, ~64!

or in dimensionless form

if 4 Ha.) max$Re,Rm%, then fC<
Ha

2) Re
. ~65!

On the other hand, ifdmin.dQ we are forced to usedQ in the
evaluation of the background dissipation. Therefore

FIG. 8. Upper bound on dissipation rate for Couette flow as a function of
for different Prandtl numbers. The dashed line shows the dissipation o
laminar solution. The Reynolds number Re510 000 for all cases.
Downloaded 28 Sep 2007 to 192.54.174.116. Redistribution subject to AIP
y
-

n-

if
4 min$n,h%B0

UA3nh
,1,

then D̄C<
n

min$n,h%

U3

16d
1

min$n,h%

h

B0
2U

3d
~66!

or in dimensionless form

if 4 Ha,) max$Re,Rm%,

then fC<
1

16
max$Pm,1%1

1

3

Ha2

Re max$Rm ,Re%
, ~67!

where),Ha and 4,max$Re,Rm% is assumed in the abov
inequalities so thatd,d is guaranteed.

In the first inequality~65! we have shown that for large
enough magnetic field the dissipation is bounded by a fu
tion with the same dependence on Re and Ha as that o
laminar case. The prefactor has only a 15% difference. T
gives an indication that the flow should be close to the la
nar solution which can be verified at least in the large
limit from ~45!. This behavior is exhibited in Figs. 8 and 9

On the other hand, if the magnetic field is not stro
enough (Ha!Re), then as shown in Fig. 8 for small Ha an
in Fig. 10 for large Re, the dissipation becomes independ
of the Reynolds number Re and depends only on the Pra
numberPm . This agrees with the bound found in Ref. 20 f
flows aligned with the magnetic field. Note that we have t
same behavior even if the initial magnetic field is zero. Th
the bound increases with increasing Prandtl number is

a
e
FIG. 9. Upper bound on dissipation rate for Couette flow as a function of
for different values of Ha. The Prandtl numberPm51 for all cases.

FIG. 10. Upper bound on dissipation rate for Couette flow as a function
Re for different Prandtl numbers. The dashed line depicts the dissipation
for the laminar solution. The Hartmann number Ha510 for all cases.
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interesting result, yet at present we do not know if it is due
the fact that our estimates are not sharp or if there exis
physical mechanism for the increase of the dissipation.

B. Bounds on the dissipation of Hartmann flow

The procedure for Hartmann flow is similar. Again w
make the natural choice for the background magnetic fi
Bb[0. ForUb we use the piecewise linear profile

Ub~y!5H ~U/d!~d1y! if 2d<y<2d1d,

U if 2d1d<y<d2d,

~U/d!~d2y! if d2d<y<d,

~68!

whereU and d are free parameters. The background fie
Ub(y) andHb(y) are shown in Figs. 11~a! and 11~b!, respec-
tively. Evaluating the background dissipation andF^Ub& we
get

2F^Ub&2Db52FU2FUS d

dD2
nU2

d2 S d

d D
2

B0
2U2

2h F2

3 S d

2dD2S d

2dD 2G
.2FU2

nU2

d2 S d

d D2
B0

2U2

3h S d

dD . ~69!

For convenience, we have dropped the termsFUd/d and
B0

2U2d2/8hd2, which lead to additional small terms in th

FIG. 11. Panel~a! shows the background fieldUb(y) and panel~b! shows
Hb(y).
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bounds below@viz. 239 Gr1/2/(32 Ha2) in Eq. ~71! and
22@12Ha2/(4 max$Gr,Gm%)#/max$Gr1/2,Gm

1/2% in Eq. ~73!#.
The last expression of~69! takes its maximum value whe
d5dminªA3nh/B0 andU5Uminª()/2)(Fd/B0)Ah/n.

Now we turn to the quadratic termQb and try to deter-
mine the constraints ond andU. The calculation is identica
to that for Couette flow and givesQb>0 if Ud
<2 min$n,h%5(Ud)Q . Thus, we need only find the values o
U and d that give the maximum possible value of 2F^Ub&
2Db without violating the constraintQb>0. If Umindmin

<(Ud)Q , then the obvious choices forU andd areUmin and
dmin , respectively. Therefore,

if Umindmin5
3F dh

2B0
2 <2 min$n,h%,

then D̄H>
)F2d

2B0
Ah

n
, ~70!

or in dimensionless form

if 3 max$Gr,Gm%<4 Ha2, then cH>
)

2

Gr1/2

Ha
, ~71!

where),Ha is assumed again so thatd,d. If the condi-
tion Umindmin<(Ud)Q is violated then we have to maximiz
2F^Ub&2Db over U and d, with the constraint Ud
5(Ud)Q . After some algebra we obtain

if
3Fh

4B0
2 >min$n,h%,

then D̄H>
8Ad

3)
S F2

B0
2 min$n,h%

3h D 3/2Amin$n,h%

n
~72!

or in dimensionless form

if 3 max$Gr,Gm%>4 Ha2,

then cH>
8

3)
S 12

Ha2

3 max$Gr,Gm% D
3/2

min$1,Pm
21/2%,

~73!

where the extra condition 6/7,max$Gr,Gm% is assumed so
that d,d.

As in the Couette case, for strong enough magnetic fi
the first inequality~71! indicates that the bound is very clos
~within 15%! of the laminar dissipation rate. On the oth
hand, for small enough magnetic fields the bound on
dissipation becomes independent of Ha and Gr, and
creases as the inverse square root of the Prandtl numbe
Pm.1. This result is not in contradiction with the relate
result for Couette flow which has a linear increase with
Prandtl number. The reason for the difference lies in the d
nition of the dimensionless dissipation. If we usefH instead
of cH , as given by Eq.~16!, the lower bound becomes a
upper bound and we obtain the same scaling with the Pra
number. Figures 12, 13, and 14 summarize these results
Hartmann flow.
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V. DISCUSSION

We have studied the energy stability boundary and pr
erties of the dissipation rate for two MHD flows with a
imposed cross-stream magnetic field, magnetic Couette
and Hartmann flow. The flows were determined to be ene
stable in the regions in the parameter space determine
inequalities~44!, ~45!, ~46!, and ~47!. The energy stability
equations were solved numerically and the same qualita
behavior, up to a numerical prefactor, as that of the anal
results was obtained. We derived bounds on the dissipa
rates and determined their behavior at high Reynolds
magnetic Reynolds numbers. One of our basic results is
the dissipation tends to the laminar value if the magne
field is strong enough. If the magnetic field is not very stro
and the Reynolds number is large, then the bound is in
pendent of Re and Ha and scales as the first power of
Prandtl number ifPm.1. Otherwise, the bound is indepe
dent of the Prandtl number.

Figure 15 shows a quantitative comparison of expe
mental data from Ref. 5 with our bound. The data sh
measurements of the drag coefficientCf that is equal tofH

as a function of Ha/Re. Although there is a two orders
magnitude discrepency with our bound, which is not surp
ing because of the rough estimates used, the bound app
to capture the behavior of the dissipation up to a prefact

FIG. 12. Lower bound on the dissipation rate for Hartmann flow as a fu
tion of Ha for different Prandtl numbers. The dashed line shows the d
pation rate of the laminar solution. The Grashoff number Gr510 000 for all
cases.

FIG. 13. Lower bound on the dissipation rate for Hartmann flow as a fu
tion of Gr for different Prandtl numbers. The dashed line shows the d
pation rate of the laminar solution. The Hartmann number Ha510 for all
cases.
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Finally we note that a number of unresolved issues
main. First, better estimates of the bounds in Sec. IV can
made by solving directly the eigenvalue problem. Furth
more, only energy constraints were used to restrict the di
pation rate, and it would be interesting to investigate
possibility that the helicity and cross-helicity constrain
might improve our results. Last, the relevance of the dep
dence of the bound in~67! and~73! with the Prandtl number
should be further investigated, either in experiments or
merical simulations.
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APPENDIX: PROOFS OF EQS. „46…, „47…, AND „62…

For any functionf (x,y,z) that satisfiesf (x,2d,z)50,
we have from fundamental theorem of calculus

f ~x,y,z!5E
2d

y ] f ~x,y8,z!

]y8
dy8. ~A1!

-
i-

-
i-

FIG. 14. Lower bound on the dissipation rate for Hartmann flow as a fu
tion of Gr for different values of Ha withPm51 for all cases.

FIG. 15. Drag coefficientCf as a function of Ha/Re. The diamonds a
experimental data from Ref. 5 for Re553105. The dashed line is the drag
coefficient for the laminar solution and the solid line is the upper bound
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Using the Schwartz inequality we can show that

u f u<Ay1dS E
2d

0 U] f ~x,y8,z!

]y8
U2

dy8D 1/2

~A2!

and similarly for the upper boundary (1d). Using the in-
equality uabu<a2/(2c)1cb2/2 for anyc.0 and combining
the upper with the lower part of the domain we can prove
following inequality for a piece of the functional of~33!:

^Ul8uxuy&< K 1

c S ]ux

]y D 2

1cS ]uy

]y D 2L 1

2 E2d

0

uUl8u~d1y!dy,

~A3!

where we have used the fact thatuUl8u is a symmetric func-
tion. A similar result follows forBl8 and all the combinations
of the fieldsux , uy , bx , andby . The divergence-free con
dition, some integration by parts, and application of t
Schwartz inequality imply

K S ]uy

]y D 2L < K S ]ux

]x D 2

1S ]ux

]z D 2

1S ]uz

]x D 2

1S ]uz

]z D 2L .

~A4!

Usingc51/& for the^(uxuy2bxby)Ul8& term, we can show
the following inequality for the functionalFl of ~33!:

Fl>Fn2
1

2&
E

0

1d/2

uUl8uS d

2
2yDdy

2
1

2c E0

1d/2

uBl8uS d

2
2yDdyG ^u¹uu2&

1Fh2
1

2&
E

0

1d/2

uUl8uS d

2
2yDdy
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e

2
c

2 E0

1d/2

uBl8uS d

2
2yDdyG ^u¹bu2&. ~A5!

This functional is positive definite if each term in the squa
brakets is positive. Eliminatingc from the resulting inequali-
ties and performing the integrations leads to~46! and ~47!.
An identical calculation usingUb andBb instead of the lami-
nar solutions for the functionalQb leads to the result in~62!.
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