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The total dissipation rate for magnetohydrodynarfdHD) flows in plane geometry with both
velocity and magnetic shear is studied. For some boundary conditions it is shown that the lower
bound on the dissipation rate is achieved by the equivalent of Stokes flow for MHD. Using the
background methofDoering and Constantin, Phys. Rev. Lé®, 1648(1992] upper bounds for

the dissipation rate are calculated. For a shear layer, with both velocity and magnetic shear,
parameter dependence of the upper bound is obtained. As a by-product of this calculation, an energy
stability domain is calculated. A sheet pinch is also studied, and it is shown that the upper bound
tends to zero as the resistivity tends to zero. Thus, an antiturbulence result is obtair283©
American Institute of Physics[DOI: 10.1063/1.1595649

I. INTRODUCTION namo action, in Refs. 15-17 it was applied to an MHD de-
scription of the reversed-field pinch, and recently in Ref. 18
The most prevalent theoretical means for explainingit was applied to a sheet pinch configuration.
fluid and plasma turbulence is to pursue a statistical descrip-  An allied alternative to upper bound theory, thack-
tion that strives to determine averaged quantities by means @fround methogwas developed in the context of fluid turbu-
averaging the equations of motion. This leads to the problenence in Ref. 19. This method provides an easier means for
of closure(see, e.g., Refs. 1 and,2which has instigated obtaining upper bounds by using a mathematical device in-
various physically motivated but ultimated hocassump-  troduced by Hopf in Ref. 20, whereby one manipulates the
tions. Alternatively, there is a long history of phenomeno-equations of motion relative to an assumed background state.
logical modelling(see, e.g., Sec. 38 of Refs. 3 anda#d the  This procedure is somewhat akin to the early “thermody-
adoption of other more or less heuristic simplifying assump-namic approach” of plasma physics for finding upper bounds
tions (see, e.g., Refs. 5—1@rimarily for the purpose of on instability growth rategsee, e.g., Refs. 21 and 25ub-
calculational tractability. sequent to Ref. 19 the background method has been explored
An alternative to the above approaches is to proceed by a variety of contextge.g., Refs. 23—26 The purpose of
carefully manipulating the equations of motion according tothe present paper is to explore the background method in the
mathematically justifiable operations, with the goal of ob-context of incompressible MHD, and this study is continued
taining bounds on physical quantities such as the energy disn a companion papefsee Ref. 2¥. Here we describe the
sipation rate. This approach, which makes aw hocas- method, discuss boundary conditions, and apply the method
sumptions but has more modest goals, was pioneered fap field aligned flows, while in Ref. 27 we apply it to cross
driven fluid turbulence in the works of Malkus, Howard, andfield or Hartmann flows, which provides the possibility of
Busse(see, e.g., Refs. 11-13and has gone by the names of direct comparison with liquid metal experiments.
upper bound or optimum theory. Since this early research, We focus on the total MHD dissipation rate, the sum of
upper bound theory has been explored in a variety contextge viscous and Ohmic dissipation rates integrated over the
including that of magnetohydrodynami@4HD), the subject volume. This global quantity is clearly important, because its
of the present paper. In Ref. 14 an upper bound was obtainatme average is equal to the time average of the injected
for the ohmic dissipation rate in a turbulent thermal layerpower, which is in turn equal to the heat production in the
permeated by a horizontal magnetic field maintained by dysystem. Moreover, the total dissipation rate is expected to be
a measure of the temperature increase in the system, which is
aElectronic mail: petrelis@Ips.ens.fr obviously desirable in the context of fusion experiments, but
YElectronic mail: morrison@physics.utexas.edu it is undesirable in the context of MHD dynamo experiments
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in liquid metals, because it tends to result in an increase ivalues of the control parameter as given in Ref. 34. A by-
the critical value of the velocity needed for dynamo action. product of our dissipation calculations of Sec. Il is an im-
The viscous dissipation rate has been widely studied irprovement on the domain of stability of these previous re-
hydrodynamics with a history dating to Stokésee, e.g., sults.
Refs. 28 and 20 Stokes’ results were improved upon in Ref. In Sec. IV we study a model of the plane sheet pinch.
29, where it was shown that the solution of the Stokes equadsing the background method, we prove that the upper
tions minimizes the dissipation rate over all divergence-fredbound for the dissipation tends to zero with resistivity, while
fields satisfying the boundary conditions of fixed velocity atall other parameters are held fixed. This can be interpreted as
the boundary. This Stokes solution is only a solution of thean antiturbulence theorem because there is no residual dissi-
Navier—Stokes equations in the limit of zero Reynolds num-ation in the limit of zero resistivity. A similar result was
ber, but in most cases a related steady laminar solution existecently derived for horizontal convection in Ref. 35, but the
upon increasing the Reynolds number. However, this solupresent calculation shows that the background method allows
tion eventually becomes unstable for sufficiently large Rey-0ne to prove such a result. Similar results were obtained
nolds numbers. From the evolution equation one finds thatontemporaneously in Ref. 36, where the background
there is a critical value of the Reynolds number below whichmethod was applied to horizontal convection. For horizontal
dissipation causes a positive definite energy-like measure @fonvection at high Rayleigh numbers, the flow is not station-
any perturbation to decrease in time. This value defines thary and develops boundary layers even if the dissipation
domain of absolute stability in which the laminar solution istends to zero. According to numerical simulations given in
energy stable for all initial conditionsee, e.g., Refs. 28 and Ref. 37, this is not the case for the driven plane sheet pinch
31). For Reynolds numbers outside this domain, the solutiorin which the static solution is stable. Our result does not
can be unstable and the flow can be turbulent. prove energy stability, but is consistent with it because the
For such large Reynolds numbers it is impossible to exdissipation of the static solution tends to zero with resistivity.
plicitly calculate the solution of the Navier—Stokes equation  In Sec. V we summarize and then briefly mention addi-
or even the average value of the dissipation rate. To suitional work on MHD, namely, that of our companion paper
mount this difficulty the upper bound and background theo{see Ref. 2yand other possible research.
ries were developed. Howard, Busse, Doering, and Constan-
tin (see, e.g., Refs. 12, 13, and)1l sought upper bounds o1 e o TvpE SOLUTIONS AND LOWER BOUND
for the dissipation rate using a variational formulation with
added constraints. Prior to their investigations, Malksee The incompressible MHD equations for the velocity
Ref. 11 postulated the physical principal that a turbulentfield, v, and magnetic field3, are the following:
fluid actually achieves this upper bound; it is quite striking
that the optimizing fields obtained seem to share properties — — _y.yy—VP+B.-VB+ »V2v+f, )
with the time average of the fields measured in experiments. at
The main accomplishment of the present work is to ob- ;g
tain explicit upper bounds on the total dissipation rate in Ez—v-VBJr B-Vv+ V2B 2
MHD flows. However, we also obtain some lower bounds on
the dissipation rate. In Sec. Il we show that a Stokes-typevhich are to be solved subject to the constralty=0 and
solution of the MHD equations minimizes the total dissipa-V-B=0. Here f is an applied body force,P=p/p
tion over all divergence-free fields satisfying the boundary+B?/(2p), where p is the hydrodynamic pressurg, the
conditions of fixed velocity and magnetic fields, and there-constant density, anB?/2 is the magnetic pressure. The ki-
fore this solution provides a lower bound. nematic viscosity of the fluid is denoted lwyand the resis-
The total MHD dissipation rate has been previouslytivity by »=(uq0o) 1, whereo is the conductivity. We con-
studied. Montgomerye.g., Ref. 30 has argued that driven sider these equations in a three-dimensional dorbain
MHD flows relax to states for which the dissipation rate is For the calculations we present, it is essential to be pre-
minimized subject to constraints such as the constancy afise about boundary conditions. Choices used in the past
magnetic flux. This is an argument that attempts to explain &#ave been based on both physics and expediency, and we
universal feature of the dynamics. Because of the constraintsriefly discuss some of them. The correct physical boundary
imposed, this principal differs from our calculations of Sec.conditions for MHD are uncertain because any real plasma
II, which akin to Stokes only imposes the divergence-freeexperiment is bounded by nonideal conductors of some form,
conditions. along with the existence of insulating gaps that allow for flux
Next, we use the background method to obtain uppepenetration, and as one approaches the boundary there may
bounds on the dissipation rate for two MHD problems. Inbe a region with no plasma or one for which the MHD fluid
Sec. lll we consider a layer with both magnetic and velocitymodel is inaccurate. Similar comments apply for liquid metal
shear. Both lower and upper bounds for the dissipation arexperiments. Consequently, compromises are made, and
derived, and their dependence on the parameters of the sythiere are several choices available that maintain mathemati-
tem are presented. Few MHD energy stability res(itishe  cal well-posednesgSee, e.g., Ref. 30 for additional discus-
spirit of Ref. 28 exist, an exception being the results of Ref. sion about boundary conditions.
32 (see also Ref. 33 In some cases the energy domain is For a fluid in contact with a solid wall the most natural
infinite, which ensures stability of the laminar solution for all boundary condition on the velocity field is the no-slip con-
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dition at the boundaryD: v|,,=V,, wherev, is the veloc- Upon taking the variational derivatives @,—2(PV-v)
ity of the boundary. Here we adopt this no-slip choice, but—2(QV-B) with respect tov andB we obtain after a rudi-
we point out that the stress-free condition, which in two-mentary calculation
dimensions amounts to fixing the vorticity @D, has also YWoy+f—VP=0, (%)
been widely used. The stress-free condition is physically V2B—VO=
more difficult to justify, but can make for easier numerical 7VB-VQ=0. ®)
implementation. Similarly, the vanishing of the normal com-We call these equations, together with the divergence condi-
ponent of the vorticity has been used in a sequence of papetions, the Stokes-type equations for MHD.
by Montgomery and collaboratofsee, e.g., Ref. 38 The two fields are not coupled in these equations, as one
For the magnetic field, a common choice is to suppos&Xpects since, is the sum of two functionals that depend
that the solid wall is a perfect conductor, in which the mag-separately on the velocity and the magnetic field. Equation
netic field is frozen. Becausé-B=0 implies continuity of  (4) for the velocity field is the same as that for Stokes flow,
the normal component of the magnetic field at an interfacefamely, the Navier—Stokes equation for a stationary velocity
its value is then fixed at the boundary. This condition isfield in the low Reynolds number limit, where the inertia
naturally refereed to as the “flux-tied” condition because lo-term and JXB force are neglected. Observe that the
cally the flux through the boundary is preserved. By imposlLagrange multiplier,P, that was used to enforcé.-v=0
ing the surface current in the boundary, one can fix the valuéurns out to be precisely the pressure. Equatfnfor the
of the discontinuity in the tangential component of the mag-nagnetic field is more surprising. Here the Lagrange multi-
netic field and, because its value is fixed in the wall, theplier, Q, also appears as a pressure-like term, but it has no
tangential component of the magnetic field is also fixed atrivial physical interpretation. Sometimes the telaVv
the boundary. This condition, which is properly referred to as—V- VB of Eq. (2) can be written as a gradient of a scalar
the “line-tied” boundary condition, is more difficult to main- function. In which case, the Stokes-type equation for the
tain in experiments because, even though the total currembagnetic field is equivalent to the induction equation for a
can be controlled, local surface currents are induced by theteady magnetic field. Otherwise, upon choosig O, Eq.
plasma or liquid metal. Nonetheless, this condition was use®) becomes the low Reynolds number limit of the induction
in early numerical tearing mode calculatiofsee, e.g., Ref. equation for a steady magnetic field.
39) and we adopt it in the remainder of the present section The above procedure of setting to zero the variational
and in Sec. lll. An oft-used alternative to this condition is to derivatives ofD,, subject to the stated conditions, shows
fix the tangential component of the electric field at thethat the Stokes-type solution is extremal. However, it re-
boundary and then to appeal to Ohm’s law to obtain a conmains to demonstrate that this extremal solution actually is a
dition on the tangential plasma current density at the boundminimum. In fact, it is not difficult to show that the Stokes-
ary. To facilitate calculation it is often assumed that the retype solution is minimum over the set of all continuous
sistivity near the boundary is independent of position, whichdivergence-free fields with piecewise continuous derivatives
is also difficult to justify. Because this condition involves that satisfy the line-tied and no-slip boundary conditions. To
derivatives of the magnetic field, it can be viewed as thesee this we set=v;+u andB=Bs+b, where thevs andBs
magnetic analog of the fluid stress-free condition. We adopt are the Stokes-type solutions of Edd) and (5). Conse-
version of this condition in our calculations of Sec. IV. Intu- quently,u andb vanish at the boundary. Inserting these ex-
itively one expects this condition to result in dynamics that ispressions intd, gives

less rigid near the boundary than line tying. De(V,B)=Dg(Vs,Bs) + De(U,b) + 20(V X vs- VX V)
Although the main object of our consideration is the to-
tal energy dissipation rate per unit mass, +279(VXBs VXb)
=De(Vs,Bg) +D(U,b) —2({u- (vV3vs+f))
D=w(|VxV|?)+ 7(|VxB|?), &) +(7b-V2By)).

Becausers and B, solve Eqs(4) and(5), the term in paren-

. [ ft with
where(f)=[pf(x,y,z)dx dy dZV andV is the volume of theses vanishes and we are left wi

the domainD that contains the fluid, for convenience in the ~ De(V:B)=De(Vs,Bs) +D(u,b)=De(Vs, Bs), (6)
present section we follow Kelleat al. (see, e.g., Ref. 2&and  which establishes the result.

introduce the excess dissipation rate, the dissipation minus The above result is a straightforward generalization to
twice the power input by the external body for@,:=D MHD of analogous results for hydrodynamic flowsee Ref.
—2(f-v). This quantity obviously reduces to the total dissi- 29). The calculation is valid for the particular boundary con-
pation when the body force inputs no energy into the systenditions of fixedv andB at the boundary, but it is not true for
Without taking into account the MHD equations, we seek theall boundary conditions; for instance, it does not hold if the
velocity and magnetic fields that are extremal values of theangential currents are fixed instead of the magnetic field.
excess dissipation, with the assumptions that the fields areor hydrodynamics problems it was proved that if the stress
divergence-free and have fixed values at the boundary. Wis fixed at the boundary, then Stokes flow minimizes the
introduce two Lagrange multipliers—2P(x,y,z) and excess dissipatiofdefined similarly toD, with B—0 and
—2Q(x,y,z) to ensure that the fields are divergence-freetaking into account the power input by the stress at the
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instabilities are possible and the tearing mode can be signifi-
cantly altered.(See, e.g., Ref. 42, where tearing with the
inclusion of both the effects of shear flow and viscosity are
taken into account.This configuration can also be viewed as
that of plane-Couette flow for a liquid metal subjected to a
sheared magnetic field. As noted above, nonlinear stability
was addressed in Ref. 32, and a domain in which the basic
solution is so-called energy stable was calculated. We revisit

x this calculation in Sec. Il A below, and obtain new results.

2 Before proceeding to our calculations of Secs. Il A and

III B that lead to an upper bound on the dissipation rRie
FIG. 1. Sketch of fluid layer with horizontally sheared magnetic and veloc-defined by Eq(3), we make some remarks abddto set the
ity fields. stage. First, for any quantitly that is fixed on the bound-
aries, (|[Vh|?)=(|Vxh|?), where |Vh|*=X, 4(d,hp)?.

boundary. This hydrodynamic result can also be easinThus’

adapted to MHD for the case of fixed tangential current at D= »(|Vv|?)+ 7(|VBI?). (7
the boundary. We do not supply the details here because the
resulting lower bound for the dissipation does not provide
any information for the sheet pinch model we discuss in Se

The problem at hand has six parametgys U, d, v, #,
6, from which we can construct four independent dimension-
Sess numbers. The angtsas one of them and various choices

V. We return to Ea(6) in th ¢ i h di can be made for the other three. We choose the magnetic
e return to Eq(6) in the next section, where we dis- Prandtl number, P:=v/%, the Reynolds number, Re

cuss upper bounds on the dissipation rate. However, befor,e:Ud/V and the equivalent of the Reynolds number con-

doing so we note that another approach is to estimate thﬁlructed with the magnetic fieltl :=B,d/v. By elementary

Iower bound on the excess d|SS|p§1t|on rate by using tria imensional analysis we see that the dissipation rate has the
functions forv andb, rather than solving the MHD equations form

for stationary fields. In Ref. 29 a reciprocal principle was
established, whereby the Stokes solution of a hydrodynamic
problem can be obtained as the maximizing field of another

functional, the maximal value of which is the excess dissi-

pationD,. It appears that the same result can be derived foﬁ/here(ﬁ IS an un_knowr_1 funct|or_1 O.f the dimensionless num-
MHD problems, but we will not pursue this here ers. Our goal is to find restrictions on the valugscan
’ ' obtain.

U3
D:Fd)(Pm, ReM,0), 8

Ill. VELOCITY AND MAGNETIC SHEAR LAYER _ . -
A. Stokes-type solution and its stability

We now consider a layer of fluid that can support shear .
in both the velocity and magnetic fields. We assume a layer Al I(_)W yalues ofM_and Re, one expects the ve_locny and :
of heightd, wherey is the vertical coordinate, with two magnetic fields to be independent. Indee_d, a stationary lami-
periodic boundary conditions in the horizontal directions nar solution of the full set of MHD equations is given by
and z, as depicted in Fig. 1. The unit vectorsj, k are ) v
chosen to correspond to the coordinatesy(z), respec- Vs=g V! and Bs=pr. ©)

tively. It will turn out that our results are independent of the ] S .
existence of any uniform horizontal magnetic field, and thud™0r these fields with linear dependence there is no power

only depend on the shear part of the applied field. We assuniBPut by external forces, so the excess dissipation is equal to
the magnetic field is fixed at the upper and lower boundarieshe dissipatiorD; . Inserting(9) into (7) gives

The magnetic shear is imposed by settidfx,d,z)=Bp U\?2 B,\?

=B,(coshi+sinek) at the upper surfacey=d, and Di=v| | +7 F) : (10
B(x,0,z2)=0 at the bottom surfaceg,=0. HereB, is a con-

stant andp is a unit vector oriented at the angkewith ~ which upon comparison wit8) yields

respect to the-axis as depicted in Fig. 1. The velocity shear 1 1 (M2
is induced by moving the upper surface with constant veloc- ¢|=R— 1+ =N R—) } (11
ity v(x,d,z)=Ui, while keeping the bottom surface immo- € mitte

bile. We use the no-slip conditions for the velocity field; i.e., Because Eqd9) are solutions of the Stokes-type equations

v(x,d,z)=Ui andv(x,0,z)=0. (4) and(5), according to the analysis of Sec. Il leading to Eq.
This plane shear configuration can give rise to a variety(6), the laminar dissipatiofiL0) is a lower bound for the total

of shear and tearing instabilities, and indeed has been thdissipation ofany solution of the MHD equations.

subject of extensive linear stability analyses. When the upper If we increase the values dfl and Re, we expect the

boundary is immobile, the configuration is that of the origi- laminar solution to become unstable and possibly turbulent.

nal tearing mode calculations of Ref. 46ee also Ref. 41  Using the nonlinear evolution equation for arbitrary pertur-

but with the moving upper surface, Kelvin—Helmholtz type bations to the laminar solution, we calculate valueMoénd
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Re below which the integrated sum of the squares of allearly, O is positive definite if and only ifQ is positive

perturbations decreases to zero. This notion of stability ijefinite. Henceforth we considé® and drop the tilde to
generally callecenergy stability We write v=vs+u andB  (gjieve notation. We use the inequalities2u,u,<uZ+u?,
=Bs+b, where the perturbations andb havex, y, andz

components denoted by{,u,,us) and ©;,b,,bs3), respec- [{usb-p—byu-pY|=< 3((b?)+(u?)), (15)
tively. Note, the perturbations are not assumed to be small as

in conventional linear stability analyses. By simple integra- 7 (W=(|Vu[?) (16
tion by parts, we derive the exact evolution equation §or d? = :
=(u?+b?)/2,

The last one, which is sometimes called the Poindare
equality, is true for all vector fields periodic in the horizontal

dt Q(u,b), (12 coordinates and zero at the top and bottom surféses, for
] example, Ref. 19 Thus it also holds for the magnetic field
where the functional and we obtain
B, “ A 1(va® U B
Q(u,b)=w(|Vul?)+ 7(|Vb|%) + —(uz b-p—b, u- p) Sl (I YA
d? ? =32\ % " 24 2da)V?
+B(uu—bb> (13) 1(gm® U _ Bua) ,
d 142 1M2/ +F ?—E_ 2d <b>, (17)

is quadratic in both the perturbation velocity and magnetiGynere o= w/\>0. Note, becausé does not enter into this

fields. o lower bound onQ, our energy stability domain for the lami-
The term energy stability is commonly used becafise 5y sojution will be independent @

resembles the spatial average of the perturbation energy. A sufficient condition forQ to be positive definite is that
However, the real perturbation energy has additional terms ;2_ (Re+M/a)>0 and 272— P, (Re+Ma)>0. Because
that are linear in the perturbations, which arise because ong~.q is arbitrary, we can choose it in an optimum way to
has expanded about a state that possesses free energy, €.doHfhin a maximal value dfl, below which both inequalities
the form of kinetic energy of the equilibrium flow. Such e satisfied. This gives
terms can give rise to linear instability or negative energy
modes(see, e.g., Ref. 43 Consequently, the real perturba- MZ=(27°~Re)(27%/P,—Re), (18
tion energy does not provide a norm for stability, and that iswhere ifM <M the laminar flow is energy stable. Techni-
why the quantity€ is used. Below we follow the common cally this followi becauses/di= — O< — Cu& whéreC
practice of referring t& as the perturbation energy. ~0 is the smaller of the two coefficientsB(),ﬂ) can t?e
Observe, Eq(13) is independent of any horizontal basic integrated by Gronwall's lemma to obtaiﬁ(t’)SS(O)
magnetic field that is independent pf Consequently, any

. . o : X exp(—Cagt).
results obtained concerning energy stability are also indepen In Ref. 32 it was shown that RemaxPl)

dent of such fields. Therefore, the example we are treating i P o
o Mg max(1P,,) =27 defines an energy stability boundary.
actually somewhat more general than initially supposed. An ! . I .

. L : : e plot this result along with our results in Fig. 2, which
horizontal magnetic field applied at the boundaries can beg_ . - . . ;
decomposed into its value at the bottom surface plus a shedepICtS stability domains for different values Bfy in the

P P emax(1P),Mg max(1P,,)] plane. With this choice of

gilgr’ anstjta%?lli¥ the latter part enters into our calculations Ovariables, the result of Ref. 32 is independenPgf, and the
gy Y- domains described by Eq18) are the same foP, and

whig/r\{eiss?l?r:/\étggitc;pl?\}g zﬂge crtlﬁgatlar\]/:rlue g’asnaylvcleithr— P,;l. Therefore it is only necessary to plot tRg,=1 case.
m 9y yp For P,=1 our result is the same as that of Ref. 32, but for

bation to the laminar solution tends to zero. Since this energy, ; .
: " finit tity. thi that toticall m# 1 our domains are larger. This enlargement of the sta-
'S a positive definite quantity, this means that asymptotica ybiIity domain came from the variable change in Et4) that

the perturbation tends to zefm L, norm), and for values of led to a better estimate @&. Note that this in essence fol-

M and Re such thail is smaller tharMe, the stationary oo the general inequalityab=< awa’+ b?/ «, which is
basic state is the only stable solution of the problem. . .
true for any realh andb and « strictly positive.

If _Q is positive for allu andb, then the ba_13|c stationary For Re=0, Eq.(18) reduces tM g = 2 72\P,.. If we use
state is energy stable. We rescale the variables andiuse . . , X
B dB= ith q - his vield the dimensionless parametbt’=Bd/\/v#n instead ofM,
=Auandb=puwith A and positive constants. This yields o the abscissa boundary of the stability domain is inde-
O(u,b)=O(Ti,B) pendent of the magnetic Prandtl number, just as the critical
’ ’ Rayleigh number is independent of the thermal Prandtl num-
ber in thermal convection of ordinary fluids. Fet=0, we
recover the result for plane-Couette instability. Introducing
the magnetic Reynolds numb&,,=ReP,,, the abscissa
u/1_ 1. boundary of the domain is given by max(Re)<2 =2 For
+—{ =0 Uy— —byby). (14 S
v=7, Re=R,,, and the domain is the same as that for an

Voo /R Bu .~ . ~_ .
=p<|VU|2>+F<|Vb|2>+w—u>\<uzb~p—bzu-l)>
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140 " ' " ' : T T " ' B. Upper bounds for the dissipation

Outside the maximal domain in which the basic solution
is energy stable, the flow can be nonstationary and possibly
turbulent. It is in this region that the background method can
be used to find an upper bound on the dissipation rate. We
now describe this method in the context of the shear layer
system at hand.

Like before, we decompose the velocity and magnetic
fields into two partsv=vy+u andB=By+b, wherev, and
B, are nowbackground fieldswhich unlike before need not
be solutions and can be chosen for convenience. We suppose
the background fields satisfy the boundary conditions and
depend only oty, such that,=U(y)i, with U,(0)=0 and
Up(d)=U, and B,=By(y)p, with B,(0)=0 and By(d)
=B,.

Given this decomposition, Eq7) for the spatial average

FIG. 2. Boundary of domains in which the basic state is energy stable for »f the dissipation rate can be written as follows:
shear layer with both velocity and magnetic shear in the

[Re max(1P,,),M max(1P,, ] plane. Below a curve, the laminar stationary 2 It 12 2 IR 12

solution is energy stable for the particular valueRyf. The dashed line is D=w(|Vul*+2Ugus +Ug%) + 7(|Vb|*+2B;- b’ + By

the result from Ref. 32, which is equal to our result #y=1. The con-

tinuous lines are our results fé,,>1. These curves are the same . . .

andp-! " RO where prime denoteg/dy. Adding D/2 to the evolution
mo-

equation for€=(u?+b?)/2 yields

M max(1,Pm)

Re max(1,Pm)

(19

dé’D}'

+
ordinary fluid. Forv= 7, Re<R,,, the boundary of the do- dt 2
main corresponds to a lower value of Re than that for an
ordinary fluu;) whereF(By,U,) is a functional that depends only the back-

Although it is known from linear stability analyses that grou_nr_j fields andD(u,_b,Bb_,Ub) 'S a functlonal that is qua-
velocity shear can either stabilize or destabilize MHD equi_dratlc in the perturbation fields. These functionals are defined
librium configurationg(see, e.g., Ref. 44a physical expla- as follows:
nation for the stability boundaries is not forthcoming and this
points to the limitation of energy stability arguments. Non-
linear energy arguments, unlike linear stability analysis, have
no eigenfunctions and eigenvalues, and one cannot always be P(u,b,B,,U;)= —<|Vu|2>+ <|Vb|2)+(u2b B,
sure of what causes the instability. Results may be due either
to calculational limitations or to the physics. For example, in —bou-BL)+ (U} (Uugup—byb,)). (22)
the present situation, a larger stability domain could be
achieved by searching for the maximal valueMéfand Re  Now, if we time averag€20) so thatd&/dt drops out and if
such thatQ is positive definite. These maximal values definewe find background fields such th#@ is positive definite,
the energy stability domain in theM, Re) plane analogous  then we obtain an upper bound fBx the time average of the
to the critical energy Reynolds number obtained for hydro—issipation rate,
dynamic instabilities in Refs. 28 and 31. Because our esti-
mates above are not sharp, the valuesadnd Re we obtain D<F(By,Uyp). (23
are inside this maximal energy stability domain. Note that in
the caseM =0, this maximal domain can be easily computed  Note that addingD/2 removed terms linear in andb
from (13) because the quadratic form is then the sum of twathat arise from the dissipation terms @) and(2). This is a
guadratic forms depending separatelywoandb. The maxi-  key point, because in removing these terms one is left with
mal domain for energy stability can be shown to satisfythe form F/2—7P, where P being quadratic is easily
max(ReR,)=<82.1... . Thus, foM =0 the sharp result and bounded.
the maximal domain are the same up to a numerical factor For the magnetic(respectively, velocity background
and have the same dependencédgn It is also possible that field, we use a piecewise linear function equaBg?2 (re-
the stability domain might be enlarged by incorporating otherspectively,U/2) for §,<y=<d— &, (respectively,s,<y=<d
ideal MHD invariants into the calculation, which could help — §,) and of slopeB,,/(248,) [respectivelyU/(24,)] for the
to identify a different positive definite quantity besidgslt  two boundary layers, as sketched in Fig. 3. Note that both
was for stability reasons like this that Kruskal, Oberman,boundary layer thicknesse§, and 8,,, must each be smaller
Gardner, and others sought invariants in the early days ahand/2.
plasma physicéca. 1960, and we will never be sure whether Upon integration by parts and making use ofltto’s
or not we have them all. inequality, it is easy to show that

-P, (20)

F(By ., Up)=w(U,%) + n(BL?), (21)
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Bb or Ub

)

FIG. 3. Piecewise linear background field. The thickness of the boundary

layer is 6 (8, for the magnetic field and,, for the velocity field.

B, 1
|(Bj(byu-p—usb-p))| < “8b<a|Vu|2+ZIVb|2>,
U J
[(Up(usuz—bibp))| < —g=(|Vul?+|Vb|?)
(see, e.g., Ref. 19and hence show that
v US, Bydpa . [m U8, B
P=l277% s ><|V“| 2778 Ba
X(|Vbl?), (24)

where, as in Sec. lllAp>0 is arbitrary. Note that does
not enter into this bound foP and, consequently, the upper
bound for the dissipation will also be independent of it.

We first choose the thickness of the boundary layers s
that P=0 and then we minimizg21) evaluated on our
choice of background fields,

1 (vu2 9B?
T=%d\ e T,

with the constraints thad, and 5, are each smaller thaif2.

If 6, is fixed, the minimum ofF is obtained for the highest
possibledy, . Introducingé:=U 4, /v, we calculate from the
coefficients of(24) the maximums,, that ensures positivity
of P. Following the same procedure that let(t8), we ob-
tain

: (29

b
14

B,

=9(&)=V(4—&)(4lPy—§), (26)

whereé<min(4,4P ). Now let 7, be the upper bound @&
corresponding to a given value of the paraméiere.,

- _u3(1 . C )

adlé gd)

whereC:= nBﬁ/(vU3). Minimizing F, over ¢, we find that
the minimum is achieved fo€ equal to&,, the positive
solution of

[(4=&)(4IPn—§)]%?

§2

In terms of ¢ the two constraints on the thickness of the
boundary layers aré=Re/2 andg(&§)<M/2. If {,=Re/2,

(27)

=C(2+2/P,— ). (28

B
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FIG. 4. Value of the upper bound for the dissipatibihd/U?® as a function
of Re forP,=1 andC:=7B3/(vU%)=2.

then the boundary layer for the velocity @&/2 and ¢
=Re/2. If g(§)=M/2, then the thickness of the magnetic
boundary layer id/2 andg(¢)=M/2. Such values of the
thicknesses of the boundary layers are obtained for low val-
ues of Re and/. In which case, the dissipation is that of the
laminar solution. For higher values of Re akld the upper
bound is obtained fof27) evaluated att=¢,, which re-
quires numerical evaluation.

In Fig. 4 we plotD*d/U?3, whereD* is the upper bound
for the dissipation, as a function of Re f@=2 andP,,
1. At low values of Re;D*d/U? is decreasing. This be-
avior occurs when the dissipation is equal to the laminar
dissipation rate and the thickness of the boundary layers are
d/2. For high Re,D*d/U® approaches an asymptote that
depends onC and P,. We plot the high Re value of
D*d/U? as a function oP,, for different values of in Fig.
5. WhenR; is large¢ is obtained from Eq(28), which can
be expanded along witt26) in the limits of small and large
P, and used with27) to obtain the asymptotic behaviors

p'dU®

10*

FIG. 5. Value of the upper bound for the dissipatiBhd/U? for infinite Re
as a function ofP,, for C=10 (O), C=1 (d), andC=0.1(<). The con-
tinuous line depicts the asymptotic behavior(29).
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10° , : conditions are adopted. We assume no-slip and that both of
the bounding surfaces are at rest; ve=0 aty=0 andy
=d. The same notation as shown in Fig. 1 is ugéihte, the
10% - 1 same bound we obtain can be derived with the stress-free
conditions,dvy/dy=dv,/dy=0 aty=0 andy=d.) In ad-
dition, we assume that the normal component of the mag-
netic field, By, vanishes at both the upper and lower sur-
faces, and that the horizontal current is fixed toJgk at
both surfaces. In terms of the magnetic field this condition
givesdB, /dy=J, anddB,/dy=0.
An equilibrium solution that satisfies these boundary
conditions isvy=0, By=(Jpy+ C,)i+C,k, whereC; and
- . 2 C, are constants. The dissipation rat@=v(|Vv|?)
10 0 e 10 10 +7(]VB|?), evaluated on this solution B,= 7J3. Because
the result of Eq.(6) for D, was obtained with different
FIG. 6. Value of the upper bound for the dissipati¢h as a function of Re boundary conditions, we cannot assume thgtis a mini-
for M=2 andPp=0.1(=), Pn=1 (=), andPp=50 ). mum for the dissipation rate. Moreover, the evolution equa-
tion for £ is independent of any horizontal uniform magnetic
field, and so we can s&,=C,=0.

* x
lim | lim D_gd = 1 and lim | lim D_sd 2&, Again we writeB=B,+b, where the background field
Pm—0\ Re— U 8 Pm— | Re—o U 8 is chosen to be of the forB,=B;(y)i, with the boundary
(290 conditionsB;(0)=B;(d)=J,. For the present problem, we
which are plotted as a continuous line in Fig. 5. do not expand the velocity field about a background. The

In terms of the nondimensional dissipatidp*d/U3  €quation fore=(v?+b?)/2 is now
=¢*(Py,Re,M). If we fix M and P,,, ¢* decreases for

low values of Re and tends to a constant at high Re. We plot d_5+ 2 = 9 — (30)
¢* as a function of Re foM =2 and different values d®,, dt = 2 2
in Fig. 6. The asymptotic behavior ap* at fixed M is ith

Wi

liMge_¢* =max(1P)/8. If we fix Re andP,, and varyM,
¢* decreases and tends to a constant. The asymptotic behaé(— B '2
ior of D* is thenD* =~BY/(8dPY?) for M—. (B1)=n(B1%),

The dependence @f* with P, for infinite Re and fixed
M is similar to that of the boundary of the domain in which %y 1, B, )= K<|Vv|2>+ 2<|Vb|2)+<B'(v2b1—vlb2)>
the basic state is energy stable. Here again a possible expla- 2 2 !
nation of this scaling is that the bound does not depend on J
any uniform horizontal magnetic field. Therefore, if such a — ﬂf b, dx dz (31)
field is applied, the total dissipation can increase whgn Vs
decreases because there is more Ohmic dissipation. How- ) )
ever, this linear increase witR,, differs from what is ex- where in the last term of31) S der_lotes the bound_lng_sur-
pected based on heuristic turbulence ideas. For example, [f¢eS located ay=0 andy=d. This surface contribution,
the early work of Ref. 45 it was assumed that the magneti(‘,‘_"h'Ch arises because of fche boundary cor_wdmons of this sec-
and kinetic energies come into equipartition and that energ$/on: ¢an be changed into a volume integral by using
is dissipated by viscosity and resistivity at an equal rate. Thig sP1dx dZV=(db,/dy). To bound this surface term, we
idea causes and 7 to enter into various formulas in a sym- °PServe
metric way (e.g., the Kolmogoroff scale is determined by a b
modified Reynolds number witlr replaced byv+ ), and |Vb|2—2J0—1> -2 (32)
with this line of argument one expects the dissipation to ap- ay
proach a finite value when both diffusion coefficientand »
tend to zero. It is possible to obtain a scaling law where th
Ohmic dissipation dominates the viscous dissipatsse, for
example, Ref. 45 but whether or not this is a physical effect
remains to be determined.

here we have use®@b|?=(db,/dy)?. We use a piecewise
inear profile forB; of the formB;(y)=0 if s<y<d-é,
Bi(y)=—Jo(y— )/ if y<46, andB;(y)=Jo(y+—d)/5
if y=d— 6. The expression foB; can be deduced by trivial
integrations, but it does not enter into the upper bound result.
We get (Bj?)=2J,6/(3d). We then use two results:
IV. PLANE SHEET PINCH lims_o(B,2)=0 and lims_oR(v,b,Bp)=— 732/2. There-

Next we study a model of a sheet pinch composed of afore, the limit 5—0 of Eq. (30) gives

MHD fluid located between two horizontal surfaces sepa-
rated by a distancd. This problem has the same geometry d_5 D

< 2
as that of the shear layer of Sec. lll, but different boundary  dt * 2 =% (33
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Thus upon time averaging as in Sec. llIB, we obtain theboundary conditions that describe nonideal conductors and
following upper bound for the time average of the dissipa-insulators. Also, our estimates of the quadratic forms in the
tion: D* = nJS. case of the shear layer where rough. The domain in which
Note, had we chosen the stress-free and no penetratidhe basic state is energy stable and the upper bound for the
boundary conditions for the velocity field, we obtain exactly dissipation can certainly be improved by using more accurate
the same results because E80) holds also in this case. inequalities. And, as noted before, they may also be im-
Our conclusion is that the upper bound for the dissipaproved by taking into account the dissipative dynamics of
tion is equal to the dissipation for the steady solution. A firstother ideal invariants, such as the magnetic helicity or the
consequence is that this bound cannot be improved if theross helicity.
manifold over which we optimizé® contains the steady so-
lution. Another consequence is that the d_issipation tends 1 CKNOWLEDGMENTS
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