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Abstract

For the commemorative Issue Dedicated to the Memory of Jackson Rea Herring

Reproducing complex phenomena with simple models marks our understanding of the phenom-

ena themselves and this is what Jack Herring’s work demonstrated multiple times. In that spirit,

this work studies a turbulence shell model consisting of a hierarchy of structures of different scales

`n such that each structure transfers its energy to two substructures of scale `n+1 = `n/λ. For

this model we construct exact inertial range solutions that display intermittency ie absence of

self-similarity. Using a large ensemble of these solutions we investigate how the probability distri-

butions of the velocity modes change with scale. It is demonstrated that while velocity amplitudes

are not scale invariant their ratios are. Furthermore using large deviation theory we show how the

probability distributions of the velocity modes can be re-scaled to collapse in a scale independent

form. Finally, we discuss the implications the present results have for real turbulent flows.
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I. INTRODUCTION

Constructing simple models that reproduce the phenomenological complex behavior of

fluid flows has always been a driving force in turbulence research and is a direction in which

Jack Herring’s work excelled. There are numerous works in his career explaining complex

phenomena in fluid dynamics with simplified models [1–13]. In particular the energy cascade

in scale space is a phenomenon that has met various modeling approaches in the literature

as the direct interaction approximation [1, 5, 14–16], eddy damping quasi-normal Markovian

models, [17–20] energy diffusion models [21, 22] and shell models [23–26]. Such models have

lead to predictions about the direction of cascade, the power-law exponents of the energy

spectra and intermittency. Intermittency that still escapes a firm quantitative understanding

manifests itself as a deviation from self-similarity and from the prediction obtained on purely

dimensional grounds. In particular, shell models have been used to study intermittency

for many years now. Recent reviews can be found in [27, 28]. Typically, shell models

quantify all structures of a given scale ` by a single real or complex amplitude U`. As

such, spatial intermittency that is linked to the appearance of rare but extremely intense

structures, can not be captured this way. Nonetheless, the temporal variation of the modes

Ul does display intermittency as has been demonstrated by many models [24–26, 29]. This

type of intermittency has been recently linked to the fluctuation dissipation theorem [30].

Furthermore a solvable (but not energy conserving) model was also derived and studied in

[31].

In the spirit discussed in the first paragraph we here construct and study a binary tree shell

model for turbulence that displays intermittency. In this model energy at each scale is split

between multiple different structures. Each structure transfers its energy into two smaller

scale structures of smaller scale building a binary tree structure as shown in figure 1. In this

way the number of structures increases exponentially as smaller scales are reached. Such

models with binary structure were introduced in the 1990s but have not been investigated

extensively [32, 33]. Here, we follow a similar analysis as in [34] where stationary solutions

of non-binary shell models were investigated. We demonstrate that such analysis allows the

construction of exact stationary solutions that display intermittency.
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II. MULTI-BRANCH SHELL MODELS
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FIG. 1. A sketch of the two branch (µ = 2) shell model. Each node marked by blue circles represents

one dynamical mode of amplitude Un,m marked by the two indexes n,m where n characterizes the

scale `n = `0λ
n and m characterises the number of the mode in that scale. In each scale n there

are Mn = µn−1 modes.

We consider the evolution of a turbulent flow modeled by the real amplitudes Un,m of

structures of scale `n = 1/kn where

kn = λnk0 or `n = `0/λ
n (1)

and 1 < λ. At scale `1 there is one structure whose amplitude is given by U1,1, this structure

will transfer its energy to µ ∈ N structures of scale `2, each one of which will transfer its

energy to µ structures of scale `3 and so on as shown in figure 1 for µ = 2. The volume of

each structure is given by Vi = `Dn where D is the spatial dimension. If the cascade process

is space filling the number of substructures µ is related to λ and D by

λD = µ. (2)
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Accordingly at energy scale `i we have Mn = µn−1 (with M0 = 1) structures so that if we

consider N such scales we have a total of

Z = 1 +
N∑
n=1

Mn =
µN − 1

µ− 1
+ 1 (3)

structures. The energy of every structure is given by

En,m =
1

2
ρU2

n,mVn =
1

2
ρU2

n,m`
D
n (4)

so the total energy is given by

E =
1

2

N∑
n=0

1

Mn

Mn∑
m=1

U2
n,m (5)

where ρ is from now on taken to be unity.

In the Desnianskii & Novikov model [23] structures of scale `i interact with only structures

of scale `n+1 and `n−1 and there is no branching µ = 1. The amplitudes Un then follow the

following dynamical equation:

U̇n = akn[Un−1Un−1 − λUnUn+1] + bki[UnUn−1 − λUn+1Un+1]− νk2Un + Fn (6)

For ν = 0 and Fn = 0 this system conserves the energy 5 (with Mn = 1) for any value of

a, b. The flux of energy across a scale `n is given by:

Πn = aknUnUn−1Un−1 + bknUn,mUn,mUn−1. (7)

Expanding on the Desnianskii & Novikov model allowing each structure to branch out to

two (µ = 2) smaller scale structures Ui,j results in the following dynamical equation:

U̇n,m = akn

[
Un−1,m∗Un−1,m∗ −

λ

2
(Un,mUn+1,m′ + Un,mUn+1,m′+1)

]
+ (8)

bkn

[
Un,mUn−1,m∗ −

λ

2
(Un+1,m′Un+1,m′ + Un+1,m′+1Un+1,m′+1)

]
(9)

−νk2
nUn,m + Fn,m (10)

where ν is the viscosity, Fn,m is the forcing and a, b are again free parameters. The branching

diagram for the model given in 10 is given in figure 1. The integer m′ and m′+ 1 correspond

to the index of scales `n+1 with which the mode Un,m is linked where m′ is explicitly given

my m′ = 2m − 1 and m∗ corresponds to the index of scale `n−1 linked to Un,m given by

m∗ = Int[(m + 1)/2] as illustrated in the left panel of figure 3. For ν = 0, Fn,m = 0 and
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for any value of a, b the system conserves the energy 5 where now Mn = 2n−1. The energy

flux Πn,m through a scale `n and structure (n,m) (expressing the rate energy from the large

scales (i < n) is lost to the smaller scales (i ≥ n) through the structure m due to the

non-linearity is given by

Πn,m = aknUn,mUn−1,m∗Un−1,m∗ + bknUn,mUn,mUn−1,m∗ (11)

The total flux through scale `n is then given by

Πn =
1

Mn

Mn∑
m=1

Πn,m (12)

Conservation of energy by the non-linear terms implies that at scales smaller than the forcing

scale and larger than the dissipation scale (`ν) the flux Πn is constant and equal to the energy

injection/dissipation ε

Πn = ε, 1 < n� nν (13)

where `ν = (ν3/ε)1/4 and nν = logλ(`1/`ν). The range 1 < n� nν where forcing and viscous

effects can be neglected is called the inertial range.
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FIG. 2. Energy spectrum from a numerical simulations of the model 10. In the left panel the red

points correspond to Un,m averaged over m for a given n while the blue points correspond Un,m

for all n,m. The right panel displays Un,m as a function of m for n = 9.

In figure 2 we plot the energy spectra U2
n,m as a function of n with blue dots, while the red

dots indicate the averaged value U2
n = (

∑
m U

2
n,m)/Mn from a realisation of a simulation of

eq. 10 performed with N = 14, λ = 21/3 forced at n = 1. The averaged value follows power-

law close to the Kolmogorov scaling U2
n ∝ k

−2/3
n although individual U2

n,m can vary orders
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of magnitude from this mean value. This indicates that higher order statistics can deviate

from the dimensional analysis spectrum. The present model is computationally expensive

as its complexity increases as 2N . As a result it is not easy to obtain a long inertial range

(large N) to investigate the resulting power-law behaviors numerically. On the other hand

however its simplicity allows for analytical treatment which is what we are examining in the

next section by constructing exact inertial range solutions of arbitrary large n.

III. INERTIAL RANGE INTERMITTENT SOLUTIONS

y

x

FIG. 3. This is a wide figure.

We look for stationary solutions of eq. 10 such that in the inertial range where forcing

and dissipation can be ignored. Stationarity implies that for any n,m:

0 = a

[
Un−1,m∗Un−1,m∗ −

λ

2
(Un,mUn+1,m′ + Un,nUn+1,m′+1)

]
+ b

[
Un,mUn−1,m∗ −

λ

2
(Un+1,m′Un+1,m′ + Un+1,m′+1Un+1,m′+1)

]
(14)

The way we proceed to find such a solution is the following: Given Un−1,m∗ and Un,m we look

for Un+1,m′ and Un+1,m′+1 such that the equation above is satisfied; then we proceed to the

next scale and search for Un+2,2m′−1 and Un+2,2m′ and so on finding a recursive relation that

gives all Un,m. The solutions only depend on the relative amplitude of Un,m so we define

their normalised ratio as:

rn,m =
Un,mλ

1/3

Un−1,m∗
(15)
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To simplify the notation we denote

r = rn,m, x = rn+1,m′ y = rn+1,m′+1 and b = cλ1/3 (16)

then stationary solutions of 14 satisfy

0 = U2
n,mλ

2/3

(
a

[
1

r2
− 1

2
(x+ y)

]
+ c

[
1

r
− 1

2

(
x2 + y2

)])
(17)

that simplifies to (
x+

a

2c

)2

+
(
y +

a

2c

)2

= 2

(
a

cr2
+

1

r
+

a2

4c2

)
. (18)

which has real solutions only if

0 ≤ a

cr2
+

1

r
+

a2

4c2
= R2. (19)

The solutions x, y form a circle in the x, y plane centered at −a/2c, a/2c and radius R

depicted in the right panel of figure 3. It is important to note that any point x, y in this

circle is a solution of 18, and thus we have multiple possible solutions. The condition 19 is

satisfied for positive r, a, c that will be the focus of the present investigation. Returning to

the rn,m notation the values of rn+1,m′ and rn+1,m′+1 that satisfy the stationarity condition

can be written in full generality as:

rn+1,m′ = − a

2c
+
√

2 cos(θn,m)

√
a

cr2
n,m

+
1

rn,m
+

a2

4c2
(20)

rn+1,m′+1 = − a

2c
+
√

2 sin(θn,m)

√
a

cr2
n,m

+
1

rn,m
+

a2

4c2
(21)

where θn,m is arbitrary. Equations 20,21 form a recurrence relation out of which given r1,1

and a choice of θn,m one can construct all rn,m. Then, given rn,m one can obtain Un,m based

on 16 as

Un,m = U1,1 r1,1 r2,m1 r3,m2 . . . rn,m (22)

where m1,m2, . . . are the m one crosses along the path from (1,1) to (n,m) as shown by

the red line in figure 1. This recurrence relation however does not always lead to bounded

solutions of rn,m. For some values of θn,m the resulting x, y can be negative or zero. Negative

values can lead to un-physical solutions with negative flux from the small to the large scales

which are not possible (for stationary solutions) since no energy source is assumed at small
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scales. If x or y is zero it means that the particular branch is zero for all subsequent values.

We need thus to limit the choice of θ so that positive and finite rn,m are obtained.

The simplest case is obtained by choosing θn,m = π/4. It corresponds to an equal part

of energy being distributed to the left and the right branch and leads to the Kolmogorov

solution rn,m = 1 or in terms of the velocity Un,m = λn/3) (where U1,1 = 1 is assumed). It

corresponds to a finite flux non-intermittent (self-similar) solution.

Intermittency however can manifest itself if we chose θn,m 6= π/4 so that energy is not

equally distributed in the left and right branch. Here we will chose θn,m randomly with

uniform distribution in the range θmin = π/4 − ∆θ < θn,m < π/4 + ∆θ = θmax for a given

∆θ < π/4. Then it can be shown that for c > a there exists rmax > rmin > 0 such that for all

r ∈ (rmax, rmin) both x ∈ (rmax, rmin) and y ∈ (rmax, rmin). For c ≤ a the recurrence relation

converges either to rn,m = 0 or rn,m = ∞ and we are going to limit ourselves only to the

c > a case here. To obtain rmax, rmin one needs to note that from the recurrence relation

21 the largest value of rn+1,m′ = rmax is obtained when θ = θmax and rn,m = rmin while the

smallest value of rn+1,m′ = rmin is obtained when θ = θmin and rn,m = rmax. This leads to

the following relations

rmax = − a

2c
+
√

2 cos(θmin)

√
a

cr2
min

+
1

rmin

+
a2

4c2
(23)

rmin = − a

2c
+
√

2 cos(θmax)

√
a

cr2
max

+
1

rmax

+
a2

4c2
. (24)

(25)

We arrive at exactly the same relations if we examine eq. 21.
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We solved equations 23,24 numerically and the results are shown in the left panel of figure

4 for three different values of c/a. For ∆θ = 0 only the Kolmogorov solution is allowed with

rmax = rmin = 1. As ∆θ = 0 increases rn,m cover a wider range of values up until a critical

value of ∆θ = ∆θc for which rmin becomes zero and rmax diverges. The value of this critical

angle as a function c/a is shown in the right panel of the same figure. ∆θc is zero for c/a = 1

and grows for larger values approaching ∆θc = π/4 as c/a→∞ (not demonstrated here).

For any given choice of ∆θ < ∆θc we can construct an ensemble of exact solutions of

the present model by following the recurrence relations 20,21 picking each time randomnly

θn,m ∈ (π/4 −∆θ, π/4 + ∆θ) and reconstructing Un,m by eq. 22. We note that other than

c/a the only other parameter that controls the ensemble of solutions considered is ∆θ/∆θc

that provides a measure of how much our ensemble deviates from the Kolmogorov solution

∆θ = 0. This process has direct links with the random cascade models studied in the past

[35–37], however we need to note that unlike the random cascade models the solutions found

here are energy conserving.

IV. STATISTICAL BEHAVIOR AND INTERMITTENCY

In this section we examine a large ensemble of the exact solutions shown in the previous

section and investigate their properties. For our investigation we have set c/a = 2 and we

consider only a single path (as the one shown in red in figure 1) and not the full tree. The

differences in the statistics between the two choices (single path and full tree) lie in the

cross correlations between different modes that are not captured in the single path. As an

example we mention that the flux Πn in eq. 12 is identically equal to ε for every realization

while the flux Πn,m given in eq.11 fluctuates and only its mean value is equal to ε

〈Πn,m〉 = Πn = ε.

Along such path we consider three different ensembles for ∆θ/∆θc = 0.1, 0.5, 0.9 each one

composed of 107 different solutions. The solutions were constructed by picking randomly

θn,m for each node examined, from a uniform distribution between π/4−∆θ and π/4 + ∆θ.

The value of n varied from n = 1 to n = 200. We note that if the full tree was investigated

instead of a single path for such large value n it would require to solve for 2200 degrees of

freedom that is computationally unattainable.

9



10−1 100 101
Un,mλn/3

10−6

10−4

10−2

100
P U

n= 1
n= 5
n=25
n=50
n=100
n=200

10−2 10−1 100 101
Un,mλn/3

10−8

10−6

10−4

10−2

100

P U

n= 1
n= 5
n=25
n=50
n=100
n=200

10−3 10−2 10−1 100 101 102
Un,mλn/3

10−7

10−5

10−3
10−1

P U n= 1
n= 5
n=25
n=50
n=100
n=200

0.8 0.9 1.0 1.1 1.2
rn,m

10−5

10−3

10−1

101

P r

n= 1
n= 5
n=25
n=50
n=100
n=200

0.0 0.5 1.0 1.5 2.0
rn,m

10−5

10−3

10−1

101

P r

n= 1
n= 5
n=25
n=50
n=100
n=200

0 1 2 3
rn,m

10−5

10−3

10−1

P r n= 1
n= 5
n=25
n=50
n=100
n=200

FIG. 5. Top panels: PDFs PU (Un,m) of the velocity modes Un,m for the three different ensembles

(left ∆θ/∆θc = 0.1, center ∆θ/∆θc = 0.5 and right ∆θ/∆θc = 0.9) for different values of n.

Bottom panels: PDFs Pr(rn,m) of the velocity ratios rn,m for the same ensembles and the same

n.

In the top panels of figure 5 we plot the probability distribution function (PDF) PU(Un,m)

of the variable Un,m for the three values of ∆θ/∆θc = 0.1, 0.5, 0.9 (from left to right) and

different values of n. The PDFs of different values of n do not seem to overlap, although

the x-axis has been normalised by the Kolmogorov prediction λ−1/3. Instead as large values

of n are reached the pdf’s display larger tails reaching values of Un,m much larger and much

smaller than its mean value. The closer ∆θ is to the critical value ∆θc the larger this

deviation is. On the other hand, the PDFs Pr(rn,m) of the ratios rn,m that are displayed in

the lower panels of figure 5 do not display such widening. For sufficiently large n all PDFs

collapse to the same functional form that depends only on the choice of ∆θc. This implies

that while Un,m are not self-similar under scale transformations their ratios rn,m are!
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FIG. 6. Top panels: PDFs PΠ(Πn,m) of the fluxes Πn,m for the three different ensembles (left

∆θ/∆θc = 0.1, center ∆θ/∆θc = 0.5 and right ∆θ/∆θc = 0.9) for different values of n. Bottom

panels: PDFs Pπ(πn,m) of the velocity ratios πn,m for the same ensembles and the same n.

The same behavior can be seen for the energy fluxes Πn,m. In the top panels of figure

6 we plot the PDFs PΠ of Πn,m for the same values of ∆θ and n as in figure 5. As with

the velocity amplitudes Un,m as n is increased the PDFs of Πn,m widen without collapsing

to to an n-independent form. In the lower panel of the same figure we plot the the PDFs

Pπ(πn,m) of the flux ratio πn,m. It is defined as

πn,m =
Πn,m

Πn−1,m∗
(26)

that after little algebra and using 11 and 20 leads to

πn+1,m′ = 1 + f(rn,m) cos(2θn,m) (27)

where f(r) = 1 + (a/2c)2r2/(a/c + r). The flux ratio, much like the velocity ratio rn,m,

does converge to an n independent PDF as large values of n are reached. Furthermore, the

functional form of this PDF appears to be flat limited by a minimum and a maximum value

of πn,m. This appears to be so because f(r) in 27 varies little with r for small variations of

r and the variations of πn,m are mostly controlled by the variations of θn,m.
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FIG. 7. Top panels: PDFs PU (Un,m) for the different cases examined normalised using the

predictions of large deviation theory. (left ∆θ/∆θc = 0.1, center ∆θ/∆θc = 0.5 and right ∆θ/∆θc =

0.9) Bottom panels: The same for the PDFs PΠ(Πn,m).

Given that the PDFs of rn,m and πn,m arrive at an n-independent form at large n has

some implications for the evolution in n of the PDFs PU , PΠ. Both Un,m and Πn,m can be

written as a product of all rn′,m and πn′,m with n′ ≤ n. As a result the logarithms of Un,m

and Πn,m can be written as

ln (Un,m) = ln (U1,1) + nLU , ln (Πn,m) = ln(Π1,1) + nLΠ (28)

where LU and LΠ stand for the mean value of the logarithms of rn,m and πn,m respectively:

LU =
1

n

n∑
n′=1

ln(rn′,m), and LΠ =
1

n

n∑
n′=1

ln(πn′,m). (29)

The properties of Un,m and Πn,m remind the random cascades studied in the past [35–37].

However while the random cascade models were not conserving energy in the present model

energy is conserved exactly. An other important difference here is that rn′,m and πn,m are

not independent but each one depends on the value of the previous one. Nonetheless we can

proceed assuming such independence although not entirely correct. In that case PU and PΠ

can be reconstructed using large deviation theory [38]. In this framework LU and LΠ follow

for large n a distribution of the form

PLU
(LU) ∝ exp[−nIU(LU)], and PLΠ

(LΠ) ∝ exp[−nIΠ(LΠ)] (30)
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where IU and IΠ are called the rate functions that can in principle be obtained from Pr and

Pπ using the Legendre-Fenchel transform [38]. Here we limit ourselves in noting that if PLU

and PLΠ
follow the form of eq. 30 then the distribution of Un,m and Πn,m that are linked to

LU and LΠ by 28 should take the form

PU(Un,m) ∝ exp

[
−nIU

(
1

n
ln

(
Un,m
U1,1

))]
, PΠ(Πn,m) ∝ exp

[
−nIΠ

(
1

n
ln

(
Πn,m

Π1,1

))]
(31)

where only the largest terms in n are kept. To test this prediction we plot in fig-

ure 7 (PU/P
∗
U)1/n as a function (Un,m/U

∗)1/n (top panels) and (PΠ/P
∗
Π)1/n as a function

(Πn,m/Π
∗)1/n where U∗ and Π∗ corresponds to the value the probability obtains its max-

imum P ∗U , P
∗
Π. With this normalization the PDFs both for Un,m and for Πn,m collapse,

indicating that the large deviation principle works well for this model.
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FIG. 8. Top panels: Structure functions up to 10th order for the three different values of ∆θ

examined.(left ∆θ/∆θc = 0.1, center ∆θ/∆θc = 0.5 and right ∆θ/∆θc = 0.9) Bottom panels:

The resulting exponents ζp.

As a final look in the intermittency problem we display in the top panels of figure 8 the

first ten structure functions Sp(`p) defined as

Sp(`n) =
〈
Up
n,m

〉
(32)
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where the angular brackets stand for ensemble average. The structure functions have been

normalized by the Kolmogorov scaling to emphasise the differences. The structure functions

are fitted to power-laws

Sp(`n) ∝ `ζpn (33)

and the measured exponents ζp are plotted in the lower panels of figure 8. The exponents

show similar behavior with real turbulence displaying larger values for p < 3 and smaller

values for p > 3 while the exact result ζ3 = 1 is satisfied. It is worth noting that the devia-

tions from the Kolmogorov scaling are not universal but depend on our choice of ensemble

that is controlled by ∆θ.

V. DISCUSSION AND CONCLUSION

One can argue that the exact stationary solutions obtained in this work little do they

have to do with real turbulence that displays chaotic spatio-temporal dynamics. This maybe

true and multy branch models with two neighbour interactions as in [32, 33] that display

chaotic dynamics should be further investigated. The present results however do point to a

clear instructive demonstration of how intermittency can appear in realistic flows and how

it can be modeled. Furthermore, it leads to a series of clear messages which are described

bellow that are of great use in future turbulence research and can guide measurements in

numerical simulations and experiments.

First, we note that intermittency appearing in stationary fields found here comes in

contrast with the typical shell model studies in single branch models for which intermittency

comes from the temporal dynamics alone as only a single structure exists for each scale

`n. In the latter case intermittency has been linked to the temporal dynamics through

the fluctuation dissipation theorem [30]. In reality, both temporal and spatial dynamics

contribute to the presence of intermittency and their role needs to be clarified.

In the present model randomness comes from our choice of θn,m and the resulting in-

termittency depends on that choice. In reality, (or in more complex shell models) such

randomness will come from local chaotic dynamics that need to studied in order to clarify

which processes lead to enhanced cascade and with what probability.

Perhaps, the most interesting implication of this work is that it suggests new ways to

plot data from experiment and numerical simulations. One way suggested by this work is

14



instead of focusing on the PDFs of velocity differences experimental or numerical data could

focus on the PDFs of ratios of velocity differences. The latter are shown in this work to

become scale independent and could lead to more precise measurements. An alternative

way is to re-scale the PDFs of velocities differences using the large deviation prediction 30

as was done in figure 7. Of course in realistic data n ∝ ln(L/`n) is not precisely defined and

an optimal choice should be searched for.

A good model of a complex phenomenon, to the authors opinion, is not one that quan-

titatively reproduces experimental measurements through parameter fitting but rather one

that unravels the processes involved. To that respect we believe that the present model and

results are very fruitful. We only hope that this work would come close to the standards

set by Jack Herring. AA met Jack Herring during his ASP post doc in 2004-2006. Jack is

fondly remembered stopping by the offices of post-docs just to see if they are OK. He will

be greatly missed.
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project No. ANR-17-CE30-0004).
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