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The total dissipation rate for magnetohydrodynamic~MHD! flows in plane geometry with both
velocity and magnetic shear is studied. For some boundary conditions it is shown that the lower
bound on the dissipation rate is achieved by the equivalent of Stokes flow for MHD. Using the
background method@Doering and Constantin, Phys. Rev. Lett.69, 1648~1992!# upper bounds for
the dissipation rate are calculated. For a shear layer, with both velocity and magnetic shear,
parameter dependence of the upper bound is obtained. As a by-product of this calculation, an energy
stability domain is calculated. A sheet pinch is also studied, and it is shown that the upper bound
tends to zero as the resistivity tends to zero. Thus, an antiturbulence result is obtained. ©2003
American Institute of Physics.@DOI: 10.1063/1.1595649#
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I. INTRODUCTION

The most prevalent theoretical means for explain
fluid and plasma turbulence is to pursue a statistical desc
tion that strives to determine averaged quantities by mean
averaging the equations of motion. This leads to the prob
of closure ~see, e.g., Refs. 1 and 2!, which has instigated
various physically motivated but ultimatelyad hocassump-
tions. Alternatively, there is a long history of phenomen
logical modelling~see, e.g., Sec. 38 of Refs. 3 and 4! and the
adoption of other more or less heuristic simplifying assum
tions ~see, e.g., Refs. 5–10! primarily for the purpose of
calculational tractability.

An alternative to the above approaches is to proceed
carefully manipulating the equations of motion according
mathematically justifiable operations, with the goal of o
taining bounds on physical quantities such as the energy
sipation rate. This approach, which makes noad hoc as-
sumptions but has more modest goals, was pioneered
driven fluid turbulence in the works of Malkus, Howard, a
Busse~see, e.g., Refs. 11–13!, and has gone by the names
upper bound or optimum theory. Since this early resea
upper bound theory has been explored in a variety cont
including that of magnetohydrodynamics~MHD!, the subject
of the present paper. In Ref. 14 an upper bound was obta
for the ohmic dissipation rate in a turbulent thermal lay
permeated by a horizontal magnetic field maintained by

a!Electronic mail: petrelis@lps.ens.fr
b!Electronic mail: morrison@physics.utexas.edu
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namo action, in Refs. 15–17 it was applied to an MHD d
scription of the reversed-field pinch, and recently in Ref.
it was applied to a sheet pinch configuration.

An allied alternative to upper bound theory, theback-
ground method, was developed in the context of fluid turbu
lence in Ref. 19. This method provides an easier means
obtaining upper bounds by using a mathematical device
troduced by Hopf in Ref. 20, whereby one manipulates
equations of motion relative to an assumed background s
This procedure is somewhat akin to the early ‘‘thermod
namic approach’’ of plasma physics for finding upper boun
on instability growth rates~see, e.g., Refs. 21 and 22!. Sub-
sequent to Ref. 19 the background method has been expl
in a variety of contexts~e.g., Refs. 23–26!. The purpose of
the present paper is to explore the background method in
context of incompressible MHD, and this study is continu
in a companion paper~see Ref. 27!. Here we describe the
method, discuss boundary conditions, and apply the met
to field aligned flows, while in Ref. 27 we apply it to cros
field or Hartmann flows, which provides the possibility
direct comparison with liquid metal experiments.

We focus on the total MHD dissipation rate, the sum
the viscous and Ohmic dissipation rates integrated over
volume. This global quantity is clearly important, because
time average is equal to the time average of the injec
power, which is in turn equal to the heat production in t
system. Moreover, the total dissipation rate is expected to
a measure of the temperature increase in the system, whi
obviously desirable in the context of fusion experiments,
it is undesirable in the context of MHD dynamo experimen
4 © 2003 American Institute of Physics

ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

, 19 Jun 2014 13:39:03



e
n.

f.
u
re
a

th
m
xi
olu
ey
th
ic
e
th
is
d
tio

ex
ion
su
eo
ta

s
ith

n
ng
tie
nt
b
in

o
yp
a

ar
re

sly

is
y
in
in
c
e

pe
In
it
a
s

ef
is
ll

y-
-

re-

ch.
per
ile
d as
issi-
s
he
ows
ed
nd
tal
n-

tion
in

nch
ot

the
ity.
di-
er

ty

i-

re-
ast
we

ary
ma
rm,
ux
may

id
tal
and
ati-

s-

al
n-

4315Phys. Plasmas, Vol. 10, No. 11, November 2003 Bounds on dissipation in magnetohydrodynamic . . .

 This a
in liquid metals, because it tends to result in an increas
the critical value of the velocity needed for dynamo actio

The viscous dissipation rate has been widely studied
hydrodynamics with a history dating to Stokes~see, e.g.,
Refs. 28 and 29!. Stokes’ results were improved upon in Re
29, where it was shown that the solution of the Stokes eq
tions minimizes the dissipation rate over all divergence-f
fields satisfying the boundary conditions of fixed velocity
the boundary. This Stokes solution is only a solution of
Navier–Stokes equations in the limit of zero Reynolds nu
ber, but in most cases a related steady laminar solution e
upon increasing the Reynolds number. However, this s
tion eventually becomes unstable for sufficiently large R
nolds numbers. From the evolution equation one finds
there is a critical value of the Reynolds number below wh
dissipation causes a positive definite energy-like measur
any perturbation to decrease in time. This value defines
domain of absolute stability in which the laminar solution
energy stable for all initial conditions~see, e.g., Refs. 28 an
31!. For Reynolds numbers outside this domain, the solu
can be unstable and the flow can be turbulent.

For such large Reynolds numbers it is impossible to
plicitly calculate the solution of the Navier–Stokes equat
or even the average value of the dissipation rate. To
mount this difficulty the upper bound and background th
ries were developed. Howard, Busse, Doering, and Cons
tin ~see, e.g., Refs. 12, 13, and 19! all sought upper bound
for the dissipation rate using a variational formulation w
added constraints. Prior to their investigations, Malkus~see
Ref. 11! postulated the physical principal that a turbule
fluid actually achieves this upper bound; it is quite striki
that the optimizing fields obtained seem to share proper
with the time average of the fields measured in experime

The main accomplishment of the present work is to o
tain explicit upper bounds on the total dissipation rate
MHD flows. However, we also obtain some lower bounds
the dissipation rate. In Sec. II we show that a Stokes-t
solution of the MHD equations minimizes the total dissip
tion over all divergence-free fields satisfying the bound
conditions of fixed velocity and magnetic fields, and the
fore this solution provides a lower bound.

The total MHD dissipation rate has been previou
studied. Montgomery~e.g., Ref. 30! has argued that driven
MHD flows relax to states for which the dissipation rate
minimized subject to constraints such as the constanc
magnetic flux. This is an argument that attempts to expla
universal feature of the dynamics. Because of the constra
imposed, this principal differs from our calculations of Se
II, which akin to Stokes only imposes the divergence-fr
conditions.

Next, we use the background method to obtain up
bounds on the dissipation rate for two MHD problems.
Sec. III we consider a layer with both magnetic and veloc
shear. Both lower and upper bounds for the dissipation
derived, and their dependence on the parameters of the
tem are presented. Few MHD energy stability results~in the
spirit of Ref. 28! exist, an exception being the results of R
32 ~see also Ref. 33!. In some cases the energy domain
infinite, which ensures stability of the laminar solution for a
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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values of the control parameter as given in Ref. 34. A b
product of our dissipation calculations of Sec. III is an im
provement on the domain of stability of these previous
sults.

In Sec. IV we study a model of the plane sheet pin
Using the background method, we prove that the up
bound for the dissipation tends to zero with resistivity, wh
all other parameters are held fixed. This can be interprete
an antiturbulence theorem because there is no residual d
pation in the limit of zero resistivity. A similar result wa
recently derived for horizontal convection in Ref. 35, but t
present calculation shows that the background method all
one to prove such a result. Similar results were obtain
contemporaneously in Ref. 36, where the backgrou
method was applied to horizontal convection. For horizon
convection at high Rayleigh numbers, the flow is not statio
ary and develops boundary layers even if the dissipa
tends to zero. According to numerical simulations given
Ref. 37, this is not the case for the driven plane sheet pi
in which the static solution is stable. Our result does n
prove energy stability, but is consistent with it because
dissipation of the static solution tends to zero with resistiv

In Sec. V we summarize and then briefly mention ad
tional work on MHD, namely, that of our companion pap
~see Ref. 27! and other possible research.

II. STOKES-TYPE SOLUTIONS AND LOWER BOUND

The incompressible MHD equations for the veloci
field, v, and magnetic field,B, are the following:

]v

]t
52v•¹v2¹P1B•¹B1n¹2v1f, ~1!

]B

]t
52v•¹B1B•¹v1h¹2B ~2!

which are to be solved subject to the constraints¹•v50 and
¹•B50. Here f is an applied body force,P5p/r
1B2/(2r), where p is the hydrodynamic pressure,r the
constant density, andB2/2 is the magnetic pressure. The k
nematic viscosity of the fluid is denoted byn and the resis-
tivity by h5(m0s)21, wheres is the conductivity. We con-
sider these equations in a three-dimensional domainD.

For the calculations we present, it is essential to be p
cise about boundary conditions. Choices used in the p
have been based on both physics and expediency, and
briefly discuss some of them. The correct physical bound
conditions for MHD are uncertain because any real plas
experiment is bounded by nonideal conductors of some fo
along with the existence of insulating gaps that allow for fl
penetration, and as one approaches the boundary there
be a region with no plasma or one for which the MHD flu
model is inaccurate. Similar comments apply for liquid me
experiments. Consequently, compromises are made,
there are several choices available that maintain mathem
cal well-posedness.~See, e.g., Ref. 30 for additional discu
sion about boundary conditions.!

For a fluid in contact with a solid wall the most natur
boundary condition on the velocity field is the no-slip co
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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dition at the boundary,]D: vu]D5vb , wherevb is the veloc-
ity of the boundary. Here we adopt this no-slip choice, b
we point out that the stress-free condition, which in tw
dimensions amounts to fixing the vorticity on]D, has also
been widely used. The stress-free condition is physic
more difficult to justify, but can make for easier numeric
implementation. Similarly, the vanishing of the normal co
ponent of the vorticity has been used in a sequence of pa
by Montgomery and collaborators~see, e.g., Ref. 38!.

For the magnetic field, a common choice is to supp
that the solid wall is a perfect conductor, in which the ma
netic field is frozen. Because¹•B50 implies continuity of
the normal component of the magnetic field at an interfa
its value is then fixed at the boundary. This condition
naturally refereed to as the ‘‘flux-tied’’ condition because
cally the flux through the boundary is preserved. By imp
ing the surface current in the boundary, one can fix the va
of the discontinuity in the tangential component of the ma
netic field and, because its value is fixed in the wall,
tangential component of the magnetic field is also fixed
the boundary. This condition, which is properly referred to
the ‘‘line-tied’’ boundary condition, is more difficult to main
tain in experiments because, even though the total cur
can be controlled, local surface currents are induced by
plasma or liquid metal. Nonetheless, this condition was u
in early numerical tearing mode calculations~see, e.g., Ref.
39! and we adopt it in the remainder of the present sec
and in Sec. III. An oft-used alternative to this condition is
fix the tangential component of the electric field at t
boundary and then to appeal to Ohm’s law to obtain a c
dition on the tangential plasma current density at the bou
ary. To facilitate calculation it is often assumed that the
sistivity near the boundary is independent of position, wh
is also difficult to justify. Because this condition involve
derivatives of the magnetic field, it can be viewed as
magnetic analog of the fluid stress-free condition. We ado
version of this condition in our calculations of Sec. IV. Int
itively one expects this condition to result in dynamics tha
less rigid near the boundary than line tying.

Although the main object of our consideration is the
tal energy dissipation rate per unit mass,

D5n^u¹3vu2&1h^u¹3Bu2&, ~3!

where ^ f &5*Df (x,y,z)dx dy dz/V and V is the volume of
the domainD that contains the fluid, for convenience in th
present section we follow Kelleret al. ~see, e.g., Ref. 29! and
introduce the excess dissipation rate, the dissipation m
twice the power input by the external body force,DeªD
22^f•v&. This quantity obviously reduces to the total dis
pation when the body force inputs no energy into the syst
Without taking into account the MHD equations, we seek
velocity and magnetic fields that are extremal values of
excess dissipation, with the assumptions that the fields
divergence-free and have fixed values at the boundary.
introduce two Lagrange multipliers22P(x,y,z) and
22Q(x,y,z) to ensure that the fields are divergence-fr
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Upon taking the variational derivatives ofDe22^P¹•v&
22^Q¹•B& with respect tov andB we obtain after a rudi-
mentary calculation

n¹2v1f2¹P50, ~4!

h¹2B2¹Q50. ~5!

We call these equations, together with the divergence co
tions, the Stokes-type equations for MHD.

The two fields are not coupled in these equations, as
expects sinceDe is the sum of two functionals that depen
separately on the velocity and the magnetic field. Equat
~4! for the velocity field is the same as that for Stokes flo
namely, the Navier–Stokes equation for a stationary velo
field in the low Reynolds number limit, where the inert
term and J3B force are neglected. Observe that t
Lagrange multiplier,P, that was used to enforce¹•v50
turns out to be precisely the pressure. Equation~5! for the
magnetic field is more surprising. Here the Lagrange mu
plier, Q, also appears as a pressure-like term, but it has
trivial physical interpretation. Sometimes the termB•¹v
2v•¹B of Eq. ~2! can be written as a gradient of a scal
function. In which case, the Stokes-type equation for
magnetic field is equivalent to the induction equation fo
steady magnetic field. Otherwise, upon choosingQ50, Eq.
~5! becomes the low Reynolds number limit of the inducti
equation for a steady magnetic field.

The above procedure of setting to zero the variatio
derivatives ofDe , subject to the stated conditions, show
that the Stokes-type solution is extremal. However, it
mains to demonstrate that this extremal solution actually
minimum. In fact, it is not difficult to show that the Stoke
type solution is minimum over the set of all continuo
divergence-free fields with piecewise continuous derivati
that satisfy the line-tied and no-slip boundary conditions.
see this we setv5vs1u andB5Bs1b, where thevs andBs

are the Stokes-type solutions of Eqs.~4! and ~5!. Conse-
quently,u andb vanish at the boundary. Inserting these e
pressions intoDe gives

De~v,B!5De~vs ,Bs!1De~u,b!12n^¹3vs•¹3v&

12h^¹3Bs•¹3b&

5De~vs ,Bs!1D~u,b!22~^u•~n¹2vs1f!&

1^hb•¹2Bs&!.

Becausevs andBs solve Eqs.~4! and~5!, the term in paren-
theses vanishes and we are left with

De~v,B!5De~vs ,Bs!1D~u,b!>De~vs ,Bs!, ~6!

which establishes the result.
The above result is a straightforward generalization

MHD of analogous results for hydrodynamic flows~see Ref.
29!. The calculation is valid for the particular boundary co
ditions of fixedv andB at the boundary, but it is not true fo
all boundary conditions; for instance, it does not hold if t
tangential currents are fixed instead of the magnetic fie
For hydrodynamics problems it was proved that if the str
is fixed at the boundary, then Stokes flow minimizes t
excess dissipation~defined similarly toDe with B→0 and
taking into account the power input by the stress at
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

, 19 Jun 2014 13:39:03



ily
a
t

id
e

-
fo
t

ria
s
as
m
he
s
fo

ea
y

he
u

um
ie

ar
oc
-

e.

et
t

p
i-

e

nifi-
e
re
s
a

ility
asic
isit

s.
nd

-

n-
s
etic

e
n-

the

-

d
mi-

wer
l to

ns
q.
l

nt.
r-

loc

4317Phys. Plasmas, Vol. 10, No. 11, November 2003 Bounds on dissipation in magnetohydrodynamic . . .

 This a
boundary!. This hydrodynamic result can also be eas
adapted to MHD for the case of fixed tangential current
the boundary. We do not supply the details here because
resulting lower bound for the dissipation does not prov
any information for the sheet pinch model we discuss in S
IV.

We return to Eq.~6! in the next section, where we dis
cuss upper bounds on the dissipation rate. However, be
doing so we note that another approach is to estimate
lower bound on the excess dissipation rate by using t
functions forv andb, rather than solving the MHD equation
for stationary fields. In Ref. 29 a reciprocal principle w
established, whereby the Stokes solution of a hydrodyna
problem can be obtained as the maximizing field of anot
functional, the maximal value of which is the excess dis
pationDe . It appears that the same result can be derived
MHD problems, but we will not pursue this here.

III. VELOCITY AND MAGNETIC SHEAR LAYER

We now consider a layer of fluid that can support sh
in both the velocity and magnetic fields. We assume a la
of height d, where y is the vertical coordinate, with two
periodic boundary conditions in the horizontal directionsx
and z, as depicted in Fig. 1. The unit vectorsi, j , k are
chosen to correspond to the coordinates (x,y,z), respec-
tively. It will turn out that our results are independent of t
existence of any uniform horizontal magnetic field, and th
only depend on the shear part of the applied field. We ass
the magnetic field is fixed at the upper and lower boundar
The magnetic shear is imposed by settingB(x,d,z)5Bur̂
5Bu(cosui1sinuk) at the upper surface,y5d, and
B(x,0,z)50 at the bottom surface,y50. HereBu is a con-
stant andr̂ is a unit vector oriented at the angleu with
respect to thex-axis as depicted in Fig. 1. The velocity she
is induced by moving the upper surface with constant vel
ity v(x,d,z)5U i, while keeping the bottom surface immo
bile. We use the no-slip conditions for the velocity field; i.
v(x,d,z)5U i andv(x,0,z)50.

This plane shear configuration can give rise to a vari
of shear and tearing instabilities, and indeed has been
subject of extensive linear stability analyses. When the up
boundary is immobile, the configuration is that of the orig
nal tearing mode calculations of Ref. 40~see also Ref. 41!,
but with the moving upper surface, Kelvin–Helmholtz typ

FIG. 1. Sketch of fluid layer with horizontally sheared magnetic and ve
ity fields.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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instabilities are possible and the tearing mode can be sig
cantly altered.~See, e.g., Ref. 42, where tearing with th
inclusion of both the effects of shear flow and viscosity a
taken into account.! This configuration can also be viewed a
that of plane-Couette flow for a liquid metal subjected to
sheared magnetic field. As noted above, nonlinear stab
was addressed in Ref. 32, and a domain in which the b
solution is so-called energy stable was calculated. We rev
this calculation in Sec. III A below, and obtain new result

Before proceeding to our calculations of Secs. III A a
III B that lead to an upper bound on the dissipation rateD,
defined by Eq.~3!, we make some remarks aboutD to set the
stage. First, for any quantityh that is fixed on the bound
aries, ^u¹hu2&5^u¹3hu2&, where u¹hu25(a,b(]ahb)2.
Thus,

D5n^u¹vu2&1h^u¹Bu2&. ~7!

The problem at hand has six parametersBu , U, d, n, h,
u, from which we can construct four independent dimensio
less numbers. The angleu is one of them and various choice
can be made for the other three. We choose the magn
Prandtl number, Pmªn/h, the Reynolds number, R
ªUd/n, and the equivalent of the Reynolds number co
structed with the magnetic field,MªBud/n. By elementary
dimensional analysis we see that the dissipation rate has
form

D5
U3

d
f~Pm , Re,M ,u!, ~8!

wheref is an unknown function of the dimensionless num
bers. Our goal is to find restrictions on the valuesf can
obtain.

A. Stokes-type solution and its stability

At low values ofM and Re, one expects the velocity an
magnetic fields to be independent. Indeed, a stationary la
nar solution of the full set of MHD equations is given by

vs5
U

d
yi and Bs5

Bu

d
yr̂. ~9!

For these fields with linear dependence there is no po
input by external forces, so the excess dissipation is equa
the dissipationDl . Inserting~9! into ~7! gives

Dl5nS U

d D 2

1hS Bu

d D 2

, ~10!

which upon comparison with~8! yields

f l5
1

ReF11
1

Pm
S M

Re
D 2G . ~11!

Because Eqs.~9! are solutions of the Stokes-type equatio
~4! and~5!, according to the analysis of Sec. II leading to E
~6!, the laminar dissipation~10! is a lower bound for the tota
dissipation ofany solution of the MHD equations.

If we increase the values ofM and Re, we expect the
laminar solution to become unstable and possibly turbule
Using the nonlinear evolution equation for arbitrary pertu
bations to the laminar solution, we calculate values ofM and

-
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 This a
Re below which the integrated sum of the squares of
perturbations decreases to zero. This notion of stability
generally calledenergy stability. We write v5vs1u and B
5Bs1b, where the perturbationsu andb havex, y, andz
components denoted by (u1 ,u2 ,u3) and (b1 ,b2 ,b3), respec-
tively. Note, the perturbations are not assumed to be sma
in conventional linear stability analyses. By simple integ
tion by parts, we derive the exact evolution equation foE
ª^u21b2&/2,

dE
dt

52Q~u,b!, ~12!

where the functional

Q~u,b!ªn^u¹uu2&1h^u¹bu2&1
Bu

d
^u2 b• r̂2b2 u• r̂&

1
U

d
^u1u22b1b2&, ~13!

is quadratic in both the perturbation velocity and magne
fields.

The term energy stability is commonly used becausE
resembles the spatial average of the perturbation ene
However, the real perturbation energy has additional te
that are linear in the perturbations, which arise because
has expanded about a state that possesses free energy, e
the form of kinetic energy of the equilibrium flow. Suc
terms can give rise to linear instability or negative ene
modes~see, e.g., Ref. 43!. Consequently, the real perturb
tion energy does not provide a norm for stability, and tha
why the quantityE is used. Below we follow the commo
practice of referring toE as the perturbation energy.

Observe, Eq.~13! is independent of any horizontal bas
magnetic field that is independent ofy. Consequently, any
results obtained concerning energy stability are also indep
dent of such fields. Therefore, the example we are treatin
actually somewhat more general than initially supposed. A
horizontal magnetic field applied at the boundaries can
decomposed into its value at the bottom surface plus a s
field, and only the latter part enters into our calculations
energy stability.

We show that up to some critical value ofM , sayME ,
which is function of Re andPm , the energy of any pertur
bation to the laminar solution tends to zero. Since this ene
is a positive definite quantity, this means that asymptotica
the perturbation tends to zero~in L2 norm!, and for values of
M and Re such thatM is smaller thanME , the stationary
basic state is the only stable solution of the problem.

If Q is positive for allu andb, then the basic stationar
state is energy stable. We rescale the variables and uũ
5lu andb̃5mu with l andm positive constants. This yield

Q~u,b!5Q̃~ ũ,b̃!

5
n

l2 ^u¹ũu2&1
h

m2 ^u¹b̃u2&1
Bu

dm l
^ũ2 b̃• r̂2b̃2ũ• r̂&

1
U

d K 1

l2 ũ1 ũ22
1

m2 b̃1 b̃2L . ~14!
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Clearly, Q is positive definite if and only ifQ̃ is positive
definite. Henceforth we considerQ̃ and drop the tilde to
relieve notation. We use the inequalities22u1u2<u1

21u2
2,

u^u2b• r̂2b2u• r̂&u< 1
2 ~^b2&1^u2&!, ~15!

p2

d2 ^u2&<^u¹uu2&. ~16!

The last one, which is sometimes called the Poincare´ in-
equality, is true for all vector fields periodic in the horizont
coordinates and zero at the top and bottom surfaces~see, for
example, Ref. 19!. Thus it also holds for the magnetic fiel
and we obtain

Q>
1

l2 S n p2

d2 2
U

2d
2

Bu

2da D ^u2&

1
1

m2 S hp2

d2 2
U

2d
2

Bua

2d D ^b2&, ~17!

wherea5 m/l.0. Note, becauseu does not enter into this
lower bound onQ, our energy stability domain for the lami
nar solution will be independent ofu.

A sufficient condition forQ to be positive definite is tha
2p22(Re1M/a).0 and 2p22Pm(Re1Ma).0. Because
a.0 is arbitrary, we can choose it in an optimum way
obtain a maximal value ofM , below which both inequalities
are satisfied. This gives

ME
25~2p22Re!~2p2/Pm2Re!, ~18!

where, if M<ME the laminar flow is energy stable. Techn
cally this follows becausedE/dt52Q<2CBE, whereCB

.0 is the smaller of the two coefficients of~17!, can be
integrated by Gronwall’s lemma to obtainE(t)<E(0)
3exp(2CBt).

In Ref. 32 it was shown that Re max(1,Pm)
1ME max(1,Pm)52p2 defines an energy stability boundar
We plot this result along with our results in Fig. 2, whic
depicts stability domains for different values ofPm in the
@Re max(1,Pm),ME max(1,Pm)# plane. With this choice of
variables, the result of Ref. 32 is independent ofPm , and the
domains described by Eq.~18! are the same forPm and
Pm

21 . Therefore it is only necessary to plot thePm>1 case.
For Pm51 our result is the same as that of Ref. 32, but
PmÞ1 our domains are larger. This enlargement of the s
bility domain came from the variable change in Eq.~14! that
led to a better estimate ofQ. Note that this in essence fol
lows from the general inequality 2ab<aa21b2/a, which is
true for any reala andb anda strictly positive.

For Re50, Eq.~18! reduces toME52 p2APm. If we use
the dimensionless parameterM 85Bd/Anh instead ofM ,
then the abscissa boundary of the stability domain is in
pendent of the magnetic Prandtl number, just as the crit
Rayleigh number is independent of the thermal Prandtl nu
ber in thermal convection of ordinary fluids. ForM50, we
recover the result for plane-Couette instability. Introduci
the magnetic Reynolds numberRm5RePm, the abscissa
boundary of the domain is given by max(Re,Rm)<2p2. For
n<h, Re>Rm, and the domain is the same as that for
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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ordinary fluid. Forn>h, Re<Rm, the boundary of the do
main corresponds to a lower value of Re than that for
ordinary fluid.

Although it is known from linear stability analyses th
velocity shear can either stabilize or destabilize MHD eq
librium configurations~see, e.g., Ref. 44!, a physical expla-
nation for the stability boundaries is not forthcoming and t
points to the limitation of energy stability arguments. No
linear energy arguments, unlike linear stability analysis, h
no eigenfunctions and eigenvalues, and one cannot alway
sure of what causes the instability. Results may be due e
to calculational limitations or to the physics. For example,
the present situation, a larger stability domain could
achieved by searching for the maximal value ofM and Re
such thatQ is positive definite. These maximal values defi
the energy stability domain in the (M , Re) plane analogou
to the critical energy Reynolds number obtained for hyd
dynamic instabilities in Refs. 28 and 31. Because our e
mates above are not sharp, the values ofM and Re we obtain
are inside this maximal energy stability domain. Note tha
the caseM50, this maximal domain can be easily comput
from ~13! because the quadratic form is then the sum of t
quadratic forms depending separately onu andb. The maxi-
mal domain for energy stability can be shown to sati
max(Re,Rm)<82.1 . . . . Thus, forM50 the sharp result and
the maximal domain are the same up to a numerical fa
and have the same dependence onPm . It is also possible tha
the stability domain might be enlarged by incorporating ot
ideal MHD invariants into the calculation, which could he
to identify a different positive definite quantity besidesE. It
was for stability reasons like this that Kruskal, Oberma
Gardner, and others sought invariants in the early days
plasma physics~ca. 1960!, and we will never be sure whethe
or not we have them all.

FIG. 2. Boundary of domains in which the basic state is energy stable f
shear layer with both velocity and magnetic shear in
@Re max(1,Pm),M max(1,Pm)# plane. Below a curve, the laminar stationa
solution is energy stable for the particular value ofPm . The dashed line is
the result from Ref. 32, which is equal to our result forPm51. The con-
tinuous lines are our results forPm.1. These curves are the same forPm

andPm
21 .
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B. Upper bounds for the dissipation

Outside the maximal domain in which the basic soluti
is energy stable, the flow can be nonstationary and poss
turbulent. It is in this region that the background method c
be used to find an upper bound on the dissipation rate.
now describe this method in the context of the shear la
system at hand.

Like before, we decompose the velocity and magne
fields into two parts:v5vb1u andB5Bb1b, wherevb and
Bb are nowbackground fields, which unlike before need no
be solutions and can be chosen for convenience. We sup
the background fields satisfy the boundary conditions a
depend only ony, such thatvb5Ub(y) i, with Ub(0)50 and
Ub(d)5U, and Bb5Bb(y) r̂, with Bb(0)50 and Bb(d)
5Bu .

Given this decomposition, Eq.~7! for the spatial average
of the dissipation rate can be written as follows:

D5n^u¹uu212Ub8u181Ub8
2&1h^u¹bu212Bb8•b81Bb8

2&,
~19!

where prime denotes]/]y. Adding D/2 to the evolution
equation forE5^u21b2&/2 yields

dE
dt

1
D
2

5
F
2

2P, ~20!

whereF(Bb ,Ub) is a functional that depends only the bac
ground fields andP(u,b,Bb ,Ub) is a functional that is qua-
dratic in the perturbation fields. These functionals are defi
as follows:

F~Bb ,Ub!5n^Ub8
2&1h^Bb8

2&, ~21!

P~u,b,Bb ,Ub!5
n

2
^u¹uu2&1

h

2
^u¹bu2&1^u2b•Bb8

2b2u•Bb8&1^Ub8 ~u1u22b1b2!&. ~22!

Now, if we time average~20! so thatdE/dt drops out and if
we find background fields such thatP is positive definite,
then we obtain an upper bound forD̄, the time average of the
dissipation rate,

D̄<F~Bb ,Ub!. ~23!

Note that addingD/2 removed terms linear inu and b
that arise from the dissipation terms of~1! and~2!. This is a
key point, because in removing these terms one is left w
the form F/22P, where P being quadratic is easily
bounded.

For the magnetic~respectively, velocity! background
field, we use a piecewise linear function equal toBu/2 ~re-
spectively,U/2) for db<y<d2db ~respectively,du<y<d
2du) and of slopeBu /(2db) @respectively,U/(2du)] for the
two boundary layers, as sketched in Fig. 3. Note that b
boundary layer thicknesses,du anddb , must each be smalle
thand/2.

Upon integration by parts and making use of Ho¨lder’s
inequality, it is easy to show that

a
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u^Bb8~b2u• r̂2u2 b• r̂ !&u<
Budb

8 K au¹uu21
1

a
u¹bu2L ,

u^Ub8~u1u22b1b2!&u<
U du

8
^u¹uu21u¹bu2&

~see, e.g., Ref. 19!, and hence show that

P>S n

2
2

Udu

8
2

Budba

8 D ^u¹uu2&1S h

2
2

Udu

8
2

Budb

8a D
3^u¹bu2&, ~24!

where, as in Sec. III A,a.0 is arbitrary. Note thatu does
not enter into this bound forP and, consequently, the uppe
bound for the dissipation will also be independent of it.

We first choose the thickness of the boundary layers
that P>0 and then we minimize~21! evaluated on our
choice of background fields,

F5
1

2d S nU2

du
1

hBu
2

db
D , ~25!

with the constraints thatdu anddb are each smaller thand/2.
If du is fixed, the minimum ofF is obtained for the highes
possibledb . IntroducingjªUdu /n, we calculate from the
coefficients of~24! the maximumdb that ensures positivity
of P. Following the same procedure that let to~18!, we ob-
tain

Budb

n
5g~j!5A~42j!~4/Pm2j!, ~26!

wherej<min(4,4/Pm). Now letFj be the upper bound ofD̄
corresponding to a given value of the parameterj; i.e.,

Fj5
U3

2d S 1

j
1

C

g~j! D , ~27!

whereCªhBu
3/(nU3). Minimizing Fj over j, we find that

the minimum is achieved forj equal to j0 , the positive
solution of

@~42j!~4/Pm2j!#3/2

j2 5C~212/Pm2j!. ~28!

In terms of j, the two constraints on the thickness of t
boundary layers arej<Re/2 andg(j)<M /2. If j0>Re/2,

FIG. 3. Piecewise linear background field. The thickness of the boun
layer isd (db for the magnetic field anddu for the velocity field!.
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then the boundary layer for the velocity isd/2 and j
5Re/2. If g(j)>M /2, then the thickness of the magnet
boundary layer isd/2 and g(j)5M /2. Such values of the
thicknesses of the boundary layers are obtained for low
ues of Re andM . In which case, the dissipation is that of th
laminar solution. For higher values of Re andM , the upper
bound is obtained for~27! evaluated atj5j0 , which re-
quires numerical evaluation.

In Fig. 4 we plotD* d/U3, whereD* is the upper bound
for the dissipation, as a function of Re forC52 and Pm

51. At low values of Re,D* d/U3 is decreasing. This be
havior occurs when the dissipation is equal to the lami
dissipation rate and the thickness of the boundary layers
d/2. For high Re,D* d/U3 approaches an asymptote th
depends onC and Pm . We plot the high Re value o
D* d/U3 as a function ofPm for different values ofC in Fig.
5. WhenRe is largej is obtained from Eq.~28!, which can
be expanded along with~26! in the limits of small and large
Pm and used with~27! to obtain the asymptotic behaviors

ry

FIG. 4. Value of the upper bound for the dissipationD* d/U3 as a function
of Re for Pm51 andCªhBu

3/(nU3)52.

FIG. 5. Value of the upper bound for the dissipationD* d/U3 for infinite Re
as a function ofPm for C510 ~s!, C51 ~h!, andC50.1 ~L!. The con-
tinuous line depicts the asymptotic behavior of~29!.
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lim
Pm→0

S lim
Re→`

D* d

U3 D 5
1

8
and lim

Pm→`
S lim

Re→`

D* d

U3 D .
Pm

8
,

~29!

which are plotted as a continuous line in Fig. 5.
In terms of the nondimensional dissipationD* d/U3

5f* (Pm ,Re ,M ). If we fix M and Pm , f* decreases for
low values of Re and tends to a constant at high Re. We
f* as a function of Re forM52 and different values ofPm

in Fig. 6. The asymptotic behavior off* at fixed M is
limRe→`f*5max(1,Pm)/8. If we fix Re andPm and varyM ,
f* decreases and tends to a constant. The asymptotic be
ior of D* is thenD* .B3/(8dPm

1/2) for M→`.
The dependence off* with Pm for infinite Re and fixed

M is similar to that of the boundary of the domain in whic
the basic state is energy stable. Here again a possible e
nation of this scaling is that the bound does not depend
any uniform horizontal magnetic field. Therefore, if such
field is applied, the total dissipation can increase whenh
decreases because there is more Ohmic dissipation. H
ever, this linear increase withPm differs from what is ex-
pected based on heuristic turbulence ideas. For exampl
the early work of Ref. 45 it was assumed that the magn
and kinetic energies come into equipartition and that ene
is dissipated by viscosity and resistivity at an equal rate. T
idea causesn andh to enter into various formulas in a sym
metric way~e.g., the Kolmogoroff scale is determined by
modified Reynolds number withn replaced byn1h), and
with this line of argument one expects the dissipation to
proach a finite value when both diffusion coefficientsn andh
tend to zero. It is possible to obtain a scaling law where
Ohmic dissipation dominates the viscous dissipation~see, for
example, Ref. 46!, but whether or not this is a physical effe
remains to be determined.

IV. PLANE SHEET PINCH

Next we study a model of a sheet pinch composed of
MHD fluid located between two horizontal surfaces se
rated by a distanced. This problem has the same geome
as that of the shear layer of Sec. III, but different bound

FIG. 6. Value of the upper bound for the dissipationf* as a function of Re
for M52 andPm50.1 ~–!, Pm51 ( –•), andPm550 ~•!.
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conditions are adopted. We assume no-slip and that bot
the bounding surfaces are at rest; i.e.v50 at y50 and y
5d. The same notation as shown in Fig. 1 is used.~Note, the
same bound we obtain can be derived with the stress-
conditions,]vx /]y5]vz /]y50 at y50 andy5d.) In ad-
dition, we assume that the normal component of the m
netic field, By , vanishes at both the upper and lower s
faces, and that the horizontal current is fixed to beJ0k at
both surfaces. In terms of the magnetic field this condit
gives]Bx /]y5J0 and]Bz /]y50.

An equilibrium solution that satisfies these bounda
conditions isv050, B05(J0y1C1) i1C2k, whereC1 and
C2 are constants. The dissipation rate,D5n^u¹vu2&
1h^u¹Bu2&, evaluated on this solution isD05hJ0

2. Because
the result of Eq.~6! for De was obtained with different
boundary conditions, we cannot assume thatD0 is a mini-
mum for the dissipation rate. Moreover, the evolution eq
tion for E is independent of any horizontal uniform magne
field, and so we can setC15C250.

Again we writeB5Bb1b, where the background field
is chosen to be of the formBb5B1(y) i, with the boundary
conditionsB18(0)5B18(d)5J0 . For the present problem, w
do not expand the velocity field about a background. T
equation forE5^v21b2&/2 is now

dE
dt

1
D
2

5
G
2

2R, ~30!

with

G~B1!5h^B18
2&,

R~v,b,Bb!5
n

2
^u¹vu2&1

h

2
^u¹bu2&1^B18~v2b12v1b2!&

2
hJ0

V E
S
b1 dx dz, ~31!

where in the last term of~31! S denotes the bounding sur
faces located aty50 and y5d. This surface contribution
which arises because of the boundary conditions of this s
tion, can be changed into a volume integral by usi
*Sb1 dx dz/V5^]b1 /]y&. To bound this surface term, w
observe

u¹bu222J0

]b1

]y
>2J0

2, ~32!

where we have usedu¹bu2>(]b1 /]y)2. We use a piecewise
linear profile forB18 of the form B18(y)50 if d<y<d2d,
B18(y)52J0(y2d)/d if y<d, andB18(y)5J0(y1d2d)/d
if y>d2d. The expression forB1 can be deduced by trivia
integrations, but it does not enter into the upper bound res
We get ^B18

2&52J0d/(3d). We then use two results
limd→0^B18

2&50 and limd→0 R(v,b,Bb)>2hJ0
2/2. There-

fore, the limitd→0 of Eq. ~30! gives

dE
dt

1
D
2

<J0
2. ~33!
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Thus upon time averaging as in Sec. III B, we obtain
following upper bound for the time average of the dissip
tion: D* 5hJ0

2.
Note, had we chosen the stress-free and no penetra

boundary conditions for the velocity field, we obtain exac
the same results because Eq.~30! holds also in this case.

Our conclusion is that the upper bound for the dissi
tion is equal to the dissipation for the steady solution. A fi
consequence is that this bound cannot be improved if
manifold over which we optimizeD contains the steady so
lution. Another consequence is that the dissipation tend
zero withh. As described by Paparellaet al. in Ref. 35, this
is an antiturbulence theorem. The physical behavior of
pinch system and that of Ref. 35 are different. Whereas t
simulations show instabilities of the laminar flow and form
tion of boundary layers, the numerical simulations of t
voltage-driven sheet pinch of Ref. 37 show that the sta
solution is always stable, which is consistent with our up
bound result. This is also consistent with linear tearing mo
theory because the static solution in this case is one of c
stant current across the channel, and consequently the te
mode driveD8 ~see, e.g., Ref. 41!, which measures the sin
gular tearing layer current, vanishes.

V. CONCLUSION

We have reported various results on bounds on the
sipation in MHD flows. We defined the Stokes-type soluti
of the MHD problem and have shown that it minimizes t
dissipation over any divergence-free velocity and magn
fields that are fixed at the boundary. Using the backgro
method, we calculated upper bounds for the dissipation
two examples of MHD flows. In the case of a shear lay
with both velocity and magnetic shear, an upper bound w
derived and its dependence on the parameters was discu
As a by-product of this calculation, an improved energy s
bility domain was obtained. In the case of the sheet pin
the upper bound for the dissipation was achieved by
equilibrium solution, and it was shown to tend to zero w
the resistivity. This is an antiturbulence theorem in the se
that there is no residual dissipation in the limit of zero d
fusion coefficient.

Note that the two examples differ only by the bounda
conditions, which determine the manner in which energy
put into the system, but their physical behavior is complet
different. In our companion paper~Ref. 27! we explore Hart-
mann flow in a channel, where a magnetic field perpend
lar to the boundary is imposed. There we are able to comp
our calculations with data from several experiments.

The techniques developed in this paper can be im
mented for other geometries. Using the boundary conditi
of Sec. IV, we have studied the behavior of the dissipat
for a periodic cylindrical configuration, a configuration th
more closely mimics toroidal confinement devices. Althou
this calculation is technically more complicated, the resu
are qualitatively the same; i.e. there is no residual dissipa
when the diffusion coefficients tend to zero. In the future
hope to explore additional boundary conditions and confi
rations. Of particular interest would be to explore realis
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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boundary conditions that describe nonideal conductors
insulators. Also, our estimates of the quadratic forms in
case of the shear layer where rough. The domain in wh
the basic state is energy stable and the upper bound for
dissipation can certainly be improved by using more accu
inequalities. And, as noted before, they may also be
proved by taking into account the dissipative dynamics
other ideal invariants, such as the magnetic helicity or
cross helicity.
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