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a b s t r a c t

Turbulent flows are characterized by the non-linear cascades of energy and other inviscid
invariants across a huge range of scales, from where they are injected to where they are
dissipated. Recently, new experimental, numerical and theoretical works have revealed
that many turbulent configurations deviate from the ideal three and two dimensional
homogeneous and isotropic cases characterized by the presence of a strictly direct and
inverse energy cascade, respectively. New phenomena appear that alter the global and
local transfer properties. In this review, we provide a critical summary of historical and
recent works from a unified point of view and we present a classification of all known
transfer mechanisms. Beside the classical cases of direct and inverse energy cascades, the
different scenarios include: split cascades for which an invariant flows both to small and
large scales simultaneously, multiple/dual cascades of different quantities, bi-directional
cascades where direct and inverse transfers of the same invariant coexist in the same
scale-range and finally equilibrium states where no cascades are present, including the
case when a large scale condensate is formed. We classify all possible transitions from
one scenario to another as the control parameters are changed and we analyse when and
why different configurations are observed. Our discussion is based on a set of paradigmatic
applications: helical turbulence, rotating and/or stratified flows, magnetohydrodynamics
(MHD) turbulence, and passive/active scalars where the transfer properties are altered as
one changes the embedding dimensions, the thickness of the domain or other relevant
control parameters, as, e.g., the Reynolds, Rossby, Froude, Péclet, or Alfvén numbers. We
briefly discuss the presence of anomalous scaling laws in 3D hydrodynamics and in other
configurations, in connection with the intermittent nature of the energy dissipation in
configuration space. A quick overview is also provided concerning the importance of
cascades in other applications such as bounded flows, quantum fluids, relativistic and
compressible turbulence, and active matter, together with a discussion of the implications
for turbulent modelling. Finally, we present a series of open problems and challenges that
future work needs to address.
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1. Introduction

‘‘Big whorls have little whorls that feed on their velocity, and little whorls have smaller whorls and so on to viscosity — in
the molecular sense’’. This is the celebrated poem composed by Lewis Fry Richardson in 1922 [1], where it was proposed
that turbulent cascades are the fundamental drivingmechanism of the atmosphere, moving energy from the large injections
scales down to the dissipative small scales. It is a visionary way to summarize many fundamental aspects of the turbulent
energy transfer which is empirically observed in the three dimensional Navier–Stokes equations (NSE). The Richardson
cascade description, first quantified by A.N. Kolmogorov [2], constitutes themost fundamental concept of turbulence theory.
Inmorewords, in a turbulent flow, the energy externally injected is redistributed among length scales due to non-linear eddy
(whorls) interactions. If this energy is removed from the flow (or accumulated) at a scale ℓout significantly different than the
injection scale, ℓin, a cascade can build up with a continuous transfer of energy from ℓin to ℓout . Depending on the system,
the energy transfer can be towards the small scales and/or towards the large scales, leading to what it is referred to as a
forward or inverse cascade, respectively. In three dimensional (3D) homogeneous and isotropic turbulence (HIT) the energy
is transferred to the small scales while in two dimensions (2D) it cascades to the large scales. Despite the simplicity of the
cascade description, after almost 100 years, we are still fighting to define the exact terms of the game and fail to have a
complete statistical description even for the simplest case of HIT. When and why Richardson’s cascade is correct? What
happens when it fails? These andmany other questions have challengedmathematicians, physicists and engineers for more
than a century without reaching, to this date, clear answers, rightfully titling turbulence as the last open problem of classical
physics. There are various text books written over the years reviewing both findings and open questions of different aspects
of turbulence [3–5]. A recent overview can be found in [6], where the historical developments in engineering, mathematical,
and physical sciences have been analysed from the ‘‘shoulders of twelve historical fathers of turbulence research’’.

The situation, however, can be very complex. First, any inviscid invariant of the system is also subject to a non-linear
transfer. The interaction of the transfer of different quantities plays an important role in determining the direction of
their cascade. For example, it is the conservation of enstrophy that forces an inverse cascade of energy in 2D. In 3D,
the second invariant is helicity and it is not sign-definite and all experimental investigations, numerical simulations and
phenomenological theories indicate that both energy and helicity have a simultaneous mean transfer to the small scales.
However, this is an empirical observation and it is not proven from basic principles yet. The dual cascade of helicity and
energy is important for 3D hydrodynamical turbulence [7–10]. In the latter case, recent studies have shown that even in
the idealized case of 3D HIT, there exists a bi-directional transfer of energy with some helical-Fourier channels that cascade
energy forward and others that transfer energy backward [11–21], with potential applications to rotating turbulence also.
Multiple transfers of competing invariants also occurs in other flow configurations. A paradigmatic example is given by
MHD flows that conserve three invariants in 3D [22–31]. In fact, it is fair to say that except for some very idealized situations,
we cannot predict the direction of the energy transfer in homogeneous turbulence.

Second, there exist many important turbulent configurations that deviate from the idealized situation of HIT. e.g., in the
presence of external mechanisms such as rotation, stratification, confinement, shear, or magnetic fields where the direction
of the energy cascade might – and indeed it does – change. In many of these systems energy is transferred with a split-
cascade, i.e. simultaneously forward and inversely in fractions that depend on the value of a control parameter (rotation rate,
magnetic field strength, aspect ratio etc.). This is demonstrated in Fig. 1 for two paradigmatic examples of a fast rotating flow
(left panel) and flow constrained in a thin layer (right panel), where structures at both large and small scales coexist. Split
cascades have been shown to exist in different physical situations, in numerical simulations and experiments of thin/thick
layers [32–36], in rotating and stratified turbulence [37–65] and in MHD turbulence [66–76]. They have been observed in
geophysical flows, e.g. where the atmosphere acts like a 2D flow at large scale and as a 3D flow at small scales [77–85]
and in the ocean [86,87]. Similar behaviour has been attributed to astrophysical flows (like the atmosphere of Venus and
Jupiter [88,89], and accretion discs [90]), in plasma flows [91] and in industrial applications (like in tokamak [92]) either
due to the thinness of the layer, to fast rotation or to the presence of strong magnetic fields. Split cascades have also been
observed in wave systems [93], multi-scale optical turbulence [94], acoustic turbulence [95] and capillary turbulence on the
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Fig. 1. Left panel: a 3D representation of velocity amplitude in a fast rotating flow (adapted from [64]). Right panel: Vorticity of a flow in a thin layer.

surface of liquid hydrogen and helium [96,97]. In many of these systems, a change from a split to a strict forward cascade
has also been detected with a critical transition behaviour.

Furthermore inmany situations there is a vanishing, or very weak, net flux at scales larger than the forcing. In some cases
like in 3D turbulence this leads to an equipartition of energy among the large scale modes [98–111]. In other cases, for finite
box size, the presence of inverse transfers might lead to the formation of a large-scale condensate, with a strong feedback
on the whole flow [112–124]. Similarly, ultraviolet effects might produce an accumulation of energy (or of another inviscid
invariant) at small scales. The coexistence in the same scale range of different channels can also drive the system to an exotic
flux-loop state, with a perfect balance among direct and inverse transfer, zero flux and non-equilibrium properties, as for
the case of stratified 2D turbulence [125]. In some of these zero-flux cases the flow is close to a quasi-equilibrium state while
others remain strongly out of equilibrium.

Finally, deviations from a perfect self-similar cascade are known to exist even in HIT. For example, we know that kinetic
energy in 3D tends to be dissipated in spiky and intermittent events, and we do not know if this is due to the presence of
coherent structures or just because of an enhancement of statistical fluctuations [3]. On the contrary, the 2D inverse energy
cascade is close to be Gaussian, without any intermittent properties. We only have a loose phenomenological understanding
of why fluctuations grow for the 3D case, based on the Richardson’s idea and of multi-fractal processes [3], but we do not
control the connection with the equations of motion. Intermittency, anomalous scaling, multi-fractal energy dissipation are
still the subject of many investigations (see [126,127] for recent experimental and numerical state-of-the-art results).

The present work attempts to address all the above issues by reviewing some recent numerical, experimental and
theoretical advancements achieved in the field. Our goal is to clarify and categorize the long list of subtle scenarios thatmight
occur in turbulence and view different turbulence systems from a unified point of view. We would like thus to distinguish
between turbulent configurations with the same mean properties but different spectra (e.g. with and without large scale
condensate), the same spectral behaviour but with different transfer directions (e.g. with direct or inverse cascades) and
even the same transfer properties but with a different statistical ensemble (e.g. a zero flux system in a equilibrium or out-of-
equilibrium state). In particular, wewant to emphasize the key distinguishable properties that characterize a non-linear out-
of-equilibrium system, by looking at the behaviour of single-point global quantities, e.g. energy or enstrophy, or two-points
spectral properties and transfer terms.

To do that, we start in Section 2 with the basic theoretical set-up. In Section 3 we give a short review of the classical
idealized turbulence cascades in three and two dimensions and proceed in the same section by providing a series of precise
definitions for different flow states based on the cascade properties. In many cases, the same system can display a (phase)
transition among two or more of the above flow states. We thus also classify the different paths that such transitions can
occur by changing the dimensionless control parameters, e.g. the Reynolds number for hydrodynamic turbulence or the
Rossby, Froude and Alfvén numbers for rotating, stratified and conducting flows.

In Section 4 we examine different systems in detail. We follow a simple-to-complex path, discussing how turbulence
changes when additional ingredients are added into the system, by breaking certain symmetries, e.g. mirror, rotational and
scale invariance, by adding confinement, by changing the non-linearities, or by coupling the flow to active components.
We review empirical findings for a set of paradigmatic applications where the above cascade realizations are encountered.
The examples vary from helical turbulence, turbulence in confined domains, turbulence under rotation, stable and unstable
stratified turbulence, turbulence of conducting fluids (MHD) to passive and active scalar advection, just to cite the most
important cases. We review how these different realizations can drastically modify the properties of turbulence by altering
the conserved quantities, their cascade directions and what the consequences for large and small scales flow properties
are.

Finally, in Section 5 we present a short overview of cascades in turbulent models and in other flow configurations, as
for the case of quantum flows, wave-turbulence, bounded flows, relativistic and compressible flows, active fluids, Shell
Models, Large Eddy Simulations, EDQNM approximation and elastic materials. In Section 6 we conclude with a series of
open questions and challenges in the field with the hope that these issues will attract the interest of future research.



Please cite this article in press as: A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows, Physics Reports (2018),
https://doi.org/10.1016/j.physrep.2018.08.001.

A. Alexakis, L. Biferale / Physics Reports ( ) – 5

All applications are cherry-picked with the only aim to highlight the aspects related to the cascades and their transition,
without hoping to be self-contained and exhaustive for each particular subject. We tried to be as precise as possible
concerning the classification of different cascade scenarios and we kept an empirical mood whenever we need to report
about numerical and experimental findings, due to the absence of rigorous results for most of the cases treated here.

2. Theoretical setup

In this section we provide a short theoretical background and the notation that will be used throughout the review.
We discuss the balance of globally inviscid conserved quantities in the configuration and Fourier space. We introduce the
concept of direct and inverse inertial-ranges, defined as those interval of scales where the main driving mechanisms are
given by the non-linear transfer of the cascading quantities. We address also the scale-by-scale energy budget for the two-
point correlation function in configuration space, for the energy spectrum in Fourier space and for the mixed scale-filtered
representation often used for small-scale modelling.

2.1. Dynamical equations and control parameters

To start the discussionwe consider the incompressible Navier–Stokes equation in the presence of a large-scale drag term:

∂tu + u · ∇u = −∇P + ν∆u − αu + f. (1)

Here u is the divergence free velocity field, (∇ · u = 0), with constant unit density, P is the pressure per unit density that
enforces incompressibility, ν is the kinematic viscosity, f and α are the forcing term and the coefficient of a large scale drag
mechanisms, respectively. In some systems, the large scale drag is required to reach a steady state in the presence of an
inverse cascade. It simplifies the theoretical discussion that follows, avoiding the need to discuss quasi-stationary states. For
most of this review we are going to assume the flow to be confined in a periodic box of size L, and that the external forcing
is acting on a band limited range of scales centred around ℓin. The energy injection rate by the forcing will be denoted as ϵin.
In some cases, it is useful to study the flow evolution when the Newtonian viscosity is replaced with a hyper-viscous term,
−νn(−∆)nu and/or when the drag force is replaced with a hypo-viscous sink, αm(−∆)−mu, such as to confine the energy
dissipation due to viscous effects to very small scales (by increasing n and decreasing νn) and/or the one due to the drag
mechanisms to very large scales (by increasing m and decreasing αm). There are three non-dimensional control parameters
in the system: the ratio of the box size to the forcing length scale, L/ℓin, and two numbers thatmeasure the relative amplitude
of the non-linearities compared to the two dissipation terms defined above. The first one is the Reynolds number, Re, which
compares advection with the viscous dissipation. The second one is the equivalent of Re but for the large scale drag, Rα ,
obtained by replacing the viscous term with the drag term

Re =
uf ℓin

ν
, Rα =

uf

αℓin
(2)

where uf is the root-mean-square velocity measured at the injection scale. In many experimental and numerical set-ups, it
is not uf that is controlled but rather the energy injection rate. In these cases it is useful to define the dimensionless numbers
in terms of ϵin:

Re =
ϵin

1/3ℓin
4/3

ν
, Rα =

ϵin
1/3

αℓin
2/3 . (3)

The two definitions (2)–(3) become equivalent up to a multiplicative constant for fully developed turbulence where the
relation ϵin ∝ u3

f /ℓ holds [3]. There are other cases, e.g. for wave turbulence, where the two definitions do not agree (see
Section 5.1).

2.2. Inviscid invariants and balance equations

It is straightforward to show that in 3D for ν = α = f = 0 (and if the flow remains smooth) Eq. (1) has two global
invariants, the total Energy E and total Helicity H:

E(t) =
1
2
⟨u · u⟩ ; H(t) =

1
2
⟨u · w⟩ (4)

wherew = ∇ × u is the vorticity. The angular brackets stand for spatial average that in d dimensions is defined as

⟨g(t)⟩ ≡
1
Ld

∫
Ld
g(x, t)dxd. (5)

In 2D, helicity is identically zero and the second quadratic invariant is the enstrophy:

Z(t) =
1
2
⟨w · w⟩ (6)

which like the energy, and unlike helicity, it is positive definite.



Please cite this article in press as: A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows, Physics Reports (2018),
https://doi.org/10.1016/j.physrep.2018.08.001.

6 A. Alexakis, L. Biferale / Physics Reports ( ) –

In the presence of forcing and for finite values of α and ν a balance is reached where the injected energy is absorbed by
the two dissipation terms. By writing the evolution equation for the energy (4) we get:

∂tE(t) = −ϵν(t) − ϵα(t) + ϵin(t) (7)

where ϵν(t) = ν⟨|∇u|
2
⟩ is the energy dissipation due to viscosity, ϵα(t) = α⟨|u|

2
⟩ is the energy dissipation due to the

drag and ϵin(t) = ⟨u · f⟩ is the energy injection rate. It is worth noting that the terms ϵν(t), ϵα(t) are strictly positive for
any non zero u(t) while in principle ϵin(t) can fluctuate taking both positive and negative values. Assuming stationarity and
performing a long time average we obtain

ϵin = ϵν + ϵα. (8)

Where above and fromhereafter a long-time average is impliedwhenever time does not explicitly appear. The interpretation
of Eq. (8) is clear: the energy injected by the forcing equals, in average, the energy dissipated by viscosity at the small scales
plus the energy dissipated by the drag at the large scales. A similar balance holds for all the other invariants of the system.

2.3. Fourier space representation

In order to better disentangle the scale-by-scale dynamics it is useful to define the NSE in Fourier space. We thus
decompose the velocity field in Fourier modes ũ(k, t) as:

ũ(k, t) =
(2π )d

Ld

∫
u(x, t)e−ik·xdxd with u(x, t) =

∑
k

ũ(k, t)eik·x (9)

where k = k0n, n ∈ Z3 and k0 = 2π/L being the smallest wavenumber in the system (in what follows we will always
assume that there is no mean flow, ũ(k, t) = 0 for k = 0). The Navier–Stokes equation in Fourier space can then be written
as

∂t ũi(k, t) = −i
∑

p+q=k

Pij(k)qlũl(p, t)ũj(q, t) − νk2ũi(k, t) − αũi(k, t) + f̃i(k, t), (10)

where we have defined the projector on incompressible fields, Pij(k) =

(
δij −

kikj
k2

)
, and k = |k|. Hereafter, we will always

make use of the Einstein notation for summation over repeated indices, unless otherwise stated. The components of each
Fourier mode are linked by the incompressibility condition, k · ũ = 0, that reduces the degrees of freedom by one. In 2D we
can write these amplitudes in terms of a single stream function mode. In 3D we have the freedom to choose a basis of two
eigenvectors for each k. One possible option will be discussed in terms of helical components in Section 4.1

The distribution of energy among scales is given by the spectrum E(k, t) averaged over a spherical shell of width
∆k = 2π/L:

E(k, t) =
1

2∆k

∑
k≤|k|<k+∆k

|ũ(k, t)|2 . (11)

Summing over all shells we obtain the total energy E(t) = ∆k
∑

kE(k, t). From (10) we can also derive the evolution of the
energy spectrum as:

∂tE(k, t) = −T (k, t) − 2νk2E(k, t) − 2αE(k, t) + F (k, t). (12)

Where we have introduced the notation for the instantaneous non-linear energy transfer, T (k, t), across k:

T (k, t) = ℑ

∑
k<|k|<k+1

∑
p+q=k

ũ∗

i (k, t)Pij(k)qlũl(p, t)ũj(q, t), (13)

and of the scale-by-scale energy injection:

F (k, t) = ℜ

∑
k<|k|<k+1

ũ(k, t) · f̃∗(k, t), (14)

where in (12)–(14) and hereafter we assume∆k = 1 for the sake of simplicity. We will consider the explicit dependency on
∆k only when the infinite volume limit is considered. From the above expression, we expect that in the limit of high Re and
Rα , i.e. by sending ν, α → 0 at fixed ϵin and ℓin ∼ 1/kin, the viscous dissipation term will play a role only if k2E(k) becomes
larger and larger for high k. Similarly, for the large-scale drag to be active we need E(k) to grow for k → 0. In other words,
for any fixed viscosity we expect the existence of a wavenumber kν defining the onset of viscous effects in the ultraviolet
(UV) range of the spectrum while the drag term will be dominant in the infra-red (IR) limit, i.e. for wavenumbers smaller
than another reference scale, kα . In such a scenario, at steady state, three well distinguished scales, kα ≪ kin ≪ kν , must
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Fig. 2. Left: qualitative sketch of the stationary scale-by-scale energy balance in the presence of an injection term confined to a band-limited range around
kin , and of two well separated scales, kα ≪ kin ≪ kν fixing the onset of infra-red drag terms and of ultraviolet viscous dissipation, respectively. Right: the
same of left panel but in the absence of scale separation, as in the presence of a condensate or of a small-scale bottleneck as discussed in Section 3.4. In
both cases the balance (15) is still exactly satisfied. The presence of a cascade requires that there exists a range of scales where all terms on the RHS of (15)
are vanishingly small.

exist and the balance (12) tells us that the non-linear transfer termmust be vanishingly small except on those ranges where
it balances the viscous dissipation terms (k > kν), the drag term (k < kα) and the injection term (k ∼ kin):

T (k) = −2νk2E(k) − 2αE(k) + F (k) (15)

In the left panel of Fig. 2 we summarize the balance (15). It is important to stress that the condition to have twowell-defined
scale separations is not guaranteed a priori, even in the limit of Re, Rα → ∞ and that all consequences and predictions that
might follow from this assumption must be checked self-consistently a posteriori by studying the resulting dependency of
kα and kν on the control parameters. In the right panel of the same figure, we show how the balance (15) would look in the
absence of scale separation.

For what follows, it is very important to define also the net energy transfer across a wavenumber k. It can be derived by
looking at the evolution of the total energy contained inside a sphere of radius k. Following the notation of [3] we denote
with u<k(x, t) the velocity field u(x, t) low-pass filtered so that all wave numbers outside the sphere of radius k are set to
zero:

u<k(x, t) =

∑
|k|≤k

ũ(k, t)eik·x (16)

The change of the total energy across the sphere with radius < k is then obtained by taking the inner product of u<k with
(1) and averaging over the whole space:

∂t
∑
k′<k

E(k′, t) = −ΠE(k, t) − 2ν
∑
k′<k

(k′)2E(k′, t) − 2α
∑
k′<k

E(k′, t) +

∑
k′<k

F (k′, t) (17)

where the quantityΠE(k) is the non-linear energy flux across a sphere of radius k in Fourier space:

ΠE(k, t) =

∑
k′<k

T (k′, t) = ⟨u<k
· [(u · ∇)u]⟩. (18)

Because of the inviscid conservation of the total energy we have ΠE(∞, t) = 0, i.e. the total exchange of energy due to all
triadic Fourier interactions is zero. The second and the third terms on the RHS of (17) give the total energy dissipation inside
the Fourier sphere due to the viscous terms and the large-scale drag, respectively. The fourth term gives the energy injection
rate. In the k → ∞ limit, the relation (17) coincides with (7):

ϵν(t) = 2ν
∞∑
k=0

k2E(k, t); ϵα(t) = 2α
∞∑
k=0

E(k, t); ϵin(t) =

∞∑
k=0

F (k, t). (19)

For any fixed kwe can rewrite the stationary balance as follows:

ΠE(k) = −ϵ<k
ν − ϵ<k

α + ϵ<k
F

(20)

where we have denoted the time averaged total energy injection, viscous dissipation and viscous drag inside the sphere of
radius k, as:

ϵ<k
F

=

∑
k′<k

F (k′); ϵ<k
ν = −2ν

∑
k′<k

(k′)2E(k′); ϵ<k
α = −2α

∑
k′<k

E(k′).
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Fig. 3. Qualitative sketch of the stationary scale-by-scale energy balance for the energy flux, ΠE (k). Notice that the assumption of scale separation,
kα ≪ kin ≪ kν predicts the existence of two inertial rangeswhere the energy flux is constant and due only to the non-linear triadic interactions.

Up until now, all manipulations leading to the global and to the scale-by-scale energy balances (8) and (15)–(17) are exact.
In order to proceed further we need to make some assumptions.

We first assume that the forcing is concentrated around a thin window k ∼ kin. In this case, we must have ϵ<k
F

= 0 if
k < kin and ϵ<k

F
→ ϵin for k > kin.

Then, assuming the existence of two scales, kα and kν where the infra-red drag and the viscous dissipation are
predominant as in the left panel of Fig. 2, we can estimate the asymptotic matching of the different terms entering in (20).
We examine separately the long-time stationary relation (20) in the two range of scales, kα ≪ k ≪ kin or kin ≪ k ≪ kν that
is summarized in Fig. 3.

Inverse cascade: wavenumbers smaller than the forcing scale. By referring to the balance (20) and to the left panel of Fig. 2
we conclude that for k ∼ kα the non-linear transfer, ΠE(k), must be negative and matching the contribution due to ϵ<k

α ,
because ϵ<k

F
and ϵ<k

ν are negligible at those scales. Moreover, the integrated drag contribution up to the wavenumber ϵ<k
α

must saturate to a constant, equal to the total drag dissipation if k ≫ kα . As a result, there exists an intermediate range of
scales where:

ΠE(k) = −ϵ<k
α ∼ −ϵα; kα ≪ k ≪ kin. (21)

Because only inertial terms play an active role in the transfer, we will call this set of scales the inverse-cascade inertial-range.

Direct cascade: wavenumbers larger than the forcing scale. For k ≫ kin, both the integrated contribution of the drag terms
and of the total injection have reached its asymptotic values, ϵ<k

α ∼ ϵα and ϵ<k
F

∼ ϵin while the viscous dissipation is still
not active, ϵ<k

ν ∼ 0, if k ≪ kν . As a result, there exist an intermediate range of scales where the balance gives:

ΠE(k) = −ϵα + ϵin = ϵν kin ≪ k ≪ kν . (22)

We will call this set of scales the direct-cascade inertial-range. In Section 3.1 we will clarify the above picture and to
which extent it can be pushed to rigorous and quantitative statements. Before entering in these aspects, we move back
to configuration space to re-derive the previous results from a different perspective.

2.4. Configuration space representation

The energy distribution among scales and the energy flux can also be defined directly in configuration space by
considering velocity correlation between two points x and x′ with r = x′

− x and then averaging over all possible points
x for a fixed r. Here, we follow the discussion presented in [3], referring to the textbook for details. We first introduce the
second-order correlation function:

C2(r, t) = ⟨u(x, t) · u(x + r, t)⟩. (23)

Assuming homogeneity (but not isotropy) it is possible to derive from the NSE the Kármán–Howarth–Monin relation [128]:
1
2
∂tC2(r, t) =

1
4
∇r · ⟨|δru|

2δru⟩ + ν∆rC2(r, t) − αC2(r, t) + F (r, t) (24)

where we have introduced the notation for the velocity increment over a distance r: δru = u(x + r) − u(x) and the forcing-
velocity correlation F (r, t) = ⟨u(x+ r, t) · f(x, t)⟩. In the presence of a stationary statistics we can derive the law for the total
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energy balance by setting r = 0, averaging over time and putting to zero all time derivatives:

ν∆rC2(r)|r=0 − αC2(r)|r=0 = F (r)|r=0 = ϵin (25)

where we exploited that for r = 0 the non-linear contribution ∇r · ⟨|δru|
2δru⟩ is identically zero because of the inviscid

energy conservation. It is easy to see that the above relation is equivalent to (8) by noticing that ∆rC2(r)|r=0 = −⟨|∇u|
2
⟩

and C2(r)|r=0 = ⟨|u|
2
⟩. Assuming stationarity and keeping the distance fixed with r ̸= 0 we get from (24):

−
1
4
∇r · ⟨|δru|

2δru⟩ = ν∆rC2(r) + F (r) − αC2(r), (26)

which is the configuration-space equivalent of the scale-by-scale energy balance (15). Let us now suppose to have an
isotropic forcing-velocity correlation that is peaked at one given scale, ℓin ∼ 1/kin:

F (r) ∼ ϵinexp−(r/ℓin)2 ,

where r = |r|. As we did for the Fourier space we need to distinguish two different scaling regimes.

Direct cascade: scales smaller than the forcing scale. In such a range, for any fixed r one can fix the viscosity small enough to
make the dissipative term vanishingly small, i.e there exists a dissipative scale, ℓν ∼ 1/kν such that for ℓν ≪ r the viscous
dissipation is negligible. Moreover, both the energy injection and the two-point correlation function are smooth for r ≪ ℓin:

F (r) ∼ ϵin; αC2(r) ∼ ϵα.

As a result, in this range of scales we have

−
1
4
∇r · ⟨|δru|

2δru⟩ = ϵin − ϵα = ϵν, (27)

by further assuming isotropy, it is possible to express the left hand side in terms of the longitudinal third order structure
functions, SL3(r) = ⟨(δru · r̂)3⟩ to finally obtain the celebrated 4/5 law of Kolmogorov [3] for the inertial range of the direct
cascade that reads (in 3D):

SL3(r) = −
4
5
ϵν r; ℓν ≪ r ≪ ℓin. (28)

The above relation can be dimensionally summarized as

(δru)3

r
∼ ϵν (29)

Inverse cascade: scales larger than the forcing scale. In the other limit, r ≫ ℓin, we have no direct injection of energy from
the forcing, F (r) ∼ 0, we can consider the viscous term to be vanishingly small, and the third-order correlation on the LHS
of (26) is balanced by the drag-term contribution only:

SL3(r) =
4
5
ϵα r, ℓin ≪ r ≪ ℓα, (30)

where we have assumed that for r ≪ ℓα , the correlation C2(r) has already saturated to its constant value. Eq. (26) is exact,
while in order to get the direct and inverse scaling range in Eqs. (28)–(30) we need to assume the existence of the two scales,
ℓα, ℓν , fixing the onset of the viscous effects (for r ≪ ℓν) and the onset of the drag term (for r ≫ ℓα), as already done for
the same quantities in the Fourier space. Depending on the existence of such scales and on their dependency on the control
parameters Re, Rα , one might end up in a situation where the direct/inverse energy transfer develops a true asymptotically
inertial direct and/or inverse scaling range, i.e. a set of scales which becomesmore andmore extendedwhen Re → ∞ and/or
Rα → ∞, as depicted in Fig. 4.

Expressions (28)–(30) are also important because they give a clear signature of the breaking of time-reversibility and
of Gaussianity (in both cases any third order velocity correlation function vanishes identically). The latter observation is
connected to the existence of a net non-vanishing energy flux.

2.5. Scale-filtered representations

In order to control themulti-scale properties of the flow in configuration space, it is often useful to study the velocity field
evolution coarse-grained at scale ℓ ∼ 1/k. In order to do that, we need to define a filtering operation on a generic velocity
field, •̂ℓ:

ûℓ(x, t) =

∫
dydGℓ(x − y)u(y, t) =

∑
k

G̃ℓ(k)ũ∗(k, t)eik·x (31)

where we have G̃ℓ,∗(k) = G̃ℓ(−k) to ensure that the velocity field is a real function. If the filter is a projector, then
G̃ℓ(k) ⊗ G̃ℓ(k) = G̃ℓ(k). For example, when G̃ℓ(k) = 1 if |k| < k = 1/ℓ and G̃ℓ(k) = 0 otherwise, the filtered field,



Please cite this article in press as: A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows, Physics Reports (2018),
https://doi.org/10.1016/j.physrep.2018.08.001.

10 A. Alexakis, L. Biferale / Physics Reports ( ) –

Fig. 4. Sketch of the scaling properties for the third order longitudinal structure function, following the relations (28) and (30) in the hypothetical presence
of simultaneous split energy cascade, both forward and inverse.

ûℓ would coincide with the low-pass field (16). Another popular choice is a Gaussian filter G̃ℓ(k) = exp(−ℓ2k2/2). Other
possible options for G̃ℓ(k) are discussed in [5].

The NSE equations for the filtered field are:

∂t ûℓ + (ûℓ · ∇)ûℓ = −∇Pℓ − ∇τℓ + ν∆ûℓ − αûℓ + f̂ℓ (32)

where Pℓ is a pressure term that enforces incompressibility of ûℓ and the sub grid scale (SGS) stress tensor is given by:

τ ℓij = ûiuj
ℓ
− ûℓi û

ℓ
j (33)

Notice that (32) is exact but not closed, i.e. the evolution of the filtered field does depend on the filtered scales via the
SGS term. Large eddy simulations are based on the idea of modelling τ ℓij in terms of the resolved field and it will be briefly
discussed in Section 5.3.1.

It is useful to define the SGS energy-transfer, entering in the dynamical evolution of the resolved kinetic energy:

1
2
∂t |ûℓ|

2
+ ∇ · Aℓ = −Π ℓ

+ νûℓ · (∆ûℓ) − α|ûℓ|2 + ûℓ · f̂ℓ (34)

where Aℓi = ûℓi (
1
2 |û

ℓ
|
2
+Pℓ)+ ûℓj τ

ℓ
ij is a globally conservative flux term that redistributes the resolved energy among different

spatial positions and

Π ℓ(x, t) = −τ ℓij (x, t)Ŝ
ℓ
ij(x, t) (35)

is the SGS energy flux and Ŝℓij =
1
2 (∂iû

ℓ
j + ∂jûℓi ) is the resolved strain-rate tensor. The energy transfer between resolved and

sub-filter scale is controlled byΠ ℓ and it is straightforward to show that for the case of a sharp Fourier projector (G̃ℓ(k) = 0
if |k| > k = 2π/ℓ; G̃ℓ(k) = 1 otherwise) we have that:

⟨Π ℓ(x, t)⟩ = ΠE(k, t); with k = 2π/ℓ, (36)

i.e. the space average of the SGS energy transfer coincides with the nonlinear energy flux in Fourier space (18) at the
corresponding wavenumber. An important issue is connected to the characterization of the space–time fluctuations of
Π ℓ(x, t) and to the possibility of defining a local-in-spaceRichardson cascade, to identify regionswhere a breakdownof eddies
into smaller and smaller eddies is coherently observed within some space and time domains, as discussed in Section 5.3.1.
The SGS tensor also becomes very relevant in quasi-2D flows where in the presence of a split cascade and in the presence of
a large-scale condensate, some regions in space act locally like 3D cascading energy forward while other regions act like 2D
cascading energy inversely (see e.g. Sections 4.2.3,4.3) .

3. Definitions of turbulent cascades

In this section we give a precise definition of what do wemean by cascade. Although the meaning of forward and inverse
cascades has been stated many times in the literature, and it might be simple for 3D and 2D turbulence, in the case where a
split transfer to both large and small scales is developed (as will be the case for many thin layers configurations examined
in Section 4) one needs to be careful because the amplitude of the cascade can be very small and needs to be distinguished
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from any transient transfer. Furthermore, even in presence of a simple unidirectional transfer, ultraviolet and infra-red cut-
off might play an important role in the limit of large Re, Rα numbers. E.g., in the presence of a finite volume and in the limit
Rα → ∞, the infrared cutoff will stop the inverse cascade, leading to an accumulation of energy at the smallest wavenumber
and to the formation of a large-scale condensate (see Section 3.4 and the discussion about Fig. 12). The large-scale structures
might finally induce a strong feedback on the inverse inertial range, break the scaling properties and bring the system close
to a quasi-equilibrium state. Our definitions will be tailored to take into account all basic ingredients. Here we only consider
the cases of a steady state, thus in all arguments the long time limit is considered before any other limiting procedure is
taken.

The best way to proceed is by first examining a few idealized examples, that demonstrate some basic concepts before
reaching the exact definitions.We start by examining the Kolmogorov theory for the forward 3D energy cascade (Section 3.1)
and the Batchelor–Kraichnan theory for the 2D inverse energy and direct enstrophy transfers (Section 3.2). These two
examples will allow us to introduce also the concept of scale-invariance and a first important set of dimensional estimates
for the dependency of ℓα and ℓν on Re, Rα . We proceed by discussing the case of: a split cascade (Section 3.3), a statistical
equilibrium (Section 3.4), multiple simultaneous transfers of different inviscid invariants (Section 3.5). Finally we conclude
this chapter in Section 3.6 with a series of precise definitions for all the above cases, including bidirectional and flux-loop
cascades, and with a classification of cascade transitions in Section 3.7.

3.1. 3D direct energy cascade and the Kolmogorov 1941 theory

As a paradigmatic example of a direct cascade we discuss the case of 3D HIT. It is an empirical fact that in 3D there is no
inverse energy cascade and therefore we start by putting the large scale drag α = 0 and ϵα = 0. Here we will only consider
the case of zero helicity injection, postponing to Section 4.1 the discussion of the opposite case.

From the stationary relation (8), the energy injection rate needs to be equal to the averaged energy dissipation rate
ϵin = ϵν .We note that these equalities hold independently of the value of Re, and their validity does not imply the presence of
a cascade. To define the cascade we need to compare the flux to the amplitude of the fluctuations and we need to make sure
that there exists a well-defined scale separation between the wavenumbers where we have the maximum of the injection
rate and the maximum of viscous dissipation. Thus, in the limit Re → ∞ we consider the dimensionless ratio

Dν =
ϵν

E3/2kin
, (37)

sometimes called the drag coefficient. It is a fact based on numerical simulations and experimental data that this quantity
remains finite even in the limit of infinite Reynolds number:

lim
Re→∞

Dν > 0. (38)

where the constant value might depend on the forcing mechanism [129]. Let us notice that both definitions of the Reynolds
number given by expressions (2) or (3) would be here equivalent. In the first case one considers ϵν = ϵin fixed and (38)
implies that as ν → 0, E remains bounded from above while in the second case one considers E fixed and it implies that as
ν → 0 the dissipation rate ϵν remains bounded from below. The existence of a non-zero energy dissipation even in the limit
ν → 0 is one of the major fingerprints of 3D turbulence and goes under the name of dissipative anomaly [130–132]. The fact
that Dν remains an order one quantity, tell us that the direct energy cascade in 3D HIT is always strongly out-of-equilibrium,
and far from a perturbative quasi-equilibrium solution which would require Dν = 0 or Dν ≪ 1.

3.1.1. Fourier space
If (38) holds and considering the expression (19) for the energy dissipation, we must have that the peak of the enstrophy

spectrum, k2E(k), is centred around a wavenumber kν → ∞ when ν → 0 leading to the formation of the inertial range,
kin ≪ k ≪ kν , where viscous effects can be neglected and the energy flux is constant,ΠE(k) = ϵin. This is equivalent to the
statement made in configuration space, leading to (28).

A phenomenological prediction for the spectral property was developed by Kolmogorov in 1941 (K41) based on the idea
that only themean flux, ϵin, plays a statistical role in the inertial range [2]. In such a case, Kolmogorov derived the celebrated
−5/3 power law inertial-range behaviour for the spectrum:

E(k) = CK ϵin
2/3k−5/3, kin ≪ k ≪ kν . (39)

where CK is the so-called Kolmogorov constant. By plugging the K41 spectrum into the expression for the total viscous
dissipation given after Eq. (20), we can finally define the dependency of the UV cut-off, kν , on Re. In order to do that, we
define kν as the scale where the inertial range flux becomes comparable with the dissipative term:

ΠE(kν) ∼ ϵν; → ϵin ∼ νϵ
2/3
in kν4/3, (40)

where to get to this estimate we have plugged (39) in (20) and summed up to kν . By using (3) we finally obtain:

kν ∼ kinRe3/4. (41)
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Fig. 5. Left: sketch of the spectrum for the direct cascade regime, with the k2 thermal equilibrium in the inverse range for k < kin and the−5/3 Kolmogorov
slope in the direct cascade range (39). Right: the same as in the left panel but for the energy flux. Notice that in the equilibrium range we haveΠE (k) = 0
as discussed in Section 3.4.

The above result is very important, it shows the self-consistency of the K41 theory: by assuming that for large Reynolds
viscosity does not play a role for k ≪ kν , one derives a prediction for the spectrum that consistently defines a viscous
cut-off which becomes larger and larger for Re → ∞. In Fig. 5 we summarize the results for spectrum and flux within
the K41 theory. This result, together with the existence of the dissipative anomaly are the two fingerprints of the forward
energy cascade in HIT. On the other hand, when viscosity sets-in we must have that in the far dissipative region, k ≫ kν , an
asymptotic matching between transfer and viscous terms develop, leading to an exponential or super exponential fall off
with an exponent β > 0:

E(k) ∼ exp−(k/kν)β; k ≫ kν .

Before concluding this section, we briefly discuss what happens in the IR range, k < kin, where no net inverse transfer of
energy is observed in 3D HIT. As said, if α = 0, at equilibrium we must have no transfer at all, ΠE(k) = 0, and the spectral
distribution of energy is strongly depleted. It has been suggested that these scales reach a statistical (thermal) equilibrium
due to local and non-local energy diffusion across the wavenumbers, with all Fourier modes feeling a sort of thermal bath
described by a Gibbs-ensemble equipartition distribution E(k) ∝ k2 that is discussed in Section 3.4. The validity of such
assumption is still unclear and it is the subject of current investigations [99–101,109,110,133]. If we consider the case of
small but non-zero αwe expect similar conclusions. Since in 3D there is no evidence of an inverse cascade, the flux of energy
to the large scales although non-zero (ϵα is a strictly positive quantity if α > 0) it will be still sub-dominant. The spectra
could however be strongly modified even for small values of α and become steeper than k2. The absence of a range of scales
where there exists a constant inverse flux implies that we cannot expect the existence of a large-scale dissipative anomaly
similar to (38). If we define the drag for the inverse transfer as:

Dα =
ϵα

E3/2kin
(42)

we must have:

lim
Rα→∞

Dα = 0. (43)

3.1.2. Configuration space
Generalizing the results obtained in Fourier space, the K41 theory assumes that the whole probability distribution

function (PDF) of the velocity increments in the inertial range is fully determined by the mean energy injection only, if
isotropy holds. Introducing the longitudinal and transverse velocity increments as:

δLru = δru · r̂; δTr u = δru − (δLru)r̂ (44)

where with r̂ we indicate the unit vector in the direction of the displacement, Kolmogorov predicted for the nth order
longitudinal and transverse structure function:

SLn(r) = ⟨(δLru)
n
⟩ STn (r) = ⟨|δTr u|

n
⟩ (45)

the celebrated n/3 law for the scaling exponents in the inertial range:

SLn(r) ∼ C L
nϵ

n/3
in rn/3; STn (r) ∼ CT

n ϵ
n/3
in rn/3; ℓν ≪ r ≪ ℓin (46)

where C L
n, C

T
n are dimensionless constants. From (41) we have ℓin/ℓν ∼ kν/kin ∼ Re3/4. Similarly, the exponential decay in

the Fourier viscous range corresponds to an analytical smooth behaviour for the velocity field in the range r ≪ ℓν , i.e. the
longitudinal and transverse incrementsmust be∝ rn if r ≪ ℓν . It is important to notice that in (46) the scaling of each single
component of the transverse increments would be strictly zero for odd moments if isotropy holds [134]. This is not the case
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for longitudinal increments as seen from the 4/5-law (28). From the scaling (46) one can build the longitudinal skewness, a
dimensionless measure of the intensity of the flux normalized with the root-mean-squared velocity fluctuations at scale r:

K L
3 (r) =

SL3(r)
(SL2(r))3/2

= C L
3/(C

L
2)

3/2
= const. (47)

which can be considered a scale-by-scale generalization of (37), i.e. a proxy of the out-of-equilibrium nature of the forward
energy cascade.

On one side, K41 theory is considered a milestone for building a theory of turbulence and it is known to describe
many important quantitative and qualitative realistic properties. On the other side, there is now a long enough series of
experimental and numerical evidence to know that it is not exact, even limiting the discussion to the case of HIT. The most
important point where it fails is linked to the existence of anomalous corrections to the inertial-range scaling exponents.
Overwhelming evidence shows that velocity increments are characterized by a whole spectrum of anomalous inertial range
exponents, see, e.g., [126,127,129,135]:

SLn(r) ∝ (
r
ℓin

)ζ
L
n ; STn (r) ∝ (

r
ℓin

)ζ
T
n ; (48)

with ζ Ln , ζ
T
n ̸= n/3 except for the case ζ L3 = 1 where (28) holds exactly. The departure from a linear dimensional behaviour

of the scaling exponent goes under the name of intermittency and it will be further discussed in Section 5.2. Theoretical
considerations based on isotropy [134] would also require ζ Ln = ζ Tn , a fact that is not fully realized at the Reynolds numbers
available nowadays [127]. For what has been said until now, the most important consequence of intermittency is connected
to the fact that by using (48) the skewness is not constant any more:

K L
3 (r) ∼ (

r
ℓin

)ζ
L
3−

3
2 ζ

L
2 = r−0.06

; ℓν ≪ r ≪ ℓin (49)

where the value 0.06 of the exponent is taken from the most updated numerical and experimental results [127]. The fact
that the exponent is small and negative is very important. It means that atmoderate Reynolds numbers, the skewness can be
considered almost constant, because r cannot vary too much due to the limited extension of the inertial range. On the other
hand, for large enough Reynolds, because of (41) we have ℓν → 0 andwe can send the ratio r/ℓin → 0, still remaining in the
scaling region. In this limit, the skewness will become larger and larger, indicating stronger and stronger out-of-equilibrium
properties and a stronger and stronger departure fromquasi-Gaussian statistics (where K3(r) = 0). This is often visualized by
plotting the energy dissipation field, which turns out to be highly spotty and spiky in configuration space, with vast regions
with very small values and a few isolated islands of high intensity, i.e. an intermittent spatial distribution (see Fig. 65).

3.2. 2D inverse energy cascade and the Batchelor–Kraichnan theory

2D turbulence is a paradigmatic example where an inverse energy transfer is observed. It was predicted in a series of
historical works by Kraichnan, Leith and Batchelor [136–138] and has been reproduced in numerical simulations [139–142]
and experiments [35,143]. A review can be found in [144,145]. In two dimensions, the NSE (1) can be written in terms of the
out-of-plane vorticity w = ∂xuy − ∂yux as an advection–diffusion equation with the forcing term fw = ∂xfy − ∂yfx:

∂tw + u · ∇w = −αw + ν∇2w + fw. (50)

As a result, the nonlinearity conserves the enstrophy Z(t) =
1
2 ⟨w

2
⟩ and all moments of the vorticity ⟨wn

⟩. Unlike for the 3D
flow, wherewe considered for simplicity the case of zero helicity injection, enstrophy injection cannot be set to zerowithout
setting the energy injection also to zero. In 2D, for enstrophy we have the exact balance:

∂tZ(t) = −ζν(t) − ζα(t) + ζin(t) (51)

here ζν(t) = ν⟨|∇w|
2
⟩ is the enstrophy dissipation due to viscosity, ζα(t) = α⟨|w|

2
⟩ is the enstrophy dissipation due to the

large scale drag and ζin(t) = ⟨wfw⟩ ∝ ϵin/ℓin
2 is the enstrophy injection rate. The long-time average leads to

ζin = ζν + ζα. (52)

3.2.1. Fourier space
Considering the forcing acting only at a limited range of wavenumbers around a specific scale, kin, the energy and

enstrophy injections are related by ζin = kin2ϵin. Similarly, the energy spectrum E(k) and the enstrophy spectrum EZ (k)
are connected by the relation EZ (k) ≃ k2E(k). Thus, the cascade of the two ideal invariants cannot be discussed separately,
but leads to a situationwhere two fluxes coexist, referred often as a dual cascade. Defining a low-pass vorticity field similarly
to (16), we introduce the 2D enstrophy flux:

ΠZ (k) = ⟨w<k(u · ∇)w⟩ (53)
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and using the same arguments as for the 3D energy cascade we distinguish a direct inertial range for the enstrophy transfer
if there exists a window at high wavenumbers where the non-linear flux is constant

ΠZ (k) ≃ ζin − ζα = ζν, kin ≪ k ≪ kν (54)

while for the inverse enstrophy cascade we should have in the low k region:

ΠZ (k) ≃ ζin − ζν = ζα, kα ≪ k ≪ kin. (55)

To study the inverse cascade range, there are two limiting procedures that need to be considered and that lead to two
different situations. The first limit corresponds to the large box limit kinL → ∞ (or k0/kin → 0) and the second is the limit
Rα → ∞. If the large box limit is taken first then the system saturates in a state with a finite inverse energy flux, while if
the large Rα limit is taken first the system saturates to a condensate state that resembles to a statistical equilibrium (see also
Section 3.4).

We begin with the case when the large-box limit is taken first. Assuming the working hypothesis that there exists a
separation of scales, kα ≪ kin ≪ kν (an assumption that as we saw for the K41 theory can depend on the existence of a
finite dissipation limit and whose self-consistently can be only checked aposteriori) we have that for any wavenumber in
the inverse range the energy and enstrophy flux will satisfy (21) and (55) respectively, while in the forward range (22) and
(54) hold.

In the forward range, kin ≪ k ≪ kν , we can write:

ΠE(k) ≃ 2ν
∞∑

k′=k

(k′)2E(k′) ≤ 2νk−2
∞∑

k′=k

(k′)4E(k′) = k−2ΠZ (k) = ζink−2 (56)

where the first equality is obtained by using (22) and estimating ϵν ∼ 2ν
∑

∞

k′=k(k
′)2E(k′) if k < kν because the contribution

to dissipation must be concentrated at k ∼ kν .
Similarly, in the inverse range, kα ≪ k ≪ kin, we must have:

−ΠZ (k) ≃ 2α
k∑

k′=0

(k′)2E(k′) ≤ 2αk2
k∑

k′=0

E(k′) = k2ΠE(k) = ϵink2. (57)

Thus, neither in the large (56) nor in the small (57) wavenumber range we can have a constant enstrophy flux together with
a constant energy flux: the two quantities must have a dual and counter-directional cascade (see Definition 9 in Section 3.6).
The original version of this argument was presented in [146]. It has been reformulated and applied to different contexts in
the literature [137,146–155] and we will generalize it in Section 3.5. It indicates that energy is transferred towards large
scales with a constant fluxΠE(k) = −ϵin and a vanishing enstrophy flux, limk→0ΠZ (k) = 0, while at small scales enstrophy
cascades forward with a constant flux ΠZ (k) = −ζin and a vanishing energy flux limk→∞ΠE(k) = 0. Note that, unlike in
the 3D case for which the strict forward cascade of energy is an empirical result, the simultaneous conservation of energy
and enstrophy allows us to predict the inverse cascade of energy (and a forward cascade of enstrophy) in the 2D case. It is
also important to note that these arguments work because enstrophy is a sign-definite invariant. Once the inverse energy
cascade is established, one can reproduce the same phenomenological arguments put forward in K41 for the 3D case leading
to the same spectrum slope, −5/3, and a different prefactor C ′

K :

E(k) = C ′

K ϵ
2/3
in k−5/3

; kα ≪ k ≪ kin. (58)

Repeating the same reasoning done for the range dominated by the energy transfer, one can assume that in the direct cascade
only the mean enstrophy flux plays a role, resulting in the Batchelor–Kraichnan prediction for the energy spectrum in the
enstrophy cascade range:

E(k) = CBζ
2/3
in k−3

[log(k/k∗)]−1/3
; kin ≪ k ≪ kν (59)

where the logarithmic correction [log(k/k∗)]−1/3 comes from a more detailed self-consistent analysis [156]. This correction
can be neglected for most of the purpose of this discussion. With the same arguments and by balancing the energy flux with
the drag term, ϵin ∼ α

∑
kE(k) ∼ αϵ

2/3
in k−2/3

α we obtain that

kα ∝ kinR−3/2
α (60)

where we have used the fact that in the inverse cascade regime (58) the large scale drag is dominated by the contribution at
kα:

∑
kE(k) ∼ kαE(kα). Similarly, for the direct enstrophy cascade range by balancing the enstrophy flux with the enstrophy

dissipation rate, ζin ∼ ν
∑

kk
4E(k) ∼ νk5νE(kν) we obtain

kν ∝ kinRe1/2. (61)

Both estimates (60) and (61) are important because they self-consistently close the assumptions made, indicating that
the hypothesis to have an inverse inertial range dominated by the energy flux and a direct inertial range dominated by
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Fig. 6. Log–log sketch of the energy spectrum (left) and of energy and enstrophy fluxes (right) for the 2D Batchelor–Kraichnan theory (59)–(58).

the enstrophy flux lead to the definition of two cut-off scales such that kα ≪ kin ≪ kν . In Fig. 6 we summarize the 2D
phenomenology, by plotting the spectra for the energy (inverse) and enstrophy (direct) cascade together with the relative
fluxes.

There are two more things that we need to discuss at this point. First, we cannot have some energy dissipation without
having some enstrophy dissipation too and vice versa. Thus, along with the inverse energy cascade some enstrophy has to
arrive at the large scales also and similarly some energy needs to arrive at the small scales due to the enstrophydirect cascade.
In particular, given the scaling (58) and (59) the enstrophy dissipation by the drag force ζα ∼ α

∑
kk

2E(k) is dominated by
the forcing scale kin and

ζα ∝ αkin3E(kin) ∝ ζinR−1
α (62)

and therefore ζα/ζin → 0 as Rα → ∞. One arrives at the same conclusion using a high-order hypo-viscosity −αn(−∆)−nu,
so that most of its dissipation is limited to the small wavenumbers k ∼ kα then ζα ∼ (kα/kin)2ζin where kα → 0 as αn → 0.
Thus, the amplitude of the inverse enstrophy flux compared to the total enstrophy injection rate goes to zero in the limit
Rα → ∞. In the same way, by estimating the viscous energy dissipation at the viscous scale as ϵν = ν

∑
kk

2E(k) ∼ νk3νE(kν)
we reach:

ϵν ∝ ϵinRe−1 log[Re]2/3 (63)

where the logarithmic correction (59) was taken in to account. If a high-order hyper-viscosity −νn(−∆)nu is used to limit
dissipation at k ∼ kν we obtain ϵν ∼ (kin/kν)2ϵin with kν → ∞ as νn → 0. Therefore the forward energy flux decreases
to zero in the limit Re → ∞. A beautiful experimental verification of the 2D energy and enstrophy cascades is provided in
Fig. 7.

Second, we need to note that in the presence of the inverse cascade the total energy in the system is dominated by the
large scales and grows with Rα as E ∼ kαE(kα) ∝ Rα where we have used (60). Thus, the drag coefficient due to the large
scale friction Dα if defined as in (42) decreases with Rα . The system however remains far from a statistical equilibrium state.
The reason is that the peak of the energy spectrum is around kα , and the latter should be used instead of kin in the definition
(42). Therefore, we can redefine the two drag coefficients as:

Dν =
ϵν

E3/2kα
and Dα =

ϵα

E3/2kα
. (64)

Alternatively, we can replace the energy used in the definition of the dimensionless drags as the energy Ein contained in a
neighbourhood of kin (of fixed width independently of α and ν) e.g.

Ein =

2kin∑
k′=kin/2

E(k′) (65)

and define the small and large-scale drag coefficients as

Dν =
ϵν

E3/2
in kin

and Dα =
ϵα

E3/2
in kin

. (66)

The two definitions (66) and (64) are equivalent up to an order one coefficient and lead to Dν → 0 and Dα → O(1) as
Rα, Re → ∞. Similarly we can define the enstrophy drag coefficients as:

Gν =
ζν

E3/2
in kin3

and Gα =
ζα

E3/2
in kin3

. (67)
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Fig. 7. Realization of inverse energy cascade and direct enstrophy cascade in experimental 2D turbulence. Energy and enstrophy fluxes from [157]. (a–c),
Spatial variation of energy flux, here indicated with the symbol Π (r), through scales r = 0.55L, L, 2L respectively, where L here is the injection scale.
Colour indicates flux intensity. All panels show the same region and time. (d) Mean energy flux ⟨Π (r)⟩ (thick line) and enstrophy flux ⟨Z(r)⟩ (thin line) as
a function of length scale r and using a scale filtered representation (35). Energy moves away from the injection scale L and primarily toward large scales,
whereas enstrophy moves away from L and primarily toward small scales. (e–g): spatial variation of enstrophy flux through the same scales as in (a–c).
(h): kalliroscope visualization of a 2D turbulent flow [143]. (i): rendering of a 2D turbulent flowwith velocity vectors where the tracer particles were found
and vorticity shown by the colours (red is positive, blue is negative). The Reynolds number (based on rms velocity and the magnet length scale of the
electromagnetic forcing) is 185 [157].
Source: Courtesy of N. Ouellette.

With these definitions and within the 2D Batchelor–Kraichnan phenomenology, we obtain that also in 2D we have two
dissipative anomalies both at large and small scales, i.e. a finite dissipation limit:

lim
Rα→∞

Dα > 0 and lim
Re→∞

Gν > 0 . (68)

We now discuss the other case when the limit α → 0 is taken before taking the large box limit L → ∞. In this case the
inverse cascade that develops at early times will eventually reach the scale of the box, and energy will start to accumulate at
the largest scales of system forming a condensate. The transition to the condensate regime will occur when the expression
(60) for kα becomes smaller than the minimum wavenumber k0 ∼ 2π/L i.e. there will be a condensate if

k0/kin > R−3/2
α . (69)

The saturation of the condensate occurs when the large scales become efficient at dissipating the energy either by the drag
term or by the viscous term ϵin ∼ (αk0 + νk30)E(k0). This implies that at steady state the energy of the condensate is given by

E ≃ k0E(k0) ∝
ϵin

α + νk20
, (70)

which therefore tends to ∞ when Re, Rα → ∞. To estimate the ratio of the inverse flux to the velocity fluctuations we need
to evaluate the drag coefficients at the large scales using (64) with kα = k0 and E ∼ k0E(k0):

Dα ∼
ϵα

E3/2k0
(71)

which tends to 0 as Re, Rα → ∞ and where we must also consider that ϵin ∼ ϵα . In such a case, the amplitude of the
velocity fluctuations at the large scales are much larger than the injection energy rate, the system does not have any more
a clear scale separation, as summarized by the right panel of Fig. 2, and it is close to an equilibrium state as discussed in
Section 3.4 and by Definition 13 in Section 3.6. We note that these arguments assume a constant energy injection rate ϵin. It
was pointed out in [114,158] that if one uses a constant forcing amplitude, although (70) and (71) still hold, ϵin depends on
the condensate amplitude k0E(k0), it might tend to 0 for Rα → ∞ and can thus alter the scaling properties. In conclusion,
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Fig. 8. Lin–lin plot of the scaling for the third-order longitudinal structure function with the two scaling ranges: ∝ r3 in the smooth enstrophy cascade
regime and ∝ r for the inverse energy cascade .

when one investigates the properties of the steady state inverse cascade, the limit L → ∞has to be taken before the Rα → ∞

while when the properties of a condensate are studied the limits need to be taken in the inverse order.

3.2.2. Configuration space
As done for the 3D case, one can move to configuration space and extend the Batchelor–Kraichnan theory by assuming

self similarity of the velocity increments PDF in the direct and inverse inertial ranges. Concerning the inverse energy cascade
range, one obtains the same n/3 scaling prediction for the nth order longitudinal and transverse velocity structure functions
as in (46). In the 2D inverse cascade regime however the pre-factor of the exact law (30) is 3/2 instead of 4/5. For the direct
enstrophy cascade, only the enstrophy fluxmight enter in the description and one obtains the prediction of a smooth velocity
behaviour [159–161]:⎧⎪⎨⎪⎩

SL3(r) =
3
2
ϵinr; ℓin ≪ r ≪ ℓα

SL3(r) =
1
8
ζinr3; ℓν ≪ r ≪ ℓin

(72)

which can be dimensionally generalized to all orders and to transverse increments as:{
SLn(r) ∝ ϵin

n/3rn/3; STn (r) ∝ ϵin
n/3rn/3 ℓin ≪ r ≪ ℓα

SLn(r) ∝ ζ
n/3
in rn; STn (r) ∝ ζ

n/3
in rn ℓν ≪ r ≪ ℓin.

(73)

At difference fromwhat is observed in 3D, there is no signature of anomalous corrections to the scaling in either the inverse
energy cascade or the direct enstrophy cascade for what concerns the velocity statistics, while the scaling of the vorticity
field is anomalous and intermittent in the direct inertial range [162–164]. Both intermittency and the energy spectrum are
eventually affected by the intensity of the large-scale drag as briefly discussed at the end of Section 4.7.3. It is important
to stress that even if the inverse energy cascade is not intermittent, it remains far from equilibrium, with a constant O(1)
skewness. In Fig. 8 we summarize the scaling for the longitudinal third-order structure function for the Batchelor–Kraichnan
theory.

3.3. Split energy cascade

Next, we move to the case where we are in the presence of a split energy transfer, such that part of the injected energy
goes to small and part to large scales. This situation appears in many systems, e.g. thin layers, rotating or conducting fluids
as will be examined below. In these examples, some external mechanisms (e.g. rotation, confinement, stratification, etc...)
introduce a breaking of global symmetries and result in the system behaving as if it is 2D at some scales and 3D at others.
The phenomenology becomes much more complex, because the external mechanisms often break statistical isotropy and
scale invariance. The transition from a forward to an inverse cascade however does not only occur due to a reduction of
dimensionality. As we will discuss in Section 4.1 a transition from direct to inverse energy transfer is possible in 3D flows,
under some constraints on the helical content of all Fourier modes and in pure 2D flows in the presence of magnetic fields
(see Section 4.6). Therefore a change of dimensionality is only one of the possible mechanisms that can be responsible for
the reversal of the turbulent energy flux. We will go back to the most important applications later in the review, here we
give a general reasoning for the presence of split cascades and list their basic properties. We first connect the presence of
a split cascade with the existence of different physical features at small and large scales. As an example, let us consider
a thin layer of vertical height H , where the non-dimensional control parameter is the relative height kinH . In this system
the large scales, ≫ H , are constrained to have a 2D behaviour while the small scales, ≪ H , are free to evolve in all three
dimensions. Thus, provided that some energy arrives at large scales, it will continue to cascade inversely becomingmore and
more 2D-like as the inverse cascade proceeds. Similarly, if some energy arrives at the small scales, it will continue to cascade
forward since the effect of confinement becomes less and less important. If both cases are feasible, and the non-linearities are
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Fig. 9. Log–log sketch of the spectra (left) and fluxes (right) in the presence of a split energy cascade.

efficient enough to transport energy to small and large scales, then a fraction of the energy cascades forward and a fraction
backward.

One can therefore generalize and conjecture that if the dynamical properties of the flow at scales r ≫ ℓin are such to
support an inverse transfer, and at the same time at scales r ≪ ℓin they support a forward cascade then a split cascade is
observed, at least for some range of parameters. If a split cascade exists, the flux relations are given by the ones derived in
(21)–(22). The difference from the 3D and 2D HIT is that neither ϵν nor ϵα are negligible in the limits Re, Rα → ∞. In this
limit we expect that the energy flux will be constant and equal to −ϵα ̸= 0 in the range kα ≪ k < kin while constant and
equal to ϵν ̸= 0 in the range kin < k ≪ kν{

ΠE(k) = −ϵα, kα ≪ k < kin
ΠE(k) = +ϵν, kin < k ≪ kν .

(74)

The asymptotic form of the spectra at kα ≪ k ≪ kin and kink ≪ kν will be connected to the properties of the corresponding
cascade, but at intermediate wavenumbers different superpositions of power laws can appear. The idealized situation is
qualitatively summarized in Fig. 9. Similarly in configuration space the third order structure function S3(r) will be as the one
depicted in Fig. 4 where the two slopes are proportional to the two opposite fluxes. In the presence of a split cascade, it is
important to determine what is the fraction of the injected energy that cascades to the large scales and the one that goes to
small scales:

Qα =
ϵα

ϵin
, Qν = 1 − Qα = ϵν/ϵin. (75)

The fractions Qν,Qα might depend on the control parameters and in some cases it is possible that either Qα or 1 − Qα can
take very small values. In the latter situation, one must be careful to distinguish the system from a flow in equilibrium, as it
will be discussed in the next section.

3.4. Statistical equilibrium

Here, we examine the cases where the flux is exactly zero or close to zero, so that the system reaches a stationary
equilibrium. These zero flux solutions were examined in [98,165,166] and have been the subject of many theoretical work
in turbulence [101,106–108,133,167]. They have provided important insight for the behaviour of large-scale flows [109–
111,168], they have beenused to explain the bottleneck effect at small scales [99,100,169] and applied to a variety of different
systems [102,103,105,170]. They have also been conjectured to predict the direction of a cascade based on whether the
resulting distribution of energy of these equilibrium solutions peaks at small or large scales.

Strictly speaking the equilibrium is thought to describe the truncated Euler equations defined in a finite set of wavenum-
bers so that there is a minimum k0 and a maximum kmax. The truncated Euler equations are given by

∂tu<kmax + Pkmax [u
<kmax · ∇u<kmax + ∇P] = 0 (76)

where the projector operator Pkmax removes all wave numbers larger than kmax as in (16) and there exists a finite IR cut-off,
k0 > 0. This idealized system conserves exactly energy and helicity in 3D and energy and enstrophy in 2D. In the truncated
Euler system all stationary fluxes are equal to zero, since ϵin = ϵν = ϵα = 0. Thus, there is no notion of a cascade in steady
state.

At large times this system is said to thermalize in the sense that its degrees of freedom can be described to a good
approximation by a Gibbs-ensemble, such that the probability P that the system is found in a state u<kmax is given by

P[u<kmax ] =
1
Z
e−γE−βH in 3D and P[u<kmax ] =

1
Z
e−γE−βZ in 2D (77)
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Fig. 10. Log–log sketch of the absolute equilibrium spectra in 3D (left) and in 2D (right).

where Z is a normalization factor and γ and β are two constants that determine the energy and the helicity of the system in
3D or the energy and the enstrophy in 2D. Using this assumption, the time averaged energy spectra can be evaluated [98],
resulting in 3D to

E(k) =
4πk2

γ 2 − β2k2
, k0 ≤ k ≤ kmax (78)

while in 2D one obtains:

E(k) =
2πk

γ + βk2
, k0 ≤ k ≤ kmax. (79)

Note that in the 3D case, the energy spectrum always peaks at the largest wave number kmax and for zero helicity, β = 0,
the expression (78) corresponds to the equipartition of energy in all Fourier modes, which is also often called the thermal
spectrum. For non-zero helicity the system has a singularity at k = γ /β which however is larger than kmax < γ/β . The
stronger the helicity the closer kmax is to γ /β and energy is concentrated close to kmax. In 2D, depending on the relative
value and sign of γ and β , the spectrum can peak either at kmax or at k0. A singularity exists also in this case if γ β < 0
at k =

√
−γ /β that lies outside the range of available wavenumbers

√
−γ /β ̸∈ [k0, kmax]. When γ < 0 and

√
−γ /β is

close (but smaller) to k0 then most of the energy is concentrated at the smallest wavenumber k0. This is typically referred
as a condensate state and corresponds to a ‘‘negative temperature’’ state because γ < 0. On the contrary when γ > 0 and
√

−γ /β is close to (but larger than) kmax corresponds to amaximal enstrophy state wheremost of the energy and enstrophy
is concentrated close to kmax. See Fig. 10.

The functional form of the energy spectrum at statistical equilibriumhas been used to describe the energy spectrum of 3D
turbulent flows at scales larger than ℓin where zero flux is observed [101,109,110,133]. Another case where it is applicable is
the 3D NSE in the presence of a maximumwavenumber kmax beyond which the cascade cannot proceed, either because new
physics emerges (coupling with other active fields, e.g. polymer solutions, temperature in presence of buoyancy, quantum
vortices etc...) or because of the presence of a high order hyper-viscosity [169] or due to an artificial cut-off in numerical
applications. The last case is realized in under-resolved numerical simulations when kmax is much smaller than the required
viscous wave number kν ∝ kinRe3/4. For values of Re such that kν ≪ kmax the system has enough degrees of freedom to
provide a good approximation to the original NSE without any UV cut-off. However as Re is increased and kν becomes of
the same order or larger than kmax the system is not as efficient in dissipating energy. As a result energy will pile up at the
small scales, leading to the formation of a local quasi-equilibriumwith a E(k) ∼ Ck2 spectrum. At very large values of Re, the
k2 spectrum will dominate all available wavenumbers. The system then reaches a global state close to thermal equilibrium
where there is a sub-dominant flux of energy. This is displayed in the left panel of Fig. 11. Note that since the spectrum
has a positive slope, the energy dissipation is still restricted to wavenumbers close to kmax thus the energy flux in the range
kin < k ≪ kmax will still be approximately constant in averageΠE(k) = ϵin and developing strong temporal fluctuations. The
thermalized wavenumbers have been shown to act as an eddy viscosity and remove energy from the part of the spectrum
displaying a k−5/3 power-law [99,100].

Another more physically motivated situation occurs in 2D when α in (1) is not large enough (see end of Section 3.2.1).
For any finite domain if α is reduced beyond a certain value a similar process as in truncated 3D NSE occurs but now with
the energy pilling up at the smallest wavenumbers as shown in Fig. 12 forming a spectrum close to the one given by the
thermal equilibrium (79). In this case, at scales ℓ > ℓin the flux of energy plays a sub-dominant role and system behaves as
in a quasi-equilibrium. There have been many attempts to describe and predict these condensates by means of statistical
physics [103,104,115,115–120,120–124,168,171–173].

Despite that the energy flux can be constant in the range kin ≪ k ≪ kmax in 3D (or in the range k0 ≪ k ≪ kin in 2D)
the energy transfer does not qualify as a cascade because the limit (38) is not satisfied. Constancy of the flux implies the
existence of a cascade only if a finite dissipation limit at infinite Re and Rα exists. For the 3D case the total dissipation can
be estimated as ∝ ν

∑
k<kmax

k2E(k) ∼ νk3maxE(kmax) ∼ νk5max and it must balance ϵin. This implies that the energy scales like
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Fig. 11. Left: Change of the spectrum from a Kolmogorov to a thermal spectrum in the presence of an ultraviolet cutoff kmax at decreasing the viscosity as
indicated by the arrow. Right: the instantaneous energy flux for the same system. As the thermal equilibrium is approached the time-averaged flux (black
line) remains unchanged independently of ν but its scale-by-scale and temporal fluctuations become larger.

Fig. 12. Left: Change of the spectrum in a 2D inverse cascade from Kolmogorov −5/3 to a condensate as the value of the drag coefficient α is decreased in
the presence of an infrared cutoff k0 . Right: The instantaneous energy flux for the same system. As the thermal equilibrium is approached the time averaged
flux (black line) remains unchanged independently of α but its scale-by-scale and temporal fluctuations become larger.

E ∼ kmaxE(kmax) ∝ ϵinν
−1k−2

max, and the drag coefficient (37) goes to zero at large Reynolds number:

Dν ∼ Re−3/2.

The spectrum shape at absolute equilibrium has also been used to predict the cascade direction for the full NSE. According to
this argument, in 3D energy cascades always forward because the inertial dynamics wants to approach a state where most
of the energy is concentrated in the large wavenumbers while in 2D the energy cascade can be also inverse. However, we
note that this argument is not enough to make an exact statement. As it will be shown for the case of rotating turbulence
in Section 4.3 a transition from direct to a split cascade can exist despite of the fact that the statistical equilibrium does not
depend on the rotation rate.

Finally, we note that having ΠE(k) = 0 or equivalently S(3)L (r) = 0 does not imply that the system is in an equilibrium
state. As shown in Section 4.4.3 there are cases forwhich the net flux can be zero because of the balancing among interactions
that move consistently energy up and others that move it down. As a result, the energy distribution is not the one predicted
by (77) and the spectrum is different from the equilibrium one.

3.5. Multiple invariants

Finallywewould like to examine turbulent flows forwhichmultiple invariants that cascade backward or forward coexist.
This is in fact the most common scenario in many real applications. We will see in Section 4.1 that in 3D both energy and
helicity (which is non sign-definite) cascade forward, while in 2D (see Section 3.2) the presence of a second positive-definite
invariant, the enstrophy, leads to an inverse cascade of energy and to a direct transfer of enstrophy. We remind that the
arguments that constrain energy to cascade inversely in 2D rely on the relation among the energy and enstrophy spectrum
leading to the inequality (56). In 3D, Helicity is sign indefinite and a similar inequality cannot be constructed. Nevertheless,
we show in Section 4.1.2 that when helicity becomes sign-definite, a scenario similar to the 2D case can develop in 3D
also.

In the following, we generalize the arguments made in (56), (57) for two arbitrary invariants, to demonstrate the
necessary conditions required to restrict the cascades directions. The same conclusions can be obtainedby following different
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arguments as shown in [137,146–155]. Consider two invariants A,B with energy spectra EA(k), EB(k), viscous dissipation
spectra νk2EA(k), νk2EB(k) and drag-force spectraαEA(k), αEB(k) respectively. In generalwe cannot determine the direction
of cascade of the two invariants unless there are special relations between the two. More precisely for the forward cascade
we can state that

if there exist c > 0, n > 0 such that |EA(k)| ≤ c k−nEB(k) then A cannot cascade forward. (80)

The sketch of the proof follows the same arguments discussed in Section 3.2. Suppose that both invariants cascade forward
and the viscous dissipation is dominated by the large wavenumbers. We can then show that for any k such that kin < k ≪ kν
the fluxΠA(k) of the invariant A must satisfy:⏐⏐ΠA (k)

⏐⏐ ≃ ν

⏐⏐⏐⏐⏐
∞∑

k′=k

(k′)2EA(k′)

⏐⏐⏐⏐⏐ ≤ νk−n

⏐⏐⏐⏐⏐
∞∑

k′=k

(k′)2+nEA(k′)

⏐⏐⏐⏐⏐ ≤ νk−nc
∞∑

k′=k

(k′)2EB(k′) ≃ cϵνBk−n. (81)

where ϵνB is the viscous dissipation rate of the invariantB. Therefore, unless ϵνB is diverging the flux ofA cannot be constant
(either positive or negative) and has to decrease at least as k−n. Similarly for the inverse cascade we can state that for any
k < kin

if there exist c > 0, n > 0 such that |EB(k)| ≤ cknEA(k) then B cannot cascade inversely. (82)

This again can be shown by considering a wavenumber k in the inertial range of the inverse cascade kα ≪ k ≪ kin. Then if
the dissipation by the drag force of the two invariants is dominated by the small wavenumbers, the fluxΠB(k) satisfies⏐⏐ΠB (k)

⏐⏐ ≃ α

⏐⏐⏐⏐⏐
k∑

k′=0

EB(k′)

⏐⏐⏐⏐⏐ ≤ αkn
⏐⏐⏐⏐⏐

k∑
k′=0

(k′)−nEB(k′)

⏐⏐⏐⏐⏐ ≤ αknc
k∑

k′=0

EA(k′) ≃ cϵαAkn. (83)

Note that for (80) to be true, EB(k) has to be strictly positive,while for (82) to hold,weneed EA(k) to be strictly positive. For the
energy and enstrophy 2D cascades we have B = Z andA = E , whichmeans k2EE (k) = EZ (k), and both conditions (80)–(82)
are true as an equality. Therefore, we can conclude that enstrophy cascades forward while energy cascades backward. For
3D turbulence, we have helicity B = H and energy A = E but H is not sign definite and only (82) is true, | EH(k)| ≤ kEE (k),
while (80) does not hold. Therefore, while we can conclude that H cannot have an inverse cascade we cannot restrict the
direction of the energy cascade. If howeverH is a sign-definite quantity (as for the cases discussed in Section 4.1.2) both (80)
and (82) are satisfied and energy cascades backward even in a 3D isotropic turbulence.

Given the transfer direction of each invariant one might ask the question which invariant determines the spectrum.
Clearly when they cascade in opposite directions it is the cascading invariant that determines the spectra in the relevant
scales. When however there is a coexistence of cascades at the same scales there is no trivial answer and the spectrum can
be the outcome of either cascading process. It is also possible that the spectrum is a superposition of power-laws and each
cascade determines the energy spectrum at different range of scales. We note furthermore that coexistence of cascades at
the same scales does not imply that both invariants cascade in the same direction. If there is energy injection at multiple
scales a forward and an inverse cascade can overlap. This has been recently demonstrated in [174] for 2D turbulence forced
at both small and large scales.

It is also important to discuss the notion of the direction of cascade for a sign-indefinite quantity like the helicity. For a
positive quantity, the direction of a cascade is simply given by the sign of the flux indicating a forward cascade if it is positive
and an inverse cascade if it is negative. While the flux of helicity can be uniquely defined (see Section 4.1) its interpretation
can be confusing. Positive values ofΠH imply that the non-linearities decrease helicity in the large scales and increase helicity
in the small scales. Therefore if the helicity is positive at all scales this can be interpreted as transfer of helicity from large
scales to small, and thus a forward cascade. If however the helicity is negative at all scales the large scale helicitywill increase
in magnitude at the large scales and thus it signifies an inverse cascade (of negative helicity). It is even harder to give an
interpretation in terms of a cascade when the helicity is not of the same sign at all scales.

3.6. Definitions

In this section we proceed by giving general definitions of the terminology used in the rest of this paper. Our aim is
to provide a glossary and the basic tools that distinguish in a precise and clean manner different situations such as split
cascades, strictly forward/inverse cascades and systems in statistical equilibrium. The definitions presented here are tailored
for the needs of this review and are notmeant to be complete.We restrict the discussion to the energy cascade case to have a
specific example, however they can be easily replicatedwith appropriatemodifications for the cascade of any ideal quadratic
invariant. Furthermore we have neglected some other aspects that are typically (and justifiably) attributed to cascades as
for example locality of interactions. Putting further constraints on our definitions to capture also these aspects goes beyond
the main objectives of this review, and would make the definitions more complex without contributing to the oncoming
discussions. However, we remind the reader that this is certainly not the end of the story.
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3.6.1. Forward, inverse & split cascades
We start by giving a precise definition of what we mean by an out-of-equilibrium energy cascade. This is important in

order to distinguish it from other cases where the energy transfer from the injection scale to the dissipative scale is not the
dominant mechanism in the system, as for the case of quasi-equilibrium flows.

As usual, we consider a flow forced at awavenumber kin, in a box domain of size L that results in aminimumwavenumber
k0 = 2π/L. For quasi-2D systems (thin layers, fast rotating flows, etc...) for which one particular direction (vertical) plays
a special role, we will use H to denote the box size in this direction while L will stand for the box size in the remaining
two (horizontal) directions. Furthermore we also consider the possibility that a maximum wave number kmax exists in the
system, which will be considered infinite in most cases, except for some special instances where it is interesting to consider
the effects introduced by an ultraviolet cut-off, i.e. for under-resolved numerical simulations. With this in mind, we give the
following definition for an energy cascading system.

Definition 1 (Out-of-Equilibrium Energy Cascade). If Ein is the energy in a neighbourhood of kin

Ein =

k2∑
k′=k1

E(k′) (84)

with k1 < kin < k2 we will say that a system is energy cascading (or out of equilibrium) if for any fixed wavenumbers k1, k2
the limit

Din ≡ lim
Re→∞,
Rα→∞

lim
k0→0,

kmax→∞

ϵin

E3/2
in kin

> 0 (85)

exists and is finite. Otherwise if the limit in (85) is zero we will say that the system is in an asymptotically equilibrium state.

The condition guaranties that (for fixed energy injection rate) the energy in the neighbourhood of kin remains bounded.
Since the energy dissipation rate inside this neighbourhood (k1, k2) is smaller than Ein(α+νk22), it becomes vanishingly small
in the limit of Re, Rα → ∞. This implies that the injected energy has to be transferred either to small or large scales to be
dissipated.

The order of the limits considered in this definition are crucial. The quantities used are time averaged implying that first
the long time limit is taken then the limits L → ∞ and kmax → ∞ are taken and finally the large Re, Rα are taken. Reverting
the ordering of these limits can lead to different results. We discuss the case that the time limit is taken last at the end of
this subsection.

Given that a system is energy cascading we can define the relative forward/inverse energy cascade rate as follows

Definition 2 (Relative Inverse/forward Energy-Cascade Rates). In an energy cascading system the relative rate of forward
cascade Qν is defined as

lim
Re→∞,
Rα→∞

lim
k0→0,

kmax→∞

ϵν

ϵin
= Qν > 0, (86)

while the relative rate of inverse cascade Qα is given by

lim
Re→∞,
Rα→∞

lim
L→∞,

kmax→∞

ϵα

ϵin
= Qα = 1 − Qν . (87)

Definition 2 is based on global injection and dissipation rates of energy (or other invariants). Given however the relations
(21)–(22) that equate the dissipation rates with the energy flux we can equivalently say:

Definition 3 (Forward and Inverse Cascades). We will say that in a cascading system there is a forward energy cascade for
kin ≪ k ≪ kν if in this range the energy flux satisfies:

lim
Re→∞,
Rα→∞

lim
k0→0,

kmax→∞

ΠE(k)
ϵin

= Qν > 0 (88)

and similarly we will say that in a cascading system there is an inverse energy cascade for kα ≪ k ≪ kin if the energy flux
in this range satisfies:

lim
Re→∞,
Rα→∞

lim
k0→0,

kmax→∞

−
ΠE(k)
ϵin

= Qα > 0 (89)

Note that the Definitions 2–3 are equivalent for defining Qν,Qα , and that both require the system to be energy cascading
based on Definition 1 as a prerequisite. However, the first ones make a statement for the whole system while the second
define a cascade in a particular (inertial) range of scales.
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Constancy of flux only implies that the non-linearities conserve energy and that forcing and dissipative effects can be
neglected in the inertial range. Given the above definitions we can now proceed to further distinguish what we call a strictly
forward, strictly inverse or split cascade regime.

Definition 4 (Strictly Forward (Direct), Strictly Inverse (Backward) and Split Cascades). An energy cascading system will be
called strictly forward (direct) energy cascading if Qν = 1, strictly inverse (backward) energy cascading if Qν = 0, or split
energy cascading system if 0 < Qν < 1.

We stress one more time the importance of the limiting procedures for the split cascade. This is because close to a
transition point the amplitudes of Qν or Qα can be very small and it is important to distinguish them from any transient
transfer caused, e.g., by large-scale instabilities [175,176].

Finally it is also worth considering the case that the long time limit is taken last. In this case the system (particular in
the presence of an inverse cascade) does not necessarily reach a steady state, and many of the results derived so far (as
the equality of energy injection with energy dissipation) are no longer valid. It is worth, however, considering it because it
corresponds to the case of many numerical simulations. Due to computational costs numerical experiment are run up to a
time such that all small scale quantities have reached a quasi-steady state while the large-scale quantities are still growing,
without the spectrum reaching the smallest wavenumber. The amplitude of the inverse cascade is then not measured by
the dissipation rate due to the drag term (which in most cases is not even used) but by the rate that the inversely cascading
quantity increases in time. This method is computationally less expensive and it has been shown in some cases to lead to
the same conclusions with the steady state experiments [33].

3.6.2. Partial fluxes and bidirectional cascades
Inmany systems discussed in this review, there aremultiple processes that cascade energy or other invariants in different

directions. In many cases these processes can be rigorously isolated so that each one leads to a partial flux energy defined as
follows.

Definition 5 (Partial Fluxes). We will say that the total fluxΠ (k) of a given invariant can be decomposed in N partial fluxes
Πi(k) (for i = 1, . . . ,N) ifΠ (k) can be written as:

Π (k) =

N∑
i=1

Πi(k) (90)

and eachΠi(k) is (a) constant for k in the inertial range, (b) conserves globally the invariant

lim
k→∞

Πi(k) = lim
k→0

Πi(k) = 0. (91)

and (c) remains finite in the limit

lim
Re→∞,
Rα→∞

Πi(k)/ϵin ̸= 0. (92)

Given that there can be partial fluxes, we need to distinguish whether they are unidirectional or bidirectional.

Definition 6 (Bidirectional Cascades). We will say that a system displays a bidirectional cascade in a given range of scales
if the total flux Π (k) of a given invariant can be decomposed in multiple partial fluxes Π (k) such that at least two of them
have opposite signs.

This implies that in a bidirectional cascade there exist different processes that transfer energy forward and backward in
the same range of scales. We note that sometimes in the literature the name ‘‘bidirectional’’ is used in a different way, to
denote a split cascade (as given in Definition 4).

Definition 7 (Flux-Less or Flux-Loop Cascades). We will say that a system displays a flux-less cascade or a flux-loop cascade
at a given range of scales if it develops a bidirectional cascade and the total flux vanishes,Π (k) = 0.

We note that a flux-less cascade is very different from a statistical equilibrium state that also has zero global flux.
Examples of flux-less cascade can be found in Sections 4.4.3 and 4.3.5.

3.6.3. Dual and multiple cascades
We now proceed in examining the case for which there are multiple invariants.

Definition 8 (Dual/multiple Cascades). We will say that a system displays a dual/multiple cascade if it has two/multiple
cascading invariants.
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This is in fact the case in almost all systems that we are going to meet in this review. Note that both invariants need
to satisfy a condition equivalent to Definition 1 for the system to display a cascade. Dual cascading systems can be further
categorized in two branches co-directional and counter-directional dual cascades.

Definition 9 (Co-Directional and Counter-Directional Dual Cascades). We will further distinguish a dual cascade to be a co-
directional dual cascade if the two transfers are in the same direction and a counter-directional dual cascade if one invariant
cascades strictly forward and the other strictly inversely.

For example 2D turbulence displays a counter-directional dual energy–enstrophy cascade while 3D turbulence displays
a co-directional energy-helicity dual cascade.

3.6.4. Finite domains and asymptotically equilibrium states
Some of the systems described so far do not lead to a finite dissipation in the limit of infinite Re, Rα . They correspond to

systems that are dominated by thermal fluctuations andwe refer to them as reaching asymptotically a statistical equilibrium
state. Here by statistical equilibriumwemean the case of a systemwithmany degrees of freedom, with ergodic phase-space
trajectories and without energy injection or dissipation as the ones described in Section 3.4. If the equilibrium distribution
can be approximated by a Gibbs ensemble, we will also refer to them as a thermal equilibrium state. Strictly speaking, in
the turbulent configuration examined here, there is always some injection and dissipation mechanisms and thus do not
fall in this category. Nonetheless, in certain limits, the flow can asymptotically approach a state very close to a statistical
equilibrium.

This happens in particular when finite domains are considered (k0 > 0) or when a maximum wavenumber kmax exists.
To investigate such systems we cannot consider the limits k0 → 0 and kmax → ∞ in Definition 1. Then we need to make the
following distinctions. If both k0 and kmax are finite then the systemwill always reach asymptotically an equilibrium state at
the limit Re, Rα → ∞ because there cannot be an energy cascade either to small or large scales. For a system with k0 finite
and kmax → ∞, or kmax finite and k0 → 0 we will say it reaches an asymptotically equilibrium state based on the following
definition.

Definition10 (Asymptotically Statistical EquilibriumState in FiniteDomains). For a systemof finite size (k0 > 0 and kmax → ∞)
wewill say that it approaches asymptotically a statistical energy equilibrium state if for any k2 > kin anddefining Ein =

∑k2
k0
E(k)

Din ≡ lim
Re→∞,
Rα→∞

ϵin

Ein3/2kin
= 0. (93)

Similarly for a system with kmax < ∞ (and k0 = 0) we will say that it approaches asymptotically a statistical energy
equilibrium state if for any k1 < kin and defining Ein =

∑kmax
k1

E(k)

Din ≡ lim
Re→∞,
Rα→∞

ϵin

Ein3/2kin
= 0. (94)

We note again that the system being at equilibrium does not imply necessarily being at thermal equilibrium.

Definition 11 (Asymptotically Thermal Equilibrium State). An asymptotically statistical equilibrium will be called a thermal
equilibrium if its dynamical variables can be approximated by Gibbs statistics (77).

In many situations only a range of wave numbers is approaching an equilibrium state. This happens when all invariants
cascade in the same direction leaving the scales at opposite direction to have zero flux. The latter range can possibly be
described asymptotically by a statistical equilibrium.

Definition 12 (Statistical Equilibrium Range). A range of wavenumbers will be called to be in a asymptotically statistical
equilibrium if the fluxes of all ideal invariants, and all their partial fluxes are zero in the limit Re → ∞ and Rα → ∞. If
the dynamical variables in this range follow Gibbs statistics we will call this range as being in an asymptotically thermal
equilibrium.

An example of a statistical equilibrium range are expected to be the scales larger than the forcing scale in 3DHIT discussed
in Section 3.1. Note that a system does not have to be in a statistical equilibrium state to have a statistical equilibrium range
as the latter provides information for only a particular range of wavenumbers.

A special case in a statistical equilibrium state is when a condensate is formed for systems with k0 finite. In such a case,
energy is also concentrated in the lowest wavenumber. These condensate states appear in many different situations but not
all can be described by a statistical equilibrium state. As it will be discussed in Section 4.3 the amplitude of the condensate
can be so large that it can alter the dynamics leading to a flux-less cascade rather than to a statistical equilibrium. It is thus
hard to give a definition that covers all possible cases. Here, we decided to define a condensate as follows:

Definition 13 (Condensate). We will say that system with an inverse transfer approaches asymptotically a condensate state
in the limit Re, Rα → ∞ if for fixed Lmost of its energy (or an other invariant) is concentrated in the smallest wavenumbers
k0 ∝ 1/L of the system.
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Fig. 13. Three possible ways for the transition from a strictly forward cascade, Qα = 0, to a split cascade, Qα > 0, or to an inverse cascade, Qα = 1, as the
control parameterµ is varied: (a) smooth way, (b) continuous non-smooth (second order phase transition), (c) discontinuous (first order phase transition).

In this situation, there is not anymore clear scale separation, as shown by the right panel of Fig. 2. Wewill distinguish the
condensates in two classes: equilibrium condensates and flux-loop condensates that are distinguished based on the scaling
properties of their amplitude with Re, Rα as follows.

Definition 14 (Equilibrium Condensate). For fixed ϵin and k0 we will say that an inverse cascading system approaches
asymptotically an equilibrium condensate state if its amplitude k0E(k0) increases without bound as Re, Rα → ∞ i.e.

lim
Rα→∞

lim
Re→∞

ϵin

E(k0)3/2k
5/2
0

= 0. (95)

while

Definition 15 (Flux-Loop Condensate). We will say that an inverse cascading system approaches asymptotically a flux-loop
condensate state if its amplitude k0E(k0) has a finite value in the limit Re, Rα → ∞ i.e.

lim
Rα→∞

lim
Re→∞

ϵin

E(k0)3/2k
5/2
0

> 0. (96)

In the first case most of the dissipation occurs at the condensate scale k0 while in the second case since k0E(k0) remains
finite, one must imagine that long-range Fourier interactions become efficient enough to redirect the energy back to the
small scales where it can be dissipated. Thus, the first system is closer and closer to a statistical equilibrium state, while
the second develops also a forward non-local flux triggered by the presence of the large-scale condensate and it is not in a
statistical equilibrium state. The amplitude of the condensate in the latter case depends on other control parameters like the
Rossby number for rotating turbulence (see Sections 4.2.4 and 4.3.5 for two example cases). One must also notice that the
presence of strong large-scale structures can influence the way energy is injected in the system, with a non-trivial feedback
on the dependency of ϵin on the control parameters.

3.7. Classification of cascade transitions

The idea that a turbulent system may change the direction of the energy transfer (or of other quantities) as a system
parameter varies is not new. Theoretical ideas were introduced already by [177–181] where a phase transition from forward
to inverse cascade was conjectured to occur at a critical fractal dimension d∗ with 2 < d∗ < 3. These ideas were pursued
with the use of EDQNM models [178] and shell models [179,182] while more recently fractal dimensional turbulence has
been modelled by decimated Navier–Stokes models [183–185] that will be also further discussed in Section 5.2.1. In all of
these examples, the transition was considered to be from a forward to an inverse cascade or vice versa. The physics of the
transition however can be more rich if the possibility of having a split cascade as an intermediate step is also considered. In
this section we generalize and provide a list of different scenarios for all possible cascade (phase) transitions.

More precisely we discuss the way a system can pass from a state that cascades energy forward to a state that cascades
energy inversely and vice versa as a critical control parameter µ is varied. We note that as discussed in the previous
subsection, to be able to clearly state the direction of a cascade the large Re, Rα, L, kmax limit needs to be made first, before
any limiting procedure for µ takes place. This guaranties that as µ is varied the flow remains in a turbulent state. Without
any loss of generality we consider a case for which at µ = 0 the system cascades energy strictly forward Qα = 0, while for
µ → ∞ the system cascades energy strictly inverselyQα = 1. For example,µ can be the rotation rate, or the thickness of the
fluid volume or the intensity of the external magnetic field, to cite just a few key control parameters that will be discussed
later. We want thus to find out how the value of the ratio Qα (87) is varying away from 0 as µ is changed.

Three possible scenarios can be envisaged for the way this transition takes place that are depicted in Fig. 13.

• (a) The transition happens in a smoothway. The relative amplitude of the inverse cascadeQα increases smoothly as the
control parameter is increased from Qα = 0 at µ = 0. Note that in this case there is always a forward and an inverse
cascade for any finite value of µ > 0. The behaviour of Qα close to zero will then possibly scale like a power-law
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Fig. 14. All possible transitions from a strictly forward cascade as a function of the control parameter µ for monotonically increasing Qα .

Qα ∝ µσ for which the exponent σ needs to be determined. We will refer to these transitions as smooth. Examples
of systems that display smooth transitions are given by the advection of a passive scalar in confined geometries (see
Section 4.7.5) and, possibly, rotating stratified turbulence (see Section 4.5 and Fig. 52).

• (b) The system transitions from a strictly forward cascade to a split cascade at a critical value ofµ = µc . The amplitude
of the inverse cascade remains exactly zero for allµ < µc and beyond the critical pointµc the system starts to cascade
inversely with discontinuous or diverging derivatives dQα/dµ at the critical point µc , much like a super-critical
instability or a second order phase transition. Close to the critical point we thus expect the behaviour Qα ∝ (µ−µc)σ
where σ is again an exponent that needs to be determined. Using a terminology borrowed from equilibrium statistical
mechanics we will refer to these transitions as continuous 2nd order (phase) transitions. Examples of systems that
display this kind of transitions are given by thin layer flows (Section 4.2), rotating flows (Section 4.3), stratified flows
(Section 4.4), MHD (Sections 4.6, 4.6.4) and possibly rotating stratified turbulence (Section 4.5).

• (c) The transition happens from a strictly forward cascade Qα = 0 to a strictly inverse cascade Qα = 1 at a critical
value of µ = µc in a discontinuous way, much like a sub-critical instability or a first-order phase transition. In this
case thus the system goes from a forward to an inverse cascade without passing through a split cascade. In such a
scenario it is possible that a hysteresis curve is present such that for a range of parameters µh < µ < µc the system
can find itself in a forward cascading state or an inversely cascading state depending on initial conditions. We will
refer to these transitions as discontinuous or 1st-order (phase) transition.

Examples of systems that display discontinues transitions are given by the helical decomposition models in
Section 4.1.3, the fractal dimension transition discussed in [179] and the Surface-Quasi-Geostrophic system at
changing the locality parameter z as discussed in Section 4.7.3.

For the second transition scenario, the critical points do not need to be limited to the transition from a strictly inverse
cascade to a split cascade but we can have a second critical point for the transition from a strictly forward cascade to a split
cascade, and in general there might be a multiple of such a critical points. For example, assuming that Qα monotonically
increases with µ the transition from a forward to an inverse cascade can happen in one of the five more general ways
summarized in Fig. 14. Inmany systems there ismore than one critical parameter (e.g. box-height, rotation and stratification
. . . ) that we here denote as µ1, µ2, . . . . In such cases, the critical points become critical lines or surfaces. Following the
example of phase transitions in statistical mechanics one can anticipate that it is also possible that depending on the path
followed in the parameter space (µ1, µ2, . . . ) one can pass through a critical point or not. The simple description thus given
in Fig. 14 for the case where only one critical parameter exists might be more complex in general.

Finally we note that in a finite domain and in the presence of an inverse cascade a condensate is formed and a different
classificationmust bemade. It cannot be based onQα that is not a goodmeasure of the condensate state. It is better to use the
amplitude of the condensate itself, quantified for example as the energy contained in the smallest wavenumbers normalized
by the total energy as

Q0 = lim
Rα→∞

lim
Re→∞

E(k0)k0
E

. (97)

The ratio Q0 is small in the absence of a condensate (it becomes zero in the limit k0 → 0) while it takes a finite value if a
condensate is present. As before the transition from a condensate to a no-condensate state can be either smooth, 1st order
or 2nd order. It is important to stress that a (phase) transition for the normalized energy flux Qα in the infinite domain limit
and the (phase) transition for the amplitude of the condensate Q0 are two different situations. Only few examples have been
investigated of transitions to the condensate state in rotating turbulence [63,186,187] and are discussed in Section 4.3.5.

4. Applications

In this section we review different systems that deviate from the statistically homogeneous, isotropic and mirror-
symmetric flows and examine the effect of these deviations. The choice of the systems examined is based on their simplicity
and direct applicability in natural systems. We start by discussing the case of homogeneous and isotropic turbulence with
helicity input, i.e. the case where only mirror symmetry is broken in the NSE. We consider this case important because it
allowsus to further dissect the turbulent dynamics in termsof thehelical-Fourier decomposition. Then,weproceed to discuss
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Fig. 15. A leap-frogging helical vortex ring, visualized by placing evenly spaced blobs of dye in the vortex core (white). The trajectories of each blob are
shown in autumn colours. The measurement of the vortex shape was combined with the dye trajectories to yield a measurement of the total helicity and
its dynamics.
Source: Courtesy of W. Irvine [192].

a set of real turbulent configurations appearing in many applications in nature and engineering as: thin layers, turbulence
under rotation, turbulence in the presence of stable and unstable stratification, 2D and 3DMHD; andwe endwith the transfer
properties of passive and active scalars, advected by a turbulent flow.

4.1. Helicity

We start by reviewing the statistical properties of helical homogeneous and isotropic turbulence. Helicity is an invariant
that is connected to the topological structure of vortex lines, which can be studied and characterized in terms of their twist,
writhe and linking number by numerical, experimental and theoretical tools [8,188–191] (see Fig. 15 for an experimental
example of an helical vortex evolution).

Helicity can be introduced in a flow by the presence of large-scale stirring mechanism that breaks mirror symmetry.
It is considered important for many flow configurations as shown in the pioneering studies reported in [8,193–197]. In
nature, helicity is believed to play a key role in the atmospheric Ekman layer, where theoretical and numerical arguments
support a turbulent helicity cascade of right-handed helicity in the logarithmic range of the boundary layer [198–200].
Helical vortices of different prescribed topology have also been produced in the lab [201]. Furthermore local and non-local
effects under strong shear have been studied experimentally in von-Kármán flows [202] and numerically in axisymmetric
turbulence [203]. Finally, a helical flow, constructed by homochiral helical waves with constant k is a Beltrami flow that
is an exact solution of the Euler equation. Suitable superposition (gluing) of such local Beltrami flows has been used to
build up singular solutions of the NSE and the Euler equations [204–206]. The NSE projected on the homochiral sector
can be proven to admit global solutions [13]. Models and closure of turbulence have also been widely applied to helical
flows starting from the early works of [207,208] (see also [209] for a recent contribution). In this section we review recent
advancements on the field achieved by decomposing the flow in helical Fourier modes. This results in a classification of the
non-linear terms in homochiral and heterochiral triads. In terms of this decomposition we discuss how the flow reacts to
mirror-symmetry breaking by the forcing, the rate of recovery of mirror-symmetry at smaller and smaller scales and what
happens to the energy cascade in the presence of an explicit helicity-breaking mechanism at all wavenumbers. Furthermore
this decomposition has revealed that depending on the relative weight of heterochiral and homochiral triads classes, energy
can be transferred either to small or to large scale. Thus, homochiral energy transfer is a pure 3D mechanism that provides
an isotropic reversal of the energy cascade and in the absence of any two-dimensionalization of the flow.

4.1.1. Homogeneous and isotropic helical turbulence
All phenomenological approaches to 3D turbulence are based on the concept of direct energy cascade. However, as already

said after its introduction (4), helicity is a second quadratic inviscid invariant of the 3D NSE and its mean value is exactly
zero if the flow is statistically invariant under mirror symmetry,w being a pseudo-vector. In the presence of forcing, viscous
and large scale dissipation a global helicity balance exists, similar to the one for energy (7):

∂tH(t) = −hν(t) − hα(t) + hin(t) (98)

where hν(t) = ν⟨∂iuj∂iωj⟩ is the helicity dissipation due to viscosity, hα(t) = α⟨u · w⟩ is the dissipation due to the large
scale drag and hin(t) = ⟨w · f⟩ is the helicity injection by the external forcing mechanism. Performing a long time average,
we end up with the global balance for the average input and output similarly to (8):

hin = hν + hα. (99)
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Since its discovery [7,8,210], helicity has been the object of many speculations. In particular, it has been argued that the
presence of a non-zero mean helicity, globally or locally, can affect the statistical properties of the forward energy cascade.
On one side, the non-linear term of the NSE is locally proportional to the solenoidal component of u × w, and flows with
a non-zero helicity might have a strongly depleted non-linearity and consequently a small energy transfer [204,211]. On
the other hand, helicity is not sign-definite and cancellations among close regions with opposite helicity might strongly
reduce this energy blocking mechanism. As a result, its influence on the turbulent transfer mechanisms is still unclear
[9,10,193–195].

We have already seen that the conservation of energy leads to the exact 4/5 law (28) for the third-order longitudinal
velocity increment in the direct energy cascade regime. Similarly, if the injection of helicity is non-zero, we can derive
another exact law for velocity–vorticity mixed third-order correlation functions that are not invariant under mirror
symmetry [3,212–214], the two exact constraints are summarized below:

⟨(δru)3⟩ = −
4
5
ϵin r , (100)

⟨δru(δru · δrw)⟩ −
1
2
⟨δrw(δru · δru)⟩ = −

4
3
hin r , (101)

wherewe have also assumed homogeneity and isotropy (but notmirror symmetry) andwherewe have introduced the short
hand notation, δru and δrw for the longitudinal velocity and vorticity increments, defined in terms of the projection on the
unit vector r̂: δrX = δrX · r̂ and the generic vector increment between two points is δrX = X(r+x)−X(x). The equation (101)
is different from zero only in presence of a mirror-symmetry breaking forcing mechanism. The two exact scaling relations
(100)–(101) are valid in the inertial range, i.e., when the increment r is such that both forcing and dissipative effects can
be neglected. Helicity is not sign-definite. Thus, as discussed in Section 3.5, it is not possible to predict the energy transfer
direction in 3D turbulence. According to the definitions given in Section 3.6, either a co-directional cascade of energy and
helicity toward small-scales or a counter-directional cascade with energy flowing upward and helicity downward would be
possible [7,9,12,156,202,215]. It is useful to adopt the helical-Fourier decomposition, in order to disentangle in a systematic
way the statistical properties under mirror symmetry. This decomposition was proposed early on [216–218] and has been
used by numerous authors [219–221]. It allows us to write a Fourier mode of the velocity as:

ũ(k, t) = ũ+

k (t)h
+

k + ũ−

k (t)h
−

k . (102)

where h±

k are the eigenvectors of the curl, i.e., ik × h±

k = ±kh±

k . We choose h±

k = e(k) × (k/k) ± ie(k), where e(k) is a
unit vector orthogonal to k, e.g. e(k) = z × k/∥z × k∥, with any arbitrary vector z not parallel to k [220]. They satisfy,
h±

k · h±

k
∗

= 2 and h±

k · h∓

k = 0, where the asterisk denotes complex conjugation. They thus form a complete base for
incompressible vector fields. The velocity field ũk for each Fourier mode k is then determined by the two scalar complex
functions ũ±

k (t) = (h±

k
∗

· ũ(k, t))/2.
We can write the Navier–Stokes equation in terms of the scalar amplitudes ũ±

k (t) as [220]

∂t ũ
sk
k =

∑
p+q+k=0

∑
sp,sq

C
sk,sq,sp
p,q,k (ũsp

p )∗(ũsq
q )∗ − νk2ũsk

k − αũsk
k + f̃ sk . (103)

where we further have (sk, sp, sq) = (±,±,±) and C
sk,sq,sp
k,q,p = −1/4(sqp − spq)[h

sp
p × hsq

q · hsk
k ]

∗.

In terms of such decomposition the total energy and helicity can be rewritten as

E(t) =

∑
k

|ũ+

k (t)|
2
+ |ũ−

k (t)|
2
, (104)

H(t) =

∑
k

k (|ũ+

k (t)|
2
− |ũ−

k (t)|
2) . (105)

It is useful to further distinguish the energy content of the positive andnegative helicalmodes, E±(k, t) =
∑

k≤|k|<k+1|ũ
±

k (t)|
2,

such that we have for the energy and helicity spectra [9]:

E(k, t) = E+(k, t) + E−(k, t) , H(k, t) = k [E+(k, t) − E−(k, t)] . (106)

It is straightforward to realize that the equivalent in configuration space of the decomposition (106) is given by the second-
order structure functions decomposed in terms of the fields

u±(x, t) =

∑
k

ũ±

k (t)h
±

k exp
ik·x (107)

as follows:

⟨δru · δru⟩ = ⟨δru+
· δru+

⟩ + ⟨δru−
· δru−

⟩ , (108)

⟨δru · δrw⟩ = ⟨δru+
· δrw+

⟩ + ⟨δru−
· δrw−

⟩ , (109)
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Fig. 16. Left: log–log sketch of the spectra for the energy (115) or helicity (116) driven forward cascades, leading to a −5/3 or −4/3 slopes, respectively.
Right: the same but for the split-dual case (117).

where we have exploited the fact that both mixed terms ⟨δru±
· δrw∓

⟩ and ⟨δru±
· δru∓

⟩ vanish, due to the orthogonality
of h±

k .
It is not possible to derive a prediction for the mean energy and helicity spectra from (100)–(101) alone, because there

exists a continuum of possible combinations of ϵin, hin and kwith the correct dimensional properties:

E(k) = ϵin
2
3 −aha

ink
−

5
3 −a . (110)

Different possibilities have been proposed, based on different closures of the spectral equations, depending on the dynamical
time-scale that drives the energy and helicity transfers. One possibility is based on the idea that the only relevant time-scale
is the one given by the energy fluctuations, τ Er ∼ r/⟨|δru|

2
⟩
1/2

∼ ϵin
−1/3r2/3 [7]. In this case we have the dimensional

estimate for the (mirror invariant) energy flux:

ϵin ∼ ⟨|δru|
2
⟩/τ Er → ⟨|δru|

2
⟩ ∼ ϵin

2/3r2/3 , (111)

while for the chiral term we get:

hin ∼ ⟨δru · δrw⟩/τ Er → ⟨δru · δrw⟩ ∼ hinϵin
−1/3r2/3 . (112)

Translating back to Fourier space we get for the semi-sum (mirror-symmetric) and the semi-difference (mirror-
antisymmetric) of the spectral components [9]:

E+(k) + E−(k) ∼ CEϵin
2/3k−5/3 , (113)

E+(k) − E−(k) ∼ CHhinϵin
−1/3k−8/3 , (114)

where CE and CH are two dimensionless constants. Hence, the two energy components can be written as:

E±(k) ∼ CEϵin
2/3k−5/3

± CHhinϵin
−1/3k−8/3 . (115)

Another possible dimensional closure employs the helicity time-scale, τHr ∼ hin
−1/3r1/3, to evaluate both fluxes (111)–(112).

In this case we have :

E±(k) ∼ CEϵinhin
−1/3k−4/3

± CHhin
2/3k−7/3 . (116)

Relation (116) breaks the −5/3 law for the energy spectrum and has been proposed to be valid only in the high k-region
of strongly helical turbulence, to explain the bottleneck observed close to the viscous scale [215]. Indeed, relation (116)
diverges for hin → 0 and therefore cannot be considered a good option if helicity is sub-leading. A third possible scenario
is the one described by a counter-directional dual cascade (see Definition 9 of Section 3.6), where energy flows upward and
helicity downward [7]. In the latter case, for the forward-helicity cascade range, only hin appears, while the inverse energy
cascade is driven by ϵin, leading to the two predictions:{

E(k) ∼ hin
2/3k−7/3 , H(k) ∼ hin

2/3k−4/3, k > kin
E(k) ∼ ϵin

2/3k−5/3 , H(k) ∼ ϵin
2/3k−2/3, k < kin.

(117)

This last scenario has never been observed in isotropic turbulence, unless a dynamicalmode reduction on helicalmodeswith
the same sign is imposed (see Section 4.1.2 and [12,220,222]).

In Fig. 16 we summarize the three scenarios in a graphical way. Nowadays, there is overwhelming evidence that in the
presence of a large-scale helical forcing mechanism, there is a simultaneous transfer of both energy and helicity toward
small scales as suggested in (115). Two forward cascades coexist with helicity introducing only sub-leading corrections to
the −5/3 Kolmogorov K41 scaling (see Fig. 17). Consequently, there is a strong recovery of mirror symmetry by going to
smaller and smaller scales [10,18]. The latter can be quantified by introducing the dimensionless ratio:

RH =
|E+(k) − E−(k)|
E+(k) + E−(k)

∼ k−1
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Fig. 17. Left: Log–log plot (adapted from [18]) of the energy spectra for the positive and negative helical waves together with the total spectrum, E(k).
Data are taken from a direct numerical simulation at 10243 collocation points. Notice that the mismatch at small k between E+(k) and E−(k) is due to the
fact that turbulence is forced at large scales and with positive helicity. Right: the same for the helicity spectrum. Both plots show also the −5/3 prediction
corresponding to the scenario (115).

As a result, even in the presence of coherent large-scale injection of helical fluctuations, we must expect a strong
homogenization of small-scales positive and negative helical components. It is important to notice that such recovery of
mirror symmetry can be violated if the forcing mechanisms is multi-scale and strongly helical as shown by using both
Navier–Stokes equations and helical shell models in [15,223].

Much less is known about the existence of the helical dissipative anomaly, i.e. if the limit limRe→∞hν → const. Very few
numerical simulations exist and there are no experimental data for this specific issue, due to the difficulty tomeasure velocity
derivatives. Moreover, due to the fact that helicity is not positive definite, there are subtle issues about how to define the
viscous dissipative range. The latter point has been discussed in detail using shell models for turbulence [12,108,224–226]
which will be briefly discussed in Section 5.3.2. Before concluding, let us notice that because of the absence of an inverse
helicity cascade one can always assume in the balance (99), hα = 0 without any loss of generality.

4.1.2. Inverse energy cascades in homochiral turbulence
In this sectionwe further refine the energy-helicity dynamics by analysing the turbulent transfer as function of the helical

contents of the Fourier triads (103). It is easy to realize that, in terms of the helical decomposition, all triads of interacting
Fourier wavenumbers [ũk, ũq, ũp] are split in 4 (8 by considering the symmetry that changes the sign of all helical modes)
possible classes of helical interactions, [ũ±

k (t), ũ
±
q (t), ũ

±
p (t)], as depicted in Fig. 18. Out of the four classes indicated by [I–IV],

class-I is homochiral, i.e. includes interactions by three Fourier waves with the same sign of helicity, while classes II–III–IV
are heterochiral. One can also easily show that energy and helicity are conserved triad-by-triad [220,227]. Assumingwithout
any loss of generality that q ≤ k ≤ pwe can interpret the NSE decomposition depicted in 18 as the superposition of 4 classes
of interactions distinguished on the basis of their helical contents. In two seminal papers [220,227], Waleffe analysed the
stability properties of each single class as a proxy of the energy transfer direction and discovered that the homochiral class I
and the heterochiral class-II are such that the intermediate wavenumber tends to loose energy toward small and large scale
simultaneously, while class-III and class IV are always such that the smallest wave number is the most unstable. On the
basis of this observation,Waleffe argued that even for the NSE case, when all wavenumbers are coupled together, class-I and
class-II are responsible of some three-dimensional inverse energy transfer while classes III and IV should be the channels
responsible of the energy transfer to small scales (instability hypothesis). On a physical ground, one must notice that the
homochiral class I (if taken alone) corresponds to a fluid where also helicity is sign definite. As a result, it is not totally
surprising that the dynamics develops some inverse energy transfer, similarly to what happens for 2D turbulence where
the second sign definite invariant is the enstrophy. The fact that in the analysis of Waleffe, also the heterochiral class-II
shows some tendency to transfer energy upscale can also be interpreted in a similar way considering that the two largest
wavenumbers are homochiral, i.e. any mechanism that transports fluctuations from small to large wavenumbers would
produce a systematic increase of helicity also for class-II.

Summarizing, the single triad analysis performed in [220] demonstrates that the basic building blocks of the helical-
Fourier decomposition have distinct stability properties that indicate that the forward energy transfer is mainlymediated by
triadswhere the two largest legs are heterochiral. However care needs to be takenwhen extrapolating the stability properties
of isolated triads to the full network present in the NSE. As noted in [228], the NSE restricted to any single triad (homo or
heterochiral) can bemapped to a 2D3C fluid evolution, because triads forms closed triangles in Fourier space, p+q+k = 0.
As a result, the NSE can be seen as the 3D intricate coupling of 2D3C sub-systems, some that transfer energy forward and
some that transfer energy backward, and the connections among the full 3D dynamics and the one of its subsystems must
be clarified. Nonetheless, the analysis of isolated triads of [220] has motivated new directions for turbulence research as we
describe below.

The idea to decompose the NSE into helical interactions was further explored in a series of papers [12,222] where direct
numerical simulations of homochiral turbulence were performed for the first time. The idea is that one can introduce two
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Fig. 18. Sketch of the NSE triadic interactions cloud in terms of the Helical-Fourier decomposition (103). (a) The full NSE set of triads is divided into 4
classes, according to the helicity contents in the three interacting wavenumbers and where we do not show the equivalent 4 classes obtained by changing
the sign of helicity in all modes. The colour and thickness of arrows inside each triad correspond to the direction (red: inverse, blue: direct) and intensity of
the most unstable energy transfer mode according to the single triad analysis [220]. As one can see, Classes I and II present a tendency to have a backward
energy transfer (red arrows) from the middle wavenumber to the smallest one. Class I is also the only one homochiral. (b) Sketch of the decimation to only
homochiral dynamics performed using the projector (119) with s = + and leading to the H-NSE (120).

Fig. 19. Log–log plot for the time evolution of the energy spectra for two homochiral simulations of (120) with small scale forcing (left) to highlight the
inverse energy cascade and with large scale forcing (right) for the direct helicity cascade. Initial configuration at t = 0 is marked with a red curve. The two
straight lines with slopes −5/3 (left) and −7/3 (right) represent the two predictions (117), respectively. The grey line marks the forcing injection scales.
For details about the numerical simulations see [222,229].

Galerkin projectors to positive and negative helical modes as

P̃±

k ≡
h±

k ⊗ h±

k
∗

h±

k
∗
· h±

k
. (118)

The Fourier modes are given by ũ±

k = P̃±

k ũk =
1
2 (ũk ± ik × ũk/k). Using the above definition, one defines the projection on

the positive/negative helical sector of any real-valued divergence free vector field in three dimensions:

gs(x, t) ≡ Psg(x, t) ≡

∑
k

P̃s
k g̃k(t)eik·x. (119)

where s = ±. Finally, we define the homochiral Navier–Stokes equation (H-NSE) that describe the evolution of the velocity
field of one chirality (u+ or u−) interacting with itself only. For the positive modes it reads:

∂tu+
+ P+

[u+
· ∇u+

] = ν∆u+
− αu+

+ f+. (120)

The linear operator P+ in front of the non-linear terms combines the projection into a divergenceless manifold and in to the
homochiral sector. It is needed because the interactions between two positive helical waves produce also negative helical
modes. The resulting dynamics involve only interactions of class-I, as depicted in Fig. 18 panel (b).

From (104)–(105) it is evident that both energy andhelicity are signdefinite for theH-NSEdynamics. As a result, onemight
expect that turbulence will develop a counter-directional dual cascade, with energy flowing upscale and helicity downscale.
The corresponding spectra will be determined by the requirement of having a constant energy flux in the inverse energy
cascade range and a constant helicity flux in the forward helicity cascade range as predicted by (117). Fig. 19 shows that the
above behaviour is indeed observed in the DNS of (120) [12,222].

The observation of a stable inverse energy cascade in the DNS of the H-NSE has provided the first evidence that there
exists a new mechanism to transfer energy up-scale in a turbulent flow, beside the one of being two-dimensional, or quasi
two-dimensional.
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Fig. 20. Lin-log plot of the fluxes entering in the decomposition (124) from a direct numerical simulation of HIT. Notice the presence of the homochiral
channel (red dashed line) with an inverse energy flux. This is a clear demonstration that the energy transfer for 3D HIT must be classified as a bi-directional
case according to Definition 6 of Section 3.6. Details of the numerical simulation can be found in [19].

More importantly, in [15,19] it was shown that homochiral triads persistently transfer energy upward even in the original
case of the full NSE where all modes are active. By analysing a-posteriori the contribution of the total flux induced only by
homochiral triads, it was found that it corresponds to an inverse cascade, with a sign opposite to that of the heterochiral
contributions. Indeed, even in the fully coupled NSE one can distinguish partial fluxes which conserve independently the
energy contents in the positive or negative helical modes (and similarly for the helicity) as described in our Definition 5 in
Section 3.6. This can be seen by rewriting the helical decomposition of the NSE (103) in configuration space following [19]:

∂tus1 = Ps1
∑
s2,s3

[us2 × ws3 ] + ν∆us1 − αus1 + fs1 , (121)

where (s1, s2, s3) = (±,±,±) indicates all possible permutations of projections on the two helical sectors. The evolution of
each of the two helical projections ∂tu± is driven by four different non-linear terms that have different properties. This is
revealed by looking at the evolution of the energy of the two helical fields E±(t) =

1
2 ⟨(u

±)2⟩ that, e.g., for the positive case
reads

∂tE+(t) = ⟨u+P+
[u+

× w+
]⟩ + ⟨u+P+

[u+
× w−

]⟩ + ⟨u+P+
[u−

× w+
]⟩ + ⟨u+P+

[u−
× w−

]⟩. (122)

Out of all terms, only the first two on the RHS of (122) are conservative, meaning they individually conserve E+. These terms
are responsible for the exchange of energy among positive modes only or by the sweeping of positive modes by negative
ones. The last two terms describe the exchange of energy with the negative components (and similarly for the total energy
in the negative modes if we reverse all helical signs). We can also split the total flux in Fourier space by first introducing the
quantities

Π
s1s2s3
E (k) = ⟨u<kPs1 [us2 × ws3 ]⟩,

where u<k(x, t) is the low-pass filtered field defined in (16) and then writing:

ΠE(k) = Πhomo
E (k) +Π

hete,1
E (k) +Π

hete,2
E (k) (123)

where

Πhomo
E (k) = Π+++

E (k) +Π−−−

E (k), (124)

Π
hete,1
E (k) = Π++−

E (k) +Π−−+

E (k),

Π
hete,2
E (k) = Π+−+

E (k) +Π−+−

E (k) +Π+−−

E (k) +Π−++

E (k).

The Πhete,1
E flux corresponds to the two contributions given by the sweeping of positive (negative) modes by the negative

(positive) ones, while Πhete,2
E describes the transfer of energy among the two chiral sectors. In Fig. 20 we show the

measurements of the different contributions in (123) from a DNS of fully homogeneous turbulence. The different sign
brought by the homochiral channel is clearly detectable. This implies that within the forward cascade of 3D turbulence
there is a process that transfers energy inversely. Thus the cascade in 3D hydrodynamic turbulence is bidirectional (based
on Definition 6 given in Section 3.6.2) as some processes bring energy upscale and some downscale with the latter ones
dominating for HIT. A similar analysis can be also repeated for the helical conservation law [19].

It is important to note that the decomposition of the NSE in configuration space given by (121) is different from that in 4
helical Fourier classes (I–IV) described in Fig. 18. Only the homochiral case coincides. The difference is due to the fact that for
the Fourier case the interactions classes (I–IV) are defined in terms of triad structure and as such they cannot be re-expressed
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as a product of fields in configuration space (except for the homochiral case where triads are formed by Fourier components
with one sign of helical modes only).

The existence of a subset of fully three-dimensional and isotropic interactions in the NSE that are capable to coherently
produce an inverse energy cascade promises to open new directions in the interpretation of many fundamental and applied
configurations. Some of them are connected to the case of rotating turbulent at not too small Rossby numbers and will be
discussed in Section 4.3, some others concern back-scatter events observed in the interactions among sub-grid and resolved-
scale fluctuations in Large Eddy Simulations (see Section 5.3.1). One needs also to remark that being homochiral is not a
property preserved by the NSE, i.e. without the extra projector on the non-linear evolution of (120) any homochiral initial
condition,u(x, 0) = u+(x, 0)would immediately produce also fluctuationswith opposite (negative) helical components, due
to the coupling among u+ and u− introduced by classes II–IV. From this perspective, being homochiral is more fragile than
being two-dimensional three-component (2D3C), u(x, t) = (ux(x, y, t), uy(x, y, t), uz(x, y, t)), or of being fully anti-symmetric,
u(−x, t) = −u(x, t), which are two symmetries exactly preserved by the time evolution of NSE.

Before ending this section, we mention that similar conclusions concerning the existence of inverse energy cascades for
homochiral turbulence can also be obtained by studying absolute equilibrium spectra for the H-NSE with α = ν = 0 and
f = 0, if restricted to a finite number of Fourier modes [103] or by using second-order closures based on the so-called Eddy
Damped Quasi Normal Markovian Approximation [230]. Recently it was also found that the dynamics of triads belonging to
class-II have an extra quadratic invariant whose dimension depends on the triad’s geometry [20,231]. As a result, one might
argue that this class of triads should lead to a direct or inverse energy cascade depending if they represent local or strongly
non-local interactions (if the triad is close to be equilateral or q ≪ p, k) as also confirmed by shell models based on the same
helical structure [232,233]. The helical decomposition as studied in this section can also be applied to 3D MHD as will be
discussed in Section 4.6.

4.1.3. Energy cascade transitions in helical variants of the Navier–Stokes equations
In this section we summarize recent attempts made to investigate the balancing between forward and backward energy

transfer of heterochiral and homochiral triads in the 3DNSE. In order to continuouslymove from a forward transfer, typically
of the original NSE, to a backward transfer, observed for the H-NSE (120), one might follow different protocols.

One direction was pursued in [15], where the effect of different interactions in the Navier–Stokes equations was
investigated by suppressing the negative helicitymodes using a dynamical forcing function. The dynamical forcing controlled
the amount of helicity at all scales. These authors showed that interactions from three positive helical modes transfer energy
to the large scales. However, in the presence of negative helical modes, with even weak amplitude, the cascade of energy
remained forward. Their results were also quantified by calculating the energy fluxes due to the different interactions among
helical modes.

Another possibility is to vary the number of Fourier modes that are projected to one homochiral sector (say the positive
one to fix the notation) so if all modes are projected one obtains (120) while if none is projected one returns to the NSE. This
can be achieved by defining an operator Dλ that projects only a percentage λ of randomly chosen Fourier modes on positive
helical components. More precisely, Dλ action on a generic function g(x, t) is given by:

gλ(x, t) ≡ Dλg(x, t) ≡

∑
k

D̃λ
kg̃(k, t) e

ikx (125)

where the operator D̃λ
k is either D̃λ

k = P̃+

k with probability λ or D̃λ
k = 1 with probability 1 − λ for any given wave number

k. The λ-decimated Navier–Stokes equation (λ-NSE) is then given by:

∂tuλ = Dλ
[−uλ · ∇uλ − ∇Pλ] + ν∆uλ − αuλ + fλ. (126)

Clearly, for λ = 0 we have D̃λ
k = 1 for every wavenumber and we are back to the original NSE, while for λ = 1 we have

Dλ = P+ and return to the homochiral case (120). The system is such that we always have the backbone of positive helical
modes, while depending on the value of λ, a fraction of 1 − λ negative helical modes are also allowed to participate in the
dynamics (see panel (c) in Fig. 21). The transition from direct (λ = 0) to inverse (λ = 1) energy cascade has been studied in a
series of recent papers [234,235], where it was shown that the system develops a discontinuous (1st order) transition as that
depicted in panel (c) of Fig. 13. Moreover, the transition appears to be also quasi singular, in the sense that the critical value
of the control parameter is very close to the full homochiral value, λc ∼ 1. In other words, it is enough to maintain a very
small percentage of modes of opposite helicity to establish a direct energy cascade. A summary of the spectral properties for
both E+(k) and E−(k) is shown in Fig. 22. The critical role of heterochiral interactions was already conjectured in the original
papers by Waleffe [220] on the basis of the single instability of each triadic class. In terms of helical-Fourier interactions,
it means that heterochiral triads are much more efficient than homochiral ones in the energy transfer and that in a sea of
homochiralmodes, the introduction ofmodes of the other chirality acts as a catalyser for the forward energy transfer. Similar
conclusions where also obtained by looking at the statistical equilibrium in [103].

Another alternative way to study the transition from the original NSE (1) to their homochiral limit (120) was performed
in [18] following the idea of partitioning the nonlinear term of the NSE in subset of interactions with different coupling
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Fig. 21. Sketch of the NSE interacting triadic cloud in terms of the Helical-Fourier decomposition (103) with helical decimation protocols different from
the one on homochiral triads depicted in panel (b) of Fig. 18. (c): Quenched stochastic surgery of NSE interactions performed using the projector (125). (d)
Sketch of the reweighing protocol described by (127).

Fig. 22. (a) Log–log plot of the positive helical spectrum E+(k) at changing the fraction λ of negative helical modes for the decimation protocol depicted in
the left panel of Fig. 21. (b) The same but for the fraction of negative helical modes E−(k). In the inset we sketch the phase diagram of Qν for the transition
from direct to inverse cascade at changing λ corresponding to case (c) of Fig. 13. From panel (b) one notices the catalytic role of modes with opposite
chirality, which become larger and larger while decreasing their total number. For details about the numerical set up see [234].

properties among homochiral and heterochiral triads [19]. The idea in [18] is to start from the helical decomposition (121)
giving different weights to homochiral and heterochiral non-linear interactions:

∂tus1 = Ps1
∑
s2,s3

As1,s2,s3 (λ)[u
s2 × ws3 ] + ν∆us1 − αus1 + fs1 . (127)

where the prefactor is{
As1,s2,s3 (λ) = 1, for homochiral triads
As1,s2,s3 (λ) = λ, for heterochiral triads (128)

In such a way for λ = 1 we are back to NSE while for λ = 0 we have two independent homochiral-NSE (see panel (d)
of Fig. 21). Unlike (126) the modified NSE given by (127) does not break helical symmetry for any λ. Furthermore, (127)
remains invariant under dilatation as the original NSE. In Fig. 23we show that (127) displays a discontinuous energy transfer
transition from inverse to direct cascade for λc ∼ 0.3. Indeed, the flux transition becomes more and more abrupt by
increasing the Reynolds number. In the limit of infinite Re it is expected to converge to a sharp jump (first-order transition)
as the one depicted in panel (c) of Fig. 13. This empirical observationwas justified in [18] by noting that for any value of λ the
nonlinearity in (127) remains invariant under a dilatation transformation both at scales larger and smaller than the forcing
scale. This observation is hardly compatible with the establishment of a Re independent split-cascade. Indeed, for the latter
to exist theremust be somemechanism that acts differently at small and large scales such as to push the system tomove the
energy in both directions. Thus, an important requirement for a flow to display a split-cascade is to break scale invariance.
This is indeed what happens in all the other applications where one observes a split-energy cascade, as will be discussed in
the next sections for the case of flows in thin layers, under strong rotation or stratification.

4.1.4. Summary
In this section we have discussed the joint energy-helicity cascade dynamics in homogeneous and isotropic turbulence.

We have shown that in the presence of an injection concentrated in a limited range of characteristic scales, energy and
helicity are cascading forward in HIT, leading to a co-directional dual cascade according to Definitions 8–9 in Section 3.6. If
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Fig. 23. Log–log plot of spectra (left) and lin-lin plot of fluxes (right) at changing the weighting parameters λ in the simulations of (127). Transition from
zero inverse energy flux (and equipartition spectrum) at k < kin to an inverse energy cascade −5/3 spectrum is observed around λc ∼ 0.3. Grey region
indicates the scales where the energy is injected. Different symbols in the right panels correspond to different Reynolds numbers. In the inset of the right
panel we show the fluctuations of the flux at the injection scale, calculated from the standard deviations of measurements at different times, normalized
with ϵin . Notice the increasing fluctuations by approaching λc . For details about the numerical simulations see [18].

Fig. 24. Turbulence forced electromagnetically by the array of magnetic dipoles, in the top layer of electrolyte resting on a layer of non-conducting
heavier liquid. The forcing scale is comparable with the layer thickness ℓin ∼ H and L ∼ 10H . Top and later view before (a–b) and after the formation
of the condensate (c–d) where particle streaks are visualized. Plots reprinted by permission from [35]. (e–f): Lagrangian trajectories and an inverse energy
spectrum in 2D turbulence generated by a Faraday-wave experiment, reprinted with permission from [236].

the NSE are restricted to homochiral sectors, we have a counter-directional dual cascade, with an inverse energy transfer
and a forward helicity cascade (see Definition 9 in Section 3.6). Homochiral interactions give an inverse contribution to the
flux even in the full NSE, confirming that inside all 3D turbulent flows there are channels able to transfer energy in both
directions, a clean example of our definition of a bidirectional cascade (6) in Section 3.6. The inverse stable energy cascade
prevails also when the heterochiral triads are re-weighted. A transition from direct to inverse cascade as that depicted in
case (c) of Fig. 13 might be triggered by suitable manipulation of non-linear terms.

4.2. Turbulence in layers of finite thickness

We begin with flows in layers of finite height H (which we fix for the sake of reference to be in the z-direction) much
smaller than the box length L in the other two directions (x and y). It comprises possibly the simplest case that can
display a split cascade. Experimentalists refer to these layers as thick layers [35] being more accustomed to very thin layers
that approximate a 2D flows while researchers using numerical simulations refer to them as thin layers [33] since most
simulations are performed in cubic boxes and therefore anything flatter than a cube is thin. We refer to them here as layers
of finite thickness to reconcile the two points of view. Flows in confined layers are important because they are close to
atmospheric flows for which the pressure scale height is hundreds/thousands times smaller than the turbulent horizontal
large scale motions [237]. For this reason, such layers have attracted a lot of attention from experimental [34,238–241] and
theoretical groups [32,33,242]. Here, we are interested in discussing why under certain conditions they display a transition
in the energy cascade direction. Fig. 24 shows one experimental visualization of the flow on a thick (left panels) and thin
(middle-left panels) layer. The 2D condensate is visible in the latter. In the same figure we also show the inverse energy
cascade spectrum (right panel) and the visualization of tracers trajectories (middle-right panel) in a different experiments
where the quasi-2D turbulent regime is generated by Faraday-waves [236].

4.2.1. Formulation
For simplicity the boundary conditions are assumed to be periodic in all directions. In experimental setups, however, we

have no-slip boundary conditions and boundary-layer effects must be taken into account. As usual, we will assume the flow
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Fig. 25. A 3D sketch of a domain of finite thickness where the horizontal extension and forcing scale are much larger than the vertical one L ≫ H . Here,
the forcing is represented to inject energy at a characteristic length scale ℓin only, and to be z-invariant acting only on the two horizontal components.

Fig. 26. Distribution of discrete Fourier wavenumbers (blue dots) in a cubic domain (left) and in a thin layer (right). The distance between thewavenumbers
is proportional to 2π/H in the vertical direction and 2π/L in the horizontal direction. The red circle is sketched to demonstrate the number of modes
included in a spherical shell of radius k and width∆k. If k < 2π/H only modes in the 2D3C manifold kz = 0 are included.

to be forced at some particular length scale ℓin. An illustration of the flow set-up is shown in Fig. 25. This configuration has
been examined inmany numerical investigations [32,33,242] and it is, within a good approximation, a realistic description of
flows in liquidmetal embedded in a uniformmagnetic field and forced by electromotive forces [34,238–240]. This set-up can
also be important for the case of Rayleigh–Bernard convection at large aspect-ratio [243]. The compression of the vertical
direction to smaller and smaller values leads to some anisotropic distribution of Fourier modes, where the vertical ones
being wider apart than horizontal wavenumbers as shown in Fig. 26. This anisotropic distribution of wavenumbers makes
the kz = 0 modes with small horizontal wavenumbers k⊥ =

√
k2x + k2y coupled to the remaining modes, kz ̸= 0, only

by highly non-local triads in Fourier space. In case of full decoupling, we would remain with a pure 2D dynamics for the
vertically averaged modes described by the so-called 2D3C manifold at kz = 0.

It is useful to start from the original 3D Navier–Stokes equations in the thick layer and split it in the evolution of two
coupled fields. The first is the 2D3C component, which evolves in the in-plane directions (x, y) only and it is obtained by
averaging over the vertical direction. The second is a full 3D field defined as the remaining part once the 2D3C component
is subtracted. The 2D3C field is defined as: u2D (x, y, t) = (ux(x, y, t), uy(x, y, t), uz(x, y, t)) where with • = 1/H

∫ H
0 dz(•) we

indicate a z-averaged quantity, while the 3D component is given by u3D (x, y, z, t) = u(x, y, z, t) − u2D (x, y, t). The original
NSE rewritten in terms of the two fields are:

∂tu2D + u2D · ∇u2D = −u3D · ∇u3D − ∇P + ν∆u2D − αu2D + f2D , (129)

∂tu3D + u2D · ∇u3D = −u3D · ∇u2D + (u3D · ∇u3D − u3D · ∇u3D ) − (∇P − ∇P) − αu3D + ν∆u3D + f3D . (130)

It is important to realize that in the absence of the u3D components the evolution of u2D can be further split in two equations,
one for the vertically averagedhorizontal components,u⊥

2D
= (ux, uy)which satisfies a purely 2D (and2 components)Navier–

Stokes equation:

∂tu⊥

2D
+ u⊥

2D
· ∇u⊥

2D
= −∇P + ν∆u⊥

2D
− αu⊥

2D
+ f⊥

2D
, (131)

and one for the third (out-of-plane) component that satisfy the equation of a passive scalar advected by the in-plane field:

∂tuz + u⊥

2D
· ∇uz = +ν∆uz − αuz + f z . (132)

In many empirical studies, in order to make the energy injection almost independent of the thickness of the volume, it is
customary to take the forcing invariant in the z-direction, with non vanishing horizontal components only, f3D = 0. Here,
we prefer to keep the most general set-up and explicitly mention the restriction to the pure 2D forcing only when relevant.
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As said, in the absence of u3D the system returns to the 2D Navier–Stokes equations plus the evolution of a passive scalar.
This system is often referred to as two dimensional three component (2D3C) flow. The in-plane dynamics conserves both
energy and enstrophy and will be characterized by a dual cascade with energy flowing backward and enstrophy forward.
The energy contained in the out-of-plane component will flow forward as in the case of a passive scalar in incompressible
flows (see also Section 4.7.2). As a result, if the u3D is non-zero but very small the system can still quasi-conserve enstrophy
of the in-plane component and possibly lead to an inverse cascade while if u3D is big, no inverse cascade should be possible.

To quantify the role played by the different components in the global energy transfer we look at the energy balance
among the 2D3C and 3D fields, by defining the total energy in the 2D plane: E2D =

1
2 ⟨|u2D |

2
⟩ and the one in the remaining

3D volume: E3D =
1
2 ⟨|u3D |

2
⟩:

∂tE2D (t) = ϵin
2D(t) − T (t) − ϵν

2D(t) − ϵα
2D(t) (133)

∂tE3D (t) = ϵin
3D(t) + T (t) − ϵν

3D(t) − ϵα
3D(t) (134)

where ϵin2D, ϵin3D express the rate energy is injected in the 2D and 3D part of the flow respectively and similar for the
dissipation terms ϵν2D, ϵα2D, ϵν3D, ϵα3D. The term T = ⟨u2D · (u · ∇u3D )⟩ is responsible for the transfer of energy from the
2D plane to the 3D volume.

To fully describe the energy spectrum, we need to control the distribution of energy E(k⊥, k∥) where we indicate with
k⊥ =

√
k2x + k2y and k∥ = |kz | and we assumed isotropy only around the vertical axis. It expresses the energy density in a

ring of radius k⊥ and width ∆k⊥ = 2π/L (in a box with finite horizontal width) located at height ±k∥ and vertical width
∆k∥ = 2π/H (in the finite thickness case). Its relation with total energy is given by

E = ∆k⊥∆k∥

∑
k⊥,k∥

E(k⊥, k∥) (135)

while its relation with the spherically averaged energy spectrum is given by

E(k) =
∆k⊥∆k∥

∆k

∑
k⊥,k∥

k≤
√
k2
⊥

+k2
∥
<k+∆k

E(k⊥, k∥). (136)

Note that the above spherically averaged spectrum has units of energy per wavenumber while E(k⊥, k∥) has units of energy
per wavenumber squared. To avoid further introduction of notation we use the same symbol and distinguish the two by the
number of their arguments. Because it is hard to draw quantitative conclusions from a 2D spectrum, cylindrically averaged
or plane averaged spectra are often used:

E⊥(k⊥) = ∆k∥

∑
k∥

E(k⊥, k∥), E∥(k∥) = ∆k⊥

∑
k⊥

E(k⊥, k∥). (137)

Since in general E(k⊥, k∥) depends on both wavenumbers, some care needs to be taken when comparing the spectra
E⊥(k⊥), E∥(k∥) with theoretical predictions.

In terms of the evolution of the spectral fluxes the coupling among the 2D spectrum, E2D (k, t) = E(k, k∥ = 0, t), and the
3D one, E3D (k, t) = E(k, t) − E2D (k, t), is the following:∑

k′<k

∂tE2D (k
′, t) = −⟨u<k

2D
· (u2D · ∇u2D )⟩ − ⟨u<k

2D
· (u · ∇u3D )⟩ + ⟨f · u<k

2D
⟩ − ν⟨|∇u<k

2D
|
2
⟩ − α⟨|u<k

2D
|
2
⟩ (138)

∑
k′<k

∂tE3D (k
′, t) = −⟨u<k

3D
· (u · ∇u3D )⟩ − ⟨u<k

3D
· (u · ∇u2D )⟩ + ⟨f · u<k

3D
⟩ − ν⟨|∇u<k

3D
|
2
⟩ − α⟨|u<k

3D
|
2
⟩ (139)

where we have used the notation, u<k(x, t) to denote a velocity field projected on all modes with |k| < k, as already
introduced in (16) . The first termΠ2D(k) = −⟨u<k

2D
· (u2D · ∇u2D )⟩ on the right hand side of (138) is the flux due to the u2D

components only and it is expected to have a negative contribution so that it transfers energy to the large scales. The terms
−⟨u<k

2D
· (u · ∇u3D )⟩ and −⟨u<k

3D
· (u · ∇u2D )⟩ are terms that transfer energy from one field u2D to the other u3D , while the

remaining term −⟨u<k
3D

· (u · ∇u3D )⟩ is the term responsible for the transfer of the energy of the u3D field to the small scales.
Adding these last three terms together we obtain the contribution from the 3D field only:

Π3D(k) = Π (k) −Π2D(k) (140)

that is expected to lead to a positive flux. Just like we did for homochiral and heterochiral contributions in Section 4.1, the
decomposition (140) ismeant to separate processeswith a positive flux that favour the forward cascade from processeswith
a negative flux that favour the inverse cascade. At varying the ratio H/ℓin and at changing the way we force, by switching
on/off the three dimensional forcing components, f3D , and the component of the forcing in the out-of-plane direction, f z , we
can reinforce or deplete the relative role played by the 2Dmanifold in the global dynamics. As a result, it is natural to expect
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Fig. 27. Left panel: energy evolution for a turbulent flow in a layer of finite thickness for four different layer heights in the absence of large-scale drag,
α = 0. The linear behaviour after t ≃ T0 has a slope proportional to the inverse energy flux, dE/dt . Inset: the normalized inverse flux vs the normalized
height, H/ℓin . Notice the apparent presence of a transition for H/ℓin ∼ 1/2. The figure is adapted from the results in [32]. Right panel: Qα = ϵα/ϵin as
a function of H/ℓin for a model flow in a layer where only one vertical mode is allowed for four different values of the horizontal domain size L/ℓin . The
transition converges to a critical (2nd order) for L/ℓin → ∞.
Source: The figure is adapted from the results in [33].

that the system can make a transition from purely forward cascade to purely inverse energy cascade. In the following we
discuss numerical, experimental and theoretical evidences in favour of the existence of such a transition and concerning its
properties.

IfH/ℓin is small enough, the energy injected by the forcing is redistributed to smaller and larger scales forming an inverse
cascade at large scales with amplitude ϵα and a forward cascade at small scales with amplitude ϵν such that ϵα + ϵν = ϵin.
The value of the relative rate of inverse/forward cascade is a function of H/ℓin. The presence of an inverse cascade in this
system for different H has been demonstrated in numerical simulations by measuring the energy flux [32,242,244,245] and
in experiments by measuring the third-order structure function [35]. In [32] the relative amplitude of the inverse cascade
Qα was measured as a function of H and it was shown to drop to zero approximately when H = Hc ∼ 1/2ℓin (see left panel
of Fig. 27). Nevertheless, limits in the scale separation and in the value of the Reynolds number did not allow to conclude if
this transition is smooth or critical, i.e. which of the scenarios depicted in Fig. 14 is realized. Moreover, one must not expect
the value H/ℓin = 1/2 to be universal, as it might depend on the details of the forcing, e.g. whether it is purely 2D or also
the third vertical component is forced, on the temporal correlations etc... However, with the use of a different thin-layer
modelling [33], where only one mode in the vertical direction is kept, it was shown that the transition from direct to split
energy cascade becomes increasingly close to a critical 2nd order transition like the one depicted in panel (b) of Fig. 13 when
we take the large box limit, L/ℓin → ∞. This is shown in the right panel of Fig. 27.

To better understand the physics behind this split cascade it is useful to consider the large and small H limits separately.

4.2.2. Extremely thin layers, H ≪ Hc
For very small values of H ≪ ℓin, the flow is strongly constrained to behave like a 2D flow at kin, since any variation

along the z direction is limited to very large vertical wave-numbers kz ≥ kH = 2π/H (see right panel of Fig. 26). Since
kz ≫ kin it seems unlikely that the kz modes affect the dynamics of the forcing modes kin, because this would imply a sort
of three-dimensional backscatter of small scales to large scales. Thus, the energy of the in-plane 2D components of the flow
E2D will cascade to the large scales while the out-of-plane 2D enstrophy will cascade to the small scales, as in a purely 2D
flow. As the inverse cascade proceeds, energy arrives at scales > ℓin that satisfy better and better the 2D constraint and
thus the inverse cascade is strengthened. Asymptotically, at very large scales it is expected to reach a behaviour identical to
2D turbulence with a k−5/3 energy spectrum. This argument is based on the assumption that as the scales ℓ and H become
further and further apart they are more and more dynamically decoupled. For scales smaller than ℓin the dynamics are
driven by the enstrophy cascade. As smaller and smaller scales are reached, the constraint for 2D fluid motions becomes
weaker and weaker. At scales ℓ ∼ H the 2D constraint breaks down and enstrophy is no longer conserved, not even
approximately, because of enstrophy generation by 3D vortex stretching and a transition to a 3D forward energy cascade is
expected.

This brings out the question how a transition to a forward energy cascade at scales ℓ < H can take place if there is
no forward cascade at scales ℓ > H?. To answer this question we need to remember that the 2D picture of no forward
energy flux and no inverse enstrophy flux holds in the infinite Re limit only. As the enstrophy cascade develops forward to
smaller and smaller scales it always drags some energy. However, the energy flux is decreasing and goes to zero for infinitely
small scales. So, even in purely 2D flows the small-scale energy flux is never exactly zero if the Reynolds number is finite as
quantitatively estimated by (63). As a results for scales smaller than H , we expect the forward energy cascade spectrum
E(k) ∼ ϵν

2/3k−5/3 due to the residual flux, while for scales larger than H one obtains the enstrophy cascade spectrum
E(k) ∼ ζin

2/3k−3
= ϵin

2/3kin4/3k−3. Equating the two expressions at k ∼ 1/H results in:

ϵν ∝ ϵin

(
H
ℓin

)2

. (141)
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Fig. 28. Energy and enstrophy flux (left panel) and energy spectra (right panel) for a thin layer. For wavenumbers k smaller than kin the spectra are
determined by the inverse cascade of energy, for intermediate wave numbers kin < k < kH the spectra are determined by the forward cascade of enstrophy
while at the largest inertial wavenumbers the spectra are determined by the forward energy cascade.

Fig. 29. Energy spectra obtained from numerical simulations of a flow in a thin layer.
Source: The figure is adapted from the results in [32].

These phenomenological arguments indicate that at scales H < ℓ < ℓin there is a co-directional dual cascade of energy and
enstrophywith the energy flux being sub-dominant. The scaling above have been verified using a shellmodel in [246]. Fig. 28
shows a sketch of the energy and enstrophy flux (on the left) and of the energy spectra (on the right) in the small H/ℓin limit
based on the aforementioned phenomenology, for the case that the layer thickness is much smaller than the forcing scale.
The energy flux is negative and constant in the large scales while it is positive and constant (although weak) in the small
scales. The enstrophy flux on the other hand is zero in the large scales, positive and constant in the range of wavenumbers
kin ≪ k ≪ kH while it increases due to enstrophy production for wave numbers larger than kH . The spectrum accordingly

forms a k−5/3 power law behaviour in the large scales while a k−3 power-law in the range of wave numbers kin ≪ k ≪ kH ,
and beyond kH it recovers the k−5/3 spectrum. The blue dashed line indicates the 3D part of the flow (composed from all the
wavenumbers for which kz ̸= 0) which follows a thermal spectrum ∝ k for wavenumbers smaller than kH and a k−5/3 for
large wavenumbers. This phenomenological description has been nicely reproduced by the numerical work of [32] as also
reported in Fig. 29.

4.2.3. Critical layer thickness, H ∼ Hc
For H/ℓin close to the critical value it is however harder to have a simple phenomenological description. In fact it is not

even certain that a critical transition exists, since we only have little numerical and qualitative evidence for it [32,33]. One
cannot exclude that it is a smooth transition as for case (a) in Fig. 13 and that there is always a weak inverse cascade even for
very large H , i.e. Hc = ∞. For example, we can argue that for large H such that kH ≪ kin a quasi thermal energy spectrum
E(k) ∝ ϵin

2/3kin−5/3−(d−1) kd−1 (where the flow dimension d = 3 because we are in the thick-layer regime) builds up in the
wavenumber range kH ≪ k ≪ kin, followed in the range k ≪ kH by an inverse cascade with E(k) ∝ ϵα

2/3k−5/3. Equating the
two spectra at k = kH we get:

ϵα = ϵin

(
kH

kin

)11/2
= ϵin

(
ℓin

H

)11/2
. (142)
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Fig. 30. Top Panel: Energy flux as for different H . The line colour becomes darker as the layer thickness H is decreased. The location of the different
kH = 2π/H are marked by the vertical lines. Bottom panels: Two scenarios for the transition of the functional form of the energy spectra as H approaches
its critical value Hc from below (from dark colours to bright). The left panel shows a transition from a thermal spectrum ∝ kd−1 to a k−5/3 spectrum at a
transition wavenumber kt . In the right panel there is a continuous change of the exponent from 1 to −5/3 for a range of wave numbers.

In this scenario, we would always have a weak inverse cascade no matter how large H is, its amplitude decreasing as H11/2.
The shape of the energy spectrum in such a case it is shown in the middle panel of Fig. 30, where Hc with zero inverse flux
corresponds to Hc = ∞ and kHc = 0.

These arguments assume that the Fourier interactions among local wavenumbers for k ≤ kH , that lead to the inverse
cascade, dominate over the non local interactions with the scales around the forcing range or with the ones in the forward
energy cascade range. In the kH ≪ kin case however the eddies of size H have both energy and enstrophy smaller than the
ones of the forced scales. As a result, it is more likely that a nonlocal eddy viscosity [111,247–249] induced by the degrees
of freedom in the forward cascade range brings the energy back to the small scales and stops the inverse transfer. It is thus
more likely that a finite critical height Hc exists above which no inverse cascade is observed. This issue is nevertheless open.
In the presence of a finite critical height, another important open question is how the energy spectrum changes as H varies
across Hc . If the transition is discontinuous (as in case (c) of Fig. 13) one could have assumed that there is an abrupt change
from the thermal spectrum E(k) ∝ k2 to the inverse cascade spectrum E(k) ∝ k−5/3. However all numerical investigations
indicate that this transition is continuous [32,33,242]. There are two possible ways that the spectrum can change between
the two exponents. The first is by a change of slope from kd−1 to a k−5/3 at a particular wavenumber kt as depicted in the
left lower panel of Fig. 30, where kt → 0 as H → Hc from below. The second is by a continuous change of the spectral
exponent E(k) ∝ ks(H) where s(Hc) = 1 and s(0) = −5/3. This is depicted in the right lower panel of Fig. 30. The first case is
in agreement with the notion that as the inverse cascade proceeds to large and larger scales it comes close to 2D turbulence
decoupling from the smaller 3D velocity scales, while in the second case the interactionswith the 3D scales persist and alters
the spectral exponent from −5/3. The simulations done in [33,242] show that some interactions with the 3D modes reduce
the cascade intensity. This was shown by comparing the total flux (see solid line in Fig. 31) to the flux due to the 2D modes
(red dashed line in the same figure). The spectra shown in the right panel of Fig. 32 have a transition at large scales from a
flat to a −5/3 slope. However the scale separation is not sufficient to conclude how the spectra change when H → Hc .

As of now, the exact behaviour close to the critical point lacks a precise theoretical description. The dependence of Qα on
the distance from criticality (Hc − H) has not been determined yet. Critical phenomena suggest a power-law dependence:

Qα ∝ (Hc − H)β . (143)

The results of [33] estimate β ∼ 1. There is however no theoretical explanation for this exponent nor verification from full
DNS or from experiments. In [33] it has been proposed that the transition could be viewed in configuration space as the
competition between the 2D vortices (prey) and 3D fluctuations (predators) that feed on 2D vortices and thus following
predator–prey dynamics. This can be inferred from Fig. 33 produced from the thin layer model discussed in [33] that
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Fig. 31. Lin-log plot of the total energy flux, ΠE (k), (solid blue lines) and the Π2D(k) due to the 2D component (dashed red lines) as defined in (140). The
left panel is adapted from the results in [33] while the right panel is adapted from the results in [242].

Fig. 32. The energy spectrum from different values of H for the thin-layer model studied in [33].

shows characteristics both from 2D turbulent coherent vortices clustering, leading to the inverse cascade and from 3D
phenomenology with small scale vorticity filaments that are produced by the 3D motions and tend to destroy the coherent
vortices. To what degree however such a description is plausible still needs to be explored.

4.2.4. Finite horizontal size and finite Reynolds
So far we have discussed the cascades in the infinite box L, and infinite Re limit. However, it is worth discussing the

case when these parameters are finite. In the finite Re case it was shown that a second critical height exists below which
the flow becomes exactly 2D and all 3D perturbations decay exponentially [33]. This second critical height Hν scales as
Hν ∝ ℓinRe−1/2 and corresponds to the height at which the viscous forces damp all variations along the z-direction making
the 2D flow linearly stable. The region of stability of the turbulent 2D flow to 3D perturbations can been found analytically
with the use of rigorous bounds. This was done in [250] for the more complicated MHD case, fromwhich the hydrodynamic
result can be simply obtained by setting the magnetic field to zero. It was further shown in [33] that the amplitude of the 3D
perturbations and thus also the dissipation rate of the 3D modes scale like (H − Hν)β where β is an exponent larger than 2.
The flow close to this second critical point has an intermittent behaviour both in space and in time. The transition diagram
for finite Re is shown in Fig. 34.

For finite L, if H is such that an inverse cascade builds up, a condensate will be formed in the absence of a linear drag,
according to Definition 13 in Section 3.6. The formation of such condensate has also been realized in experiments [34] and is
shown in panel (c) of Fig. 24. In 2D turbulence the condensate reach very large velocity amplitudes such that the total energy
scales inversely proportional to viscosity E ∝ ϵinL2/ν so that the injection rate is balanced by dissipation (see Section 3.2).
In layers of finite thickness however this is not the only possibility. If 3D velocity fluctuations coexist one can assume that
saturation is reached when the eddy viscosity νeddy due to the 3D perturbations leads to saturation of the condensate by
transferring energy back to the small scales:

νeddy
E
L2

≃ ϵin. (144)

The eddy viscosity for a 3D flow and at large Re is expected to scale like νeddy ∝ u3DH [248] where u3D ∼ ϵin
1/3H1/3 is the

rms value of the 3D component of the flow. The balance (144) then leads to

E ∝
ϵinL2

νeddy
∝
ϵin

2/3L2

H4/3 (145)
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Fig. 33. The two-dimensional vorticity (top) and 3D energy density (bottom), for large H (left) small H (right). The large H flow has more dense 3D active
regions and less 2D vortexes while the small H flow has less 3D active regions and more 2D vortexes.
Source: The figures are adapted from the data in [33].

Fig. 34. Summary of the expected phase diagram for thin-layer flows.

that is independent of viscosity. This case corresponds thus to one example of a flux-loop condensate as givenbyDefinition 15
in Section 3.6 where the energy that cascades inversely due the 2D motions is balanced by an eddy viscosity due to the 3D
motions. This was demonstrated by numerical simulation [251].

4.2.5. Summary
In this section, we have discussed flows in layers of finite thickness and the transitions that occur as the thickness is

varied. The discussion has naturally introduced the notion of anisotropy in spectral space as well as the splitting of the flow
in a 2D3C (vertically averaged) field and the remaining 3D field that have different cascade properties. The first component
drives – in some cases – an inverse cascadewhile the second one leads to a forward cascade.We examined different limiting
configurations. First, the very thin layer casewheremost of the energy cascades inverselywhile some sub-dominant forward
cascade exists affecting the energy spectrum at scales smaller than H only. For a thickness close to the critical height where
the inverse cascade vanishes, we discussed all possible transition scenarios. Numerical evidence suggests a second order
behaviour (see Section 3.7), but it is still not totally clarified how the energy spectra and fluxes vary as a function of the
distance from the critical point. Different possibilities were discussed and open problems listed. Finally, we discussed the
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Fig. 35. Particle Image velocimetry maps of the mean flow (left) and rms fluctuations for the poloidal flow (right) in a rotating turbulent flow driven by
an impeller. In the left panels, the colour codes the toroidal (out-of-plane) velocity for (top) no background and (bottom) cyclonic background rotation at
Ro = 3 (see [266] for flow details). Data are normalized with the mean frequency of the impeller here denoted with ω and the size of the container R. The
two-dimensionalization results in a gradual weakening of the poloidal flow and a strengthening of the toroidal flow.
Source: Reprinted by permission from [266].

presence of a second critical point where the flow becomes exactly 2D for finite Re, and the effect of finite horizontal size
when a flux loop condensate (see Definition 15 in Section 3.6) can also be present.

4.3. Rotation

In this section, we consider the effect of rotation on the turbulent energy transfer. Rotation plays an important role in
most planetary and stellar flows making the flow anisotropic [252]. In some cases when rotation is strong it makes the flow
quasi-two-dimensional (an effect known as the Taylor–Proudman theorem [253–255]) and this can change the direction of
the energy cascade. Rotation has been the focus of many studies in turbulence research andmodelling [256,257]. The quasi-
2D behaviour has been realized in experiments [49–53,258–265] and numerical simulations [38,54–65]. A visualization of
a 2D cut from the rotating experiment [266] is shown in Fig. 35. Here, we focus on how rotation can affect the transfer of
energy and helicity and review some recent results on how a change of cascade direction can take place.

4.3.1. Formulation
To simplify our discussion, we consider a layer of finite height H with the rotation axis being oriented in the vertical

direction. This setup is demonstrated in Fig. 36. In the rotating frame of reference the Navier–Stokes equations are written
as:

∂tu + u · ∇u + 2Ω êz × u = −∇P + ν∆u − αu + f (146)

where Ω is the rotation rate and the linear term 2Ω êz × u is the Coriolis force. It is important to notice that rotation does
not do any work on the system, ⟨u · (êz ×u)⟩ = 0 and therefore it does not alter the global energy balances (7)–(8). Rotation
introduces a new non-dimensional control parameter in the system, the Rossby number:

Ro =
uf

2Ωℓin
(147)

where (as for the Reynolds number) uf stands for the rms velocity at the forcing scale or uf = (ϵinℓin)1/3 if the non-
dimensionalization is based on the energy injection rate.

The existence of the new dimensionless control parameter Ro allows for different possible limits to be examined. In
particular, we will first study what happens at changing the Reynolds and Rossby numbers and the thickness of the rotating
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Fig. 36. A sketch of the domain considered for rotating turbulence.

volume, H . We will also comment on the role of having a finite horizontal extension, L, and how this is connected to the
possibility of forming a quasi 2D condensate.

In the presence of rotation, one can study the existence of solutions of the linearized inviscid NSE:

∂tu + 2Ω êz × u = −∇P . (148)

It is easy to see that (148) can be solved by using a superposition of the set of incompressible helical waves that have already
been introduced in Section 4.1:

u(x, t) =

∑
k

∑
sk=±

ũsk
k (t)hsk

k e(ik·x) (149)

with the wave amplitudes which exhibit fast harmonic oscillations:

ũsk
k (t) = Ask exp(iω

sk
k t); ω

sk
k = 2skΩ

kz
k

(150)

where ωsk
k is the frequency of the wave with positive or negative helicity, sk = ±. It is important to notice that the modes

with kz = 0 are not affected by rotation and cannot support any wave motion. Indeed, by writing the evolution for the
vorticity:

∂tw + 2Ω∂zu = ∇ × (u × w) + ν∆w + ∇ × f, (151)

it is easy to see that the vertically-averaged modes, living in the kz = 0 plane, are not affected by Ω . As a result, in the
presence of strong rotation, one expects that the 2D modes can be amplified independently of the Coriolis force, leading to
a quasi-2D dynamics [253–255]. Two-dimensionalization of the flow under rapid rotation has been observed in numerous
simulations [38,54–65,244,267] and laboratory experiments [49–53,258–265]. The flow can be split in two components. The
two-dimensional component is made of modes with kz = 0 that are not affected by the rotation and their are referred to as
the slowmanifold. The remaining 3Dmodes are potentially affected bywaveswith frequencies that increasewithΩ and they
form the fast manifold. As a result of the fast oscillation at largeΩ the non-linear interactions becomes weaker because the
phases of the different modes decorrelate with a rate∝ 1/Ω leading to a very small (asymptotically vanishing) contribution
to the non-linear energy transfer in the limit Ro → 0.

This is true for any generic Fourier-helical triad (ũsp
p , ũ

sk
k , ũ

sq
q ) except for those that have a combination of frequencies such

that

ω
sq
q + ω

sk
k + ω

sp
p = 0. (152)

Such triads are resonant and it can be shown that they continue to exchange energy even in the limit of very small Rossby
number [57,227,252,268], leading to a network of interacting 3D waves in the fast manifold (see Section 5.1).

Furthermore, there exist quasi-resonant triads that satisfy the condition (152) only up to order O(Ro), which can play a
role for energy transfer in some pre-asymptotic limit, when Ro ≪ 1. Finally all modes in the slow manifold have ωsp

p = 0,
and thus the 2D3C manifold is not affected by wave propagation.

4.3.2. Decomposition in the 2D3C and 3D manifolds
In order to understand the energy exchange and coupling among the 2D3C modes, the fully 3D resonant waves, the

quasi-resonant triads and all the remaining 3D modes at changing the rotation rate it is useful, as for the thin layer, to split
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the equations into the 2D3C vertical averaged component (slow modes) and the remaining 3D part (fast modes):

∂tu2D + u2D · ∇u2D = −u3D · ∇u3D − ∇P + ν∆u2D − αu2D + f2D , (153)

∂tu3D + u2D · ∇u3D + 2Ω êz × u3D = −u3D · ∇u2D + (u3D · ∇u3D − u3D · ∇u3D )

− (∇P − ∇P) − αu3D + ν∆u3D + f3D , (154)

where again u2D is a 2D3C velocity field obtained by vertically averaging the horizontal velocity components u2D =

(ux, uy, uz) and u3D = u − u2D . The energy balance for the 2D3C and 3D components is the same as the thin layer case
(138)–(139) because the rotation term does not transfer energy among scales. Nevertheless, rotation can decorrelate the 3D
modes, and influence the 3D part of the energy flux,Π3D, changing its relative importancewith respect to the 2D component,
Π2D, where the two are defined as in (140):

Π2D(k) = −⟨u<k
2D

· (u2D · ∇u2D )⟩ and Π3D(k) = Π (k) −Π2D(k). (155)

Indeed, it can be further shown that any two modes p, q from the fast manifold that belong to a triad including a mode in
the slow manifold (e.g. with pz = −qz ̸= 0 and kz = 0) and which satisfy the resonant condition (152) lead to zero energy
transfer [57,227,270]. Thus, the slow 2D3Cmanifold becomes isolated from the remaining 3D part of the flow if the dynamics
is restricted to resonant waves; i.e. the first term on the RHS of (153) will be such that ⟨u<k

2D
(u3D · ∇u3D )⟩ → 0 in the limit

Ro → 0. The 2D3C part of the flow can still advect the modes in the fast manifold, via the u2D · ∇u3D term in (154), but
without exchanging any energy or helicity with them. Thus, in the resonant limit the u2D component evolves independently
of the energy cascading to the large scales through the 2D in-plane motions u⊥

2D
= (ux, uy) and to the small scales through

the advection of the vertical component uz . If we further decompose the spectrum of the 2D3C flow in a contribution due to
the 2D horizontal components and one for the vertical out-of-plane component, E2D (k⊥) = E⊥

2D
(k⊥) + E∥

2D
(k⊥) we have that

the inverse cascade leads to E⊥

2D
(k⊥) ∝ k−5/3

⊥
energy spectrum for k⊥ ≪ kin limit and to E⊥

2D
(k⊥) ∝ k−3

⊥
for k⊥ > kin due to the

2D forward enstrophy cascade. The process related to the energy of the uz component leads to a small-scaleE∥

2D
(k⊥) ∝ k−1

⊥

spectrum as must be the case for a passive field in a smooth flow (see the discussion about in the section for passive scalars
4.7).

On the other hand, the 3D part of the flow will cascade energy through resonant wave interactions, (152). Weak
turbulence theory (see Section 5.1) predicts the existence of a forward anisotropic energy cascade to larger k⊥ and smaller
k∥. Exact resonant interactions move energy to smaller and smaller k∥ without however reaching k∥ = 0. Nevertheless, for
infinitely thick vertical domains, H → ∞, there will be sufficiently small k∥ ̸= 0 such that quasi-resonant triads, that satisfy
the condition (152) only up O(Ro), will be able to transfer energy to/from the 2D3Cmanifold. As a result, the tendency of the
2D manifold to transfer energy backward can be suppressed. Asymptotically, for infinite domains and for k∥/k⊥ ≪ 1, the
wave theory leads to a forward energy cascade and

E(k⊥, k∥) ∝ ϵin
1/2Ω1/2k−5/2

⊥
k−1/2
∥

(156)

[271,272]. Eq. (156) can be obtained phenomenologically from the expression (257) discussed in Section 5.1 assuming
k∥ ≪ k⊥ that leads to k ≃ k⊥. The validity of weak turbulence theory breaks down when sufficiently small perpendicular
scales r⊥ ∼ k−1

⊥
are reached such that the amplitude of the non-linear term ∝ u2

r /r⊥ is of the same order of the Coriolis term
Ωur r⊥/r∥, where ur is a short-hand notation for the typical velocity fluctuation at scale |r| = r , ur ∼ ⟨|δru|

2
⟩
1/2. As a result,

if the Reynolds number is large enough, there will always be a range of small scales where strong turbulence is expected
with u3

r /r⊥ ∝ ϵin. Combining these relations together, we can estimate that the transition between wave-turbulence and
strong turbulence occurs at scales where r∥ ∝ Ωϵin

−1/3r5/3
⊥

or in spectral space:

k∥ ∝ Ω−1ϵin
1/3k5/3

⊥
. (157)

According to the previous discussion, there are two mechanisms at play. One comes from the degrees of freedom in the
slow manifold that bring energy to the large scales and the other comes from the 3D interactions that bring energy to the
small scales. A sketch of the way energy flows in the (k⊥, k∥)-plane is shown in Fig. 37. Which of the two processes wins
depends on Ro and the value of H/ℓin. For infinitely thick layers and small Ro the flow is described by weak wave turbulence
theory [271,272]. For Ro → 0 and finite layer thickness, the dynamics is dominated by the decoupling of the 2D3C manifold
from the 3D resonantwave-interactions. The formerwill have a strong tendency to an inverse energy cascadewhile the latter
will preferentially move energy to small-scales (but anisotropically). In other words we are in the presence of a split energy
cascade. This scenario can also be shown within the wave turbulence limit [273]. It has been supported by recent studies in
rotating flows both in the lab [50,266,274–276] and with high-resolution numerical simulations [37,55,62,64,244,277,278].
Recently, it has been proven that for finite H and Re the flow becomes exactly 2D above a critical rotation rate [279].

It is important to stress that both the wave turbulence regime and the perfect decoupling among 2D and 3Dmodesmight
not be observable in many realistic situations, where Rossby number is never small enough. In such a case, the slow and fast
manifolds interact and the flow evolution is the result of a mutual feedback among the two components. In Fig. 38 we show
a 3D rendering of a turbulent rotating flow side-by-side with its u3D and u2D components. From the figure it is evident that
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Fig. 37. A sketch of the energy transfer in the (k⊥, k∥) plane in fast rotating turbulence assuming that the 2D3C component is decoupled from the resonant
waves. The 3D waves tend to transfer energy to larger k⊥ and smaller k∥ without ever transferring energy to the k∥ = 0 modes that act independently and
cascade energy inversely.

Fig. 38. Colour rendering of a 3D numerical simulation for rotating turbulence in the presence of a split energy cascade regime. We show the total field
(left), the 2D3C slow manifold u2D (centre) and the remaining 3D fast manifold field u3D . Colours are proportional to the velocity vector magnitude.
Source: Figure adapted from [269].

the two components are correlated. Furthermore, both in numerical and experimental realizations is very difficult to reach a
resolution high enough or an experimental domain large enough to simultaneously resolve the inverse cascade regime and
the two different scaling ranges in the direct energy cascade regime as depicted in Fig. 37 (see [64] for a first attempt in this
direction). Many studies are then limited to force either at large or at small scales in order to highlight either the forward or
the inverse energy transfer regime. In Fig. 39 we show two flow realizations for rotating turbulence at small Rossby forced
either at low k (bottom panels) or at large k (top panel) together with the corresponding spectra and fluxes. The flow forced
at high k develops only an inverse energy cascade range with a clear constant energy flux (see inset of panel c) but without
any well developed power law properties for the isotropic spectrum. The flow forced at low k tends to develop a clean −5/3
spectrum at small-scales, while the scaling for k < kin is not good due to the limited range of available wavenumbers.
However, the flux shown in the inset of panel (d) clearly shows a split-cascade scenario with two ranges with opposite
signs.

Finally,we remark that the phenomenology becomesmore complicated as soon as one considers finite values ofRo,Re and
H/ℓin. First, we need to consider that the statistics is always anisotropic and that one might imagine to recover exact scaling
laws only in some asymptotic limit, e.g. for very large scales in the k⊥ plane for inverse cascades or for very small scales for
the 3D fluctuations (see [134] and Section 5.2.2). Isotropy is expected to be recovered only at scales smaller that the Zeman
scale, ℓΩ ∼ (ϵin/Ω3)1/2 where the eddy turnover time equals the rotation rate [280,281]. Furthermore, it was also suggested
in [277,282,283] that for strongly rotating and strongly helical flows, the small scales might be controlled by the forward
cascade of helicity, forming a spectrum E(k) ∝ h2/3

in k−7/3 given by (117). Moreover, as we have seen in Section 4.1, there exist
homochiral triadic interactions that have a pure 3D inverse energy transfer and therefore one could argue that the global
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Fig. 39. Two different flow configurations for rotating turbulence at low Rossby and at changing the energy injection scale. Top: Spectrum for the case with
small-scale forcing, kin ∈ [40 : 42] (grey band). Notice the presence of the inverse cascade given by the negative constant flux,ΠE (k) (inset of panel c) and
the poor scaling properties of E(k). Bottom: the same flow configuration but forced at kin ∈ [4 : 6] (grey band) with a clear −5/3 direct energy range and
a split-cascade scenario for the flux (inset of panel d). The 3D rendering also shows the complexity of the flow configurations with both 2D cyclonic and
anticyclonic structures that coexist with a 3D turbulent background.
Source: Data are adapted from [269].

Fig. 40. The fluxes and energy spectra in rotating turbulence. The different lines indicate the fluxes for the total energy E (green) and the helicity H (blue).
The spectral index s depends on the process that drives the cascade (weak turbulence, helicity cascade, enstrophy cascade) and can also be a superposition
of different power-laws. kΩ ∼ 1/ℓΩ stands for the Zeman wavenumber [280].

energy transfer in rotating turbulence is also affected by the combined effects of rotation and chirality. As a result, for the
forward cascade in boxes of finite height and at fixed Rossby numbers there are differentmechanisms that can determine the
anisotropic scaling properties: the helicity transfer, the energy and the enstrophy transfers of the out-of-plane and in-plane
components of the 2D3C field, weak wave turbulence or any combination of the above. Thus we cannot give a unique and
general description for the functional form of the energy spectrum, except for the asymptotic regimes discussed above. This
scenario is summarized in Fig. 40. The different possibilities will be addressed below.
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Fig. 41. A demonstration of how the critical value of rotation and layer thickness are determined. The left figure shows the discrete wave numbers in a
layer of fixed height H (see also Fig. 26 in Section 4.2). The 3D modes (k∥ ̸= 0) that interact with the 2D modes in the plane at k∥ = 0 are the ones below
the critical balance lines (displayed by brown lines for different values of Ω). For weak Ω there are enough 3D modes below the critical line, and close
to the forcing wavenumbers kin , that interact with the 2D slow modes and prevent an inverse cascade in the plane, due to the existence of non-linear 3D
instabilities. IfΩ is large enough, so that all 3D wavenumbers close to kin are above the critical balance line, then 2Dmodes act independently and cascade
energy inversely to small k⊥ . Alternatively, the right panel shows the Fourier grid for two different layer thicknesses H1 and H2 with H1 < H2 . The modes
which are closer to the forced mode kin are marked with larger symbols. Modes which cannot interact with the forcing modes due to the fast rotation are
crossed out by the red x. For H1 the 3D modes close to the forcing are above the critical balance line and do not interact with the 2D modes that cascade
energy inversely, while for H2 the 3D modes are below the critical balance line and can interact with the 2D modes and prevent the inverse cascade.

4.3.3. Rotating turbulence at finite thickness, H, and at changing Re
As discussed in the previous section in fast rotating flows infinitely thick layers tend to cascade energy forward,while thin

layers tend to cascade energy inversely. Here we explain how to obtain a prediction about the transition line in the (Ω,H)
phase space. The main criterion is based on whether the 2D modes are isolated from the 3D modes due to fast rotation. The
overall qualitative picture that emerges is the following. If the slow modes at the forcing scale are isolated, they will start
transferring energy to the larger scales. This process is strengthened as larger scales are reached because the eddy turnover
time decreases compared toΩ−1, and thus the inverse cascade is reinforced. On the other hand, if the slow modes close to
the injection scale are interacting strongly with the 3D modes, then energy will cascade forward. More precisely, one might
imagine that the 2D–3D coupling at the injection scale will be strong enough to stop the inverse cascade if the fast modes
closest to the slow manifold (with k∥ ∼ 2π/H and k⊥ ∼ kin) fall in the strong turbulence regime determined by (157). This
is demonstrated in Fig. 41 for fixed H and varyingΩ (left panel) and for fixedΩ and two different values of H (right panel).
In the first case, for any finite H and by increasingΩ , the relation (157) predicts that the region where 2D3C and 3D modes
can interact is pushed to larger and larger values of k⊥. This scenario leads to an inverse cascade due to the isolation of the
2D dynamics close to kin (left panel of Fig. 41). Vice-versa, for any fixedΩ and at increasing H , one predicts that the inverse
cascade breaks down when 3Dmodes with k ≃ kin in the strong wave-turbulence region exist (right panel of Fig. 41). In the
latter case, there are 3D interactions, outside the resonant sub-set, which couple the two manifolds and destroy the inverse
cascade. This argument leads to the estimate:

Hc ∝ Ωϵin
−1/3k−5/3

in , (158)

which is obtained from (157) by replacing k∥ ∼ H−1
c and k⊥ = kin. The same scaling can also be obtained by defining Hc

from the balancing of the eddy-turn-over frequency with the slowest wave frequency at the injection scale: ϵin−1/3k2/3in =

Ω/(Hckin). As a result, with respect to the thin layer case discussed in Section 4.2, rotation is expected to enhance the 2D
inverse energy cascade, because pure resonant waves do not couple with the 2D3C manifold and tends to stabilize the 2D
dynamics with respect to 3D perturbations.

In summary, in the (Ω,H) phase space, we expect that at fixed Ω the two-dimensionalization of the flow starts to lose
validity when sufficiently tall boxes are considered such that there are always quasi-resonant modes arbitrarily close to the
kz = 0 plane. These modes provide a link between the slow and the fast manifold that according to weak turbulence theory
will result in the energy cascade to be strictly forward in the infinite H limit.

As rotation is increased it helps the two dimensionalization of the flow and thus one expects that the critical height,Hc , will
increase with rotation according to (158). The increase of Hc withΩ has been numerically demonstrated in [37]. However,
computational limitations did not allow to investigate the asymptotic when Hc and Ω tend to infinity. The right panel of
Fig. 42 summarizes this behaviour. In the same figure we also show another potentially possible phase-diagram, where we
imagine that a critical Ωc exists beyond which there will always be a split cascade regime, with a fully developed inverse
range. The latter scenario would be inconsistent with the wave-turbulence prediction but it cannot be excluded if there are
3D modes able to transfer part of the energy backwards as we have discussed in Section 4.1 by analysing homochiral and
heterochiral triads.

As for the case of the layer of finite height it is interesting to know how the spectrum at the large scales changes from the
thermal distribution E(k) ∝ k2 to a spectrumwith a negative exponent in the presence of the inverse energy transfer.Wenote
that like in thin layers as the inverse cascade develops to larger horizontal scales, the condition for two-dimensionalization
becomes stronger both because r⊥ becomes larger than H but also because the large-scale eddy-turn-over-time becomes
smaller than the rotation rate. Thus, the inverse cascade is expected to reach asymptotically a pure 2D state and the spectrum
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Fig. 42. Two different phase-diagram scenarios for rotating turbulence. The line separates the regions in H–Ω space for which a split cascade is present or
not. In the left panel a critical rotation rate is assumed to exist above which independently of how large H is an inverse cascade exists. In the right panel
the critical height depends onΩ as predicted by (158).

Fig. 43. The figure demonstrates the different processes that can occur when the forcing is located in the fast manifold k∥ ̸= 0 as indicated in the left panel.
In this case there is a first process that transfers energy to the slow manifold k∥ = 0 that can lead to steeper spectra (shown in the right panel) that is
followed by a second process that transfers energy to the small k⊥ wavenumbers by a 2D inverse cascade (see [62]).

should become E(k⊥, 0) ∝ k−5/3
⊥

for k⊥ → 0. The transition from k2 to k−5/3 should then follow the path described in
Fig. 30.

Finallywe note thatwhen the forcing is purely 2D there is another critical rotation rate atwhich the flow becomes exactly
2D. Above this critical rotation rate all 3D fluctuations decay in time. The existence of this Re-dependent critical point was
proven in [279]. The flow behaviour close to this second critical point has not yet been investigated however.

4.3.4. Dependency on the forcing
Another important issue that can modify the phenomenology is connected to the properties of the forcing. Due to the

tendency of decoupling the 2D3Cmodes from the 3Dwave-turbulencemodes it is clear that the relative intensities of ϵα and
ϵν can depend on whether the forcing is acting only on the 3D, only on the 2D3C or on both components [62]. Moreover, the
number, and efficiency, of resonant and quasi-resonant triads depend on their helical properties, suggesting the possibility
that strong helicity injection can alter the dynamics of the forward and inverse cascades [277,282]. For example, recent
results [62] have shown that a spectrum with a −3 slope steeper than the −5/3 prediction appears in the inverse cascade
range when the system is forced also in the fast manifold. This steeper power-law is attributed to a direct transfer of energy
from the fast k∥ ̸= 0 to the slow manifold, due to residual non-resonant interactions, leading to a condensation at k∥ = 0
after which the 2D inverse cascade starts. It is not know howmuch this scenario is stable at changing the control parameters
in the flow. The two processes that lead to the two spectra when the forcing is in the fast manifold are sketched in Fig. 43.

The above argument would indicate that the 3Dmodes still play an important role and cannot be neglected in the inverse
cascade as also suggested by analysing the role of chirality in the triadic interactions. Indeed, as discussed in Section 4.1,
another exact way to decompose the total energy flux is based on the separation among homochiral and heterochiral
components. In the latter case, in contrast to the in-plane and out-of-plane decomposition (153)–(155), the distinction is
made in terms of fields that evolve in a fully isotropic way and fully 3D but still with a tendency to move energy either
forward (heterochiral triads) or backward (homochiral triads). It is natural then to askwhether in turbulence under rotation,
and in the presence of a split cascade, there is a tendency to enhance the homochiral channel in the range of scales where
energy cascades backward [269]. In Fig. 44 we show that this is indeed the case by using two direct numerical simulations
of rotating turbulence at high resolution and at changing the forcing scale, kin, either close to the IR or to the UV limit in the
energy spectrum. By decomposing the total inverse flux in homochiral and heterochiral components as described in (123),
it is demonstrated that for a large range of scales k < kin, the main backward flux is brought by the homochiral interactions
and that only in the limit of k → 0, where the flow becomes fully 2D, the homochiral and heterochiral components have
equal weight, as it must be in a 2D flow (see bottom left panel). In the same figure we also show the decomposition in
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Fig. 44. Decomposition of the total energy flux for turbulence under rotation in in-plane and out-of-plane components (155) (top) or homochiral and
heterochiral components (123) (bottom) for two different forcing wavenumbers at small scales (left) and large scales (right). In the top plots we have
further decomposed the Π3D(k) flux given by (155) into a component that transfer energy only among fast modes Π3D⇆3D(k) and in one that couples 2D
and 3D modes,Π3D⇆2D(k). In the bottom row we have added the two heterochiral components of the decomposition (123) to get to one total heterochiral
contribution,Πhete(k) = Πhete,1(k)+Πhete,2(k). Data are adapted from [269]. The two top panels show that the 3D–2D coupling is active for a large range of
scales k < kin . In the same range, the left panel of bottom row shows that the homochiral channel is the one that transfers energy backward. Bottom right
panel shows the chiral decomposition for a case forced at small k from where we see that rotating turbulence falls in the split-cascade and bi-directional
Definitions 4 and 6 of Section 3.6.

homochiral and heterochiral components for a simulation forced in the IR, where most of the scales evolve in the direct
energy cascade regime (bottom right panel). In the latter case, the bi-directional character of the direct energy cascade
is clearly visible, where inverse homochiral and direct heterochiral transfers coexist in the same scaling range, k > kin,
following the Definition 6 of Section 3.6. In the same figure (top row) we also show the alternative decomposition of the
total flux in slow and fast components (155) from where it is evident that the 2D plane is not isolated and receives energy
from the 3D modes. The above results show that if we are not in the limiting case where either Ω → ∞ or H → ∞ the
inverse energy transfer in rotating turbulence is more complicated than the simple uncoupled 2D3C–3D pictures would
suggest, with both purely 2D (in-plane) and purely 3D (homo-heterochiral) channels that might compete or cooperate to
send energy to large scales. Moreover, we finally remark that even in the presence of a simple 2D3C flow, if the injection
mechanism is fully helical, the third out-of-plane component becomes coupled to the in-plane 2D velocity field and does
not behave any more as a passive scalar [284] (see also the discussion at the end of Section 4.7.3).

4.3.5. Finite horizontal size
As in thin layers, it is important to discuss also the case when the horizontal size, L of the domain is finite and no drag

force is present so that a condensate forms (in the split cascade regime). The difference with layers of finite height is that
there is an additional path to saturate the inverse cascade. In square boxes the condensate takes the form of a vortex dipole.
As the condensate increases in amplitude and is constrained not to exceed the size of the box, its eddy-turn-over-time also
increases. Thus, at sufficiently large amplitudes, the rotation rate of the counter-rotating vortexwill locally cancel the effects
ofΩ , the flowwill no longer be restricted to 2D dynamics and it will be able to develop a forward energy cascade. This occurs
when the amplitude of the condensate velocity U is such that U = ΩL. The system thus reaches a zero flux state that has
a finite inverse flux in the slow manifold dynamics and a forward flux in the 3D fast manifold dynamics as described by
Definitions 7 and 15 in Section 3.6. This flux loopmechanismwas first proposed in [267] and later demonstrated in [63,187].
It is worth noticing that although there is zero flux at the large scales the system is far from being in thermal equilibrium.
Similar flux loop dynamics have been observed in 2D stratified turbulence [125], in compressible 2D turbulence [285] and in
numerical simulations with the NSE restricted to evolve on a subset of 2D3C modes [286]. It is also worth pointing out that
the transition from a no-condensate state to a condensate state as the rotation is increased was found to be discontinuous
when the forcing was acting on the fast manifold [63] (with U displaying a hysteresis curve [186]) while it was found to be
continuous when the forcing was acting on the slow manifold [187].
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Fig. 45. Left: 3D rendering of turbulent simulations with stable stratification. Colour represents the fluctuating density field φ (from white to blue) from
a direct numerical simulation of (160) at a 5123 resolution with Fr = 0.26, Pe = 1. The presence of horizontal layers is clearly visible, confined in the
vertical direction, especially at large scales [307]. Courtesy of A. Sozza. Right: Instantaneous horizontal fields (top row) and vertical fields (bottom) for
three different times in an experimental realization of a stratified flow with Fr = 0.1 and Re = 450 in the Coriolis platform [293]. Background colours
indicate the norm of the 2D components normalized by the mean velocity of the oscillating energy injecting carriage. Different times correspond to three
different instances after the passage of the carriage. The horizontal field exhibits strong persistence vortices while vertical fields show strongly horizontally
elongated structures, which is a robust feature of turbulence in stratified fluids.
Source: Reprinted under permission of P. Augier and A. Campagne [293].

4.3.6. Summary
In this section we have summarized the phenomenology of turbulence under rotation, by analysing the energy transfer

properties at changing the Rossby number, the Reynolds number and the height of the domain, H . We have discussed the
tendency of the system to decouple the 2D3C plane from the resonant 3D wave dynamics in the limit Ω → ∞ at fixed H ,
leading to a transition froma forward energy cascade to a split energy cascade as of ourDefinition 4 in Section 3.6. Concerning
the order of the transition, it is an open problem to understand which of the routes depicted in Fig. 13 is realized. For finite
vertical domains, the formation of a condensate with a rich and still not fully understood dynamical behaviour has been
discussed. We have also analysed the role of quasi-resonant waves in breaking the exact decoupling and the existence of a
region in the (k⊥, k∥) plane where wave-theory cannot be applied and we must expect a fully 3D turbulent energy transfer
if the Reynolds number is large enough for any finite Rossby number and H . Such intermediate asymptotics necessarily
introduces interactions between the 2D and 3D dynamics, leading to a series of open questions. First, it is not known if
the wave-turbulence prediction of the inverse cascade absence for H → ∞, and for any fixed rotation, is correct or not.
Second, it is not known whether purely 3D homochiral interactions are efficient enough to maintain some inverse cascade
independently of the role of the 2D3C triads. Third, the dependency on the forcingmechanism has not been clarified yet, and
the different asymptotic in the presence of only 3D, only 2D3C forcing and of helical forcing are not fully under control yet.

4.4. Stratification

For non uniform density fluids in the presence of gravity additional forces need to be added in the NSE to account for
the feedback of the advected density field on the velocity. For stable stratification where the mean density decreases with
height, gravitational forces tend to suppress vertical motions and form layers of almost constant density as the one shown
in Fig. 45. For unstable stratifications, gravity acts as an energy source transforming the stored potential energy into kinetic
energy. Both cases have attracted the interest of turbulence research due to the applicability of stratified turbulence (both
stable and unstable) to atmospheric dynamics, planetary and stellar interiors [4]. Recently a large number of new results
have been revealed due to extensive numerical simulations [41,43,44,46,287–292] and experiments [293–298]. Here we
review some of these results and describe their implications for the turbulent cascades. More extensive reviews of stratified
flows can be found in [299–306].

4.4.1. Stable stratification
Concerning turbulent flows in the presence of stable stratification we consider the case of a layer with horizontal

size L, height H and gravity g in the z-direction. Indicating with σ the mean stratification, the density is given by ρ =

ρ0 + σ z + δρ(x, t). The flow is forced by a mechanical forcing function f. We also assume a general heat source S that



Please cite this article in press as: A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows, Physics Reports (2018),
https://doi.org/10.1016/j.physrep.2018.08.001.

52 A. Alexakis, L. Biferale / Physics Reports ( ) –

Fig. 46. Sketch of a flow set-up in a stratified layer, where density variation is depicted with different intensity of red colour. Circles represent forcing
effects.

locally modifies the density. To simplify our discussion we limit ourselves to the Boussinesq equations obtained in the limit
|ρ − ρ0| ≪ ρ0:

∂tu + u · ∇u = − Nezφ − ∇P + ν∆u − αu + f, (159)

∂tφ + u · ∇φ = + Nez · u + κ∆φ + S. (160)

Here κ is the diffusivity, N is the Brunt–Vaisälä frequency given by N =
√
gσ/ρ0 and φ(x, t) = Nδρ(x, t). Two new non-

dimensional control parametersmust be considered. First, the Froude number thatmeasures the strength of the stratification
with respect to inertia:

Fr =
uf

Nℓin
. (161)

Second, the relative strength of advection and diffusive terms is measured by the Péclet number:

Pe =
uf ℓin

κ
, (162)

where, as usual, we have indicated the rms velocity at the injection scale with uf = (ϵinℓin)1/3. A sketch of the setup
considered is shown in Fig. 46. The total energy, E(t) can be split into the kinetic energy, EK (t) =

1
2 ⟨u

2
⟩ and the potential

energy, EP (t) =
1
2 ⟨φ

2
⟩. In the absence of forcing and dissipation only E is conserved while kinetic and potential energy can

be exchanged through the gravitational force. The energy balance equations thus read
d
dt

EK (t) = ϵin(t) − ϵν(t) − ϵα(t) − ϵT (t) (163)

d
dt

EP (t) = ϵS (t) + ϵT (t) − ϵκ (t) (164)

where ϵS = ⟨φS⟩ is the potential energy injection rate, ϵκ = κ⟨|∇φ|
2
⟩ is the dissipation rate due to diffusion and ϵT = N⟨uzφ⟩

is the conversion rate of kinetic energy to potential energy. The latter can be either positive or negative, its time averaged
value however has to be positive if S = 0 and f ̸= 0, while it is negative if S ̸= 0 and f = 0. Helicity is not conserved in this
system. It can be generated or removed by gravity and the helicity balance reads

∂tH(t) = −hν(t) − hα(t) + hin(t) + hN (t) (165)

where hN (t) = N⟨wzφ⟩ is the helicity injection rate by the gravitational forces that can be of either signs. Potential vorticity
is an additional inviscid invariant conserved along each particle trajectory:

Vp = −Nwz + w · ∇φ (166)

Its evolution in the unforced inviscid and non-diffusive limit satisfies

∂tVp + u · ∇Vp = 0 (167)

thus any moment m of the potential vorticity ⟨Vm
p ⟩ is conserved by the flow. The first nontrivial moment is the second (the

first being identically zero) and reads

V2 = ⟨V 2
p ⟩ = N2

⟨w2
z ⟩ − 2N⟨wz(w · ∇φ)⟩ + ⟨(w · ∇φ)2⟩, (168)
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which has terms of third and quartic order too. This implies that V2 is not equal to the sum of the squared potential vorticity
of each Fourier mode as it involves terms that couple different wavenumbers. This limits the interpretation of the transfer of
this quantity in terms of a cascade in Fourier space [39]. When N is large, the first term dominates and the squared potential
vorticity can be approximated as V2 ≈ N2

⟨w2
z ⟩ which is quadratic and equal to the vertical enstrophy. We further discuss

the implications of this invariant in the next section. In Fourier space we can write the evolution of the kinetic energy,
E<k
K =

1
2 ⟨|u

<k
|
2
⟩, and potential energy, E<k

P =
1
2 ⟨|φ

<k
|
2
⟩, in a sphere of radius k as

∂tE<k
K = −ΠK (k) −ΠKP (k) − α⟨|u<k

|
2
⟩ − ν⟨|w<k

|
2
⟩ + ⟨u<k

· f⟩,

∂tE<k
P = −ΠP (k) +ΠKP (k) − κ⟨|∇φ<k

|
2
⟩ + ⟨φ<kS⟩,

where ΠK (k) = ⟨u<k
· (u · ∇u)⟩ is the inertial hydrodynamic (un-stratified) energy flux, ΠP (k) = ⟨φ<k

· (u · ∇φ)⟩ is the
potential energy flux while ΠKP (k) = N⟨u<k

z φ
<k

⟩ is the rate kinetic energy is transferred to potential energy within the
examined sphere in Fourier space. It is important to stress that the gravitational force is linear and homogeneous, it can
result in an energy exchange among kinetic and potential terms but does not produce any transfer across scales. Its presence
howevermodifies the properties of the flow so that the flux of energy through the non-linear terms can be altered. This leads
to an anisotropic version of the von Kármán–Howarth–Monin relation [308] that reads

∇r · ⟨[|δru|
2
+ δrφ

2
]δru⟩ = −4ϵin. (169)

It is worth examining the limits of weak and strong stratification to elucidate the processes involved.

Weak stratification. For very weak stratification, Fr ≫ 1, the gravitational force does not modify the flow and the density
fluctuations φ are advected as a passive scalar. The energy transfer is thus dominated by the hydrodynamic part of the flux
ΠK and the kinetic energy cascades either forward or inversely depending on the dimensionality of the system. The potential
energy cascades forward as for anypassive scalar advected by an incompressible flows,ΠP = ϵκ , with a sub-dominant energy
exchange with the kinetic component,ΠK ≫ ΠKP (see Section 4.7 for the scaling of a passive scalar advected by a turbulent
flow). The flow statistics is close to HIT and (169) leads in 3D to the relations δru ∝ ϵν

1/3r1/3 and δrφ ∝ ϵν
−1/6ϵ

1/2
κ r1/3 that

for the kinetic and potential energy spectra read:

EK (k) ∝ ϵν
2/3k−5/3, EP (k) ∝ ϵκϵν

−1/3k−5/3. (170)

Strong stratification and strong turbulence. For strong stratification another balance has been suggested, assuming that the
total energy cascade is driven by the potential energy flux ΠP and the kinetic energy cascade is balanced by the potential
energy transfer,ΠK ∼ ΠKP leading to δru ∝ ϵ

1/5
κ N2/5r3/5 and δrφ ∝ ϵ

2/5
κ N−1/5r1/5 that is referred as the Bolgiano–Obukhov

scaling [309,310], with the corresponding spectra:

EK (k) ∝ ϵ2/5κ N4/5k−11/5, EP (k) ∝ ϵ4/5κ N−2/5k−7/5. (171)

The two predictions meet at the scale that is given by ℓB = ϵν
5/4ϵ

−3/4
κ N−3/2. The Bolgiano–Obukhov scaling is expected to

dominate at scales ℓ ≫ ℓB while at smaller scales the Kolmogorov spectrum should be recovered. Evidence for this scaling
has been recently observed in numerical simulations [45,311].

Strong stratification and wave turbulence. The above arguments are based on the dominance of potential over kinetic energy
flux or vice versa and did not take into account neither anisotropy nor the presence of waves. Stratified flows, however,
sustain internal gravity waves that have the following dispersion relation:

ω2
= (k2

⊥
/k2)N2 (172)

where k2
⊥

= k2x + k2y . The frequency ω becomes zero for modes with zero vertical velocity ũz(k) = 0, that define the
slow manifold for stratified turbulence [104,267]. A particular role is played by the subset with k⊥ = 0, that due to
incompressibility satisfy ũz(k) = 0. For Fr ≪ 1 the internal gravity waves are expected to play a dominant role. Wave
turbulence theory leads to the estimate:

E(k) ∼ ϵin
1/2N1/2k−2

if isotropy is assumed [312], see also (255). If we take into account anisotropy, the spectrum becomes:

E(k⊥, k∥) ∼ ϵin
1/2N1/2k−1/2

⊥
k−5/2
∥

(173)

as one can verify using (257) where k∥ ≫ k⊥ has also been assumed. More detailed analyses have led to different predictions
for the gravity wave turbulence spectra [313–315]. The wave regime ends at scales small enough such that turbulent eddies
can efficiently overturn and 3D isotropic turbulence sets in. The scale where this transition takes place is known as the
Ozmidov scale, ℓo, determined by the balance between the inverse of the eddy turnover time δru/r ∼ ϵν

1/3r−2/3 and the
wave frequency (172), N: ℓo ∝ ϵν

1/2N−3/2 [316]. We note that the ratio between the Ozmidov and Bolgiano scales is given
by ℓo/ℓB ∝ (ϵκ/ϵν)3/4. For weakly stratified systems, ϵκ ≪ ϵν , and the two scales can be considerably apart. Taking into
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Fig. 47. Phase diagram for stratified flows. The line separates the regions in the H–N space for which a split energy cascade is present or not, according to
the prediction (175).

account the anisotropy of the dispersion relation we arrive at an anisotropic relation for the Ozmidov scale, or at a critical
balance relation that reads k⊥ ∝ ϵνk3∥/N

3 [317]. This last scalemarkswherewave turbulence theory ceases to be valid. Let us
remark that wave turbulence (173) and the Bolgiano scaling (171) describe different mechanisms for the anisotropic energy
transfer in the strong stratification limit and it might well be that there exists a wide range of scales where both transfers
coexist. Even the definition of ℓo would change if the scaling (171) is used to estimate the eddy-turn-over-time. The different
theories are not necessarily compatible with each other and theymay be realized in different limits or with different forcing
mechanisms [318].

From the empirical side we know that in the presence of stratification, vertical motions are suppressed leading to a
strongly anisotropic flow forming shear layers with large velocity gradients in the vertical direction and sharp jumps of
density variations across them as shown by Fig. 46. Although there is early evidence of a weak inverse energy transfer in
stratified turbulence [288],most numerical simulations have found a direct cascade of energy [319].More recent calculations
have clearly demonstrated that stratification aids the forward cascade due to the formation of layers [44,46]. The flowwithin
these layers acts as a quasi 2D flow but interacts with other layers and transfers energy to small scales by the formation of
sharp gradients along the z direction. Furthermore, numerical simulations indicate the presence of energy spectra with a
very steep power-law behaviour along the direction of gravity and a Kolmogorov like behaviour in the horizontal direction,
i.e. with a scaling that does not coincidewith any of the previous arguments [289,319–321]. Based on these results and using
similarity arguments the following energy spectra were proposed in [319]∫

EK (k∥, k⊥)dk⊥ ∝ N2k−3
∥

and
∫

EK (k∥, k⊥)dk∥ ∝ ϵin
2/3k−5/3

⊥
. (174)

4.4.2. Stratified flows at finite thickness, H
It is worth looking at what happens for stratified flows in a thin box, where the vertical heightH is much smaller than the

horizontal domain, forcing the flow to have a quasi 2D behaviour. As discussed earlier, stratification aids the forward cascade
by opening a new channel for the energy transfer, converting kinetic energy to potential energy, which always cascades
forward. Then, one might ask in the limit of a thin box and strongly stratified flow which process dominates and whether
the system displays an inverse cascade. This question was addressed in [44]. It was shown that for weak stratification the
transition to an inverse cascade remained unaltered and the critical height Hc where a transition from a forward to a split
energy cascade happens is close to the injection scale. However as stratification increases it suppresses the inverse cascade
decreasing the critical height Hc . The critical height dependence on the stratification is then given by:

Hc ∝ ℓin for Fr ≳ 1 and Hc ∝ ϵ
1/3
in ℓ

1/3
in /N for Fr ≪ 1, (175)

where, for H ≪ ℓin and Fr ≪ 1 the transition (175) is obtained by equating the gravity wave frequency H/ℓinN with the
local eddy-turn-over-time ϵin1/3ℓin−2/3. This is a sort of anisotropic expression of the Ozmidov scale in the limit of very thin
layers where k ∼ kz . This transition can be understood by noting that stratified turbulence leads to the formation of layers of
width ℓz ≃ ϵin

1/3ℓin
1/3/N [297,319]. The transition occurs when the domain is thick enough to allow the formation of these

layers. The resulting phase diagram for stratified flows in a layer of finite thickness is shown in Fig. 47.

4.4.3. 2D vertically stratified flows
An interesting different transition happens in 2D stratified flows (e.g. a soap flow in the (x, z)-plane). For weak

stratification and for flows forced at small scales, the gravitational force can be initially neglected and a regular 2D inverse
cascade develops. However as structures of larger and larger scales are formed, the eddy turnover time decreases until the
eddies reach a size comparable with the Ozmidov scale ℓo where it becomes comparable to the wave frequency. At this scale
gravity effects are important and canmove energy back to the small scales through the potential energy fluxΠP . The system
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Fig. 48. Energy spectra for stably stratified flows in 2D (left panel) and 3D (right panel).

reaches a steady state with zero total inverse flux which is the result of a perfect balance between a finite negative kinetic
energy flux and a finite positive potential energy flux. This mechanism was demonstrated in [125]. Fig. 48 summarizes the
two scenarios for the spectral properties in 3D and 2D.

4.4.4. Unstable stratification
Unstable stratification refers to the case that the background density gradient is inverted so that denser fluid lies on

top. This is a very common situation that is met in Rayleigh–Bénard convection and for the Rayleigh–Taylor instability.
Turbulent convection drives most atmospheric and planetary flows, and has been the subject of numerous investigations
that we cannot possibly cover in this review. We limit ourselves to issues related to cascades in a periodic box with a mean
background stratification, see Section 5.4 for a short discussion about the case with solid boundaries. We refer the reader
to the recent works [303–306,322] for extensive reviews of convection and unstably stratified flows. In unstably stratified
flows the inversion of the density gradient results in a change of sign in the buoyancy term in (160):

∂tu + u · ∇u =Nezφ − ∇P + ν∆u − αu (176)

∂tφ + u · ∇φ =Nez · u + κ∆φ (177)

where we have also set f = 0 and S = 0 because energy is now injected in the system by the buoyancy term. The potential
and kinetic energy balance now reads,

d
dt

EK (t) = ϵT (t) − ϵν(t) − ϵα(t) (178)

d
dt

EP (t) = ϵT (t) − ϵκ (t). (179)

The total energy balance thus becomes
d
dt

E(t) = 2ϵT (t) − ϵν(t) − ϵα(t) − ϵκ (t). (180)

The term 2ϵT = N⟨uzφ⟩ is now the only source of energy in the system and acts at all scales. We note that in the presence of
periodic boundary conditions in the vertical direction, unphysical exponentially growing configurations with ux = uy = 0
and uz = φ = eγ t sin(kxx+ θx) sin(kyy+ θy) exist that are exact solutions of (177) [323]. These solutions tend to be unstable
and a steady state is nonetheless reached.

As for the stably stratified case both Bolgiano–Obukhov (171) and Kolmogorov scaling are possible (170). Most numerical
investigations of 3D convection point to the Kolmogorov prediction [311,324,325] (see [303] for a discussion). In contrast, in
2D where kinetic energy cascades inversely and potential energy forward, the Bolgiano–Obukhov scaling is observed [326,
327]. A transition between the two scaling has been observed in unstably stratified thin layers [328].

4.4.5. Summary
In this section we have summarized the phenomenology of stratified turbulence for stable and unstable stratifications.

We have discussed the cascade in the two kinetic and potential energy channels. Different predictions exist for the energy
spectra depending if weak or strong stratification is considered in the stable regime. In particular, for strong turbulence in
the strongly stratified regime, the Bolgiano scaling (171) is predicted, while in the weak wave turbulence regime, different
predictions can bemade dependingwhether isotropic or anisotropic spectra are assumed. Empirical data showmixed results
and it is still not clear whether this is due to numerical and experimental limitations, to deficiencies in the above theories,
to the difficulties to achieve asymptotic values of small Froude and large Reynolds numbers or to a combination of all the
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Fig. 49. Left: Satellite image of the atmosphere (Courtesy of the NASA Earth Observatory/NOAA). It is an example of rotating and stratified flowwhere both
small turbulent scales and large coherent structures can be seen. The figure on the right is a visualization from a 40963 grid points simulation of a rotating
and stratified turbulent flow where similar large-scale and small-scale structures coexist.
Source: The figure is constructed from the data in [45]. Courtesy of D. Rosenberg.

Fig. 50. Domain of the flow in a rotating and stratified layer.

above. For 2D turbulence it was shown that a flux-less cascade (see Definition 7 in Section 3.6) can exist where kinetic
energy cascades inversely in balance with potential energy that cascades forward. Transitions to split cascades can also exist
in stratified turbulence with the critical height being a decreasing function of stratification.

4.5. Rotating and stratified flows

Rotating and stratified flows represent the simplest model that describe to some accuracy the motion of planetary
atmospheres and have attracted the attention of many different disciplines (see Fig. 49) [329–331]. Having twomechanisms
that break isotropy (gravity and rotation) and two independent dynamical control parameters (Ro, Fr) there are numerous
different set-ups. A recent review on rotating and stratified flows can be found in [332]. Here we limit the discussion to the
direction of the cascades for the case where gravity and rotation are aligned as shown in Fig. 50.

To its simplest form the governing equations can be written as

∂tu + u · ∇u + 2Ω × u = − Nezφ − ∇P + ν∆u − αu + f, (181)

∂tφ + u · ∇φ = + Nez · u + κ∆φ + S. (182)

Because rotation does not do any work on the system, the global energy balance is the same of that discussed for the zero-
rotation case in a stratified system (164).

The potential vorticity is also conserved, but it now depends explicitly onΩ:

Vp = 2Ω∂zφ − Nwz + w · ∇φ. (183)

Again all moments of the potential vorticity are conserved, and as for the non rotating case, the lowest non-trivial order is
the second one:

V2 = ⟨V 2
p ⟩ = ⟨(2Ω∂zφ − Nwz)2⟩ − 2⟨(2Ω∂zφ − Nwz)(w · ∇φ)⟩ + ⟨(w · ∇φ)2⟩ (184)



Please cite this article in press as: A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows, Physics Reports (2018),
https://doi.org/10.1016/j.physrep.2018.08.001.

A. Alexakis, L. Biferale / Physics Reports ( ) – 57

Fig. 51. Grey surface: critical height Hc (Ω,N) as a function of Rotation and Stratification.

The combination of rotation and stratification leads to inertia-gravity waves with the following dispersion relation:

ω2
= (4Ω2k2

∥
+ N2k2

⊥
)/k2. (185)

One recovers the dispersion relation of inertial waves (150) for N = 0 and that of gravity waves (172) for Ω = 0 with the
corresponding slow manifolds. For non-zero values of N andΩ the two inertial and gravity modes are mixed and the slow
manifolds are not isolated in Fourier space. An important subset of the slowmodes is given by the pure 2Dmodes: k∥ = 0 and
ũz = 0. A detailed description of the linear modes for this system can be found in [104,267,333,334]. There are numerous
investigations of rotating and stratified turbulent flows for which a split cascade is observed [38,42,45,47,335–337]. For
unstable stratification in the presence of rotation an inverse cascade of energy has been reported leading to the formation
of large-scale condensates [338–342].

It is fair to say that due to the large number of parameters it is difficult to obtain a precise prediction for the transfer
properties in the whole phase space. In the limits N = 0 or Ω = 0 one expects to recover the results from un-stratified
or non rotating cases but it is unclear what happens for intermediate values. It is possible that for givenΩ and N there is a
critical heightHc belowwhich a split cascade exists. Such a possible phase-diagram for rotating and stratified flows is shown
in Fig. 51 where the limits N = 0 andΩ = 0 recover the predictions of pure rotation and pure stratification discussed in the
previous sections (see Figs. 42,47).

We must note that the existence of Hc on the planes whereΩ = 0 or N = 0 does not necessarily implies criticality also
for the cases N ̸= 0,Ω ̸= 0. In fact, it has been suggested that the fraction of energy that cascades to the large scales follows
a power-law behaviour in terms of Ro · Fr as

ϵα

ϵν
∝ (RoFr)−1, (186)

with the power-law becoming steeper for larger values of the ratio N/Ω . This has been demonstrated based on the results
of numerical simulations and by plotting the ratio of the rate that energy that cascades to the small scales to the rate that
energy cascades to the large scales

RΠ =
ϵα

ϵν

[47], see Fig. 52. A power-law dependence implies that the transition is smooth and thus different from the critical scenario
of Fig. 51. In Fig. 53 we also plot

Qα =
ϵα

ϵin
=

RΠ
1 + RΠ

and Qν =
ϵν

ϵin
=

1
1 + RΠ

(187)

(see Definition 3 in Section 3.6.1). The data here have been extracted directly from Fig. 52. The left panel of Fig. 53 indicates
that Qν follows the scaling Qν ∝ (RoFr). Therefore the amplitude of the forward cascade decreases as a power-law of the
product RoFr . For Qα the data follow a steep decrease with RoFr . This can be a power-law Qα ∝ (RoFr)−2 but we cannot also
exclude the possibility that this steepening is due to a critical transition with Qα → 0 at RoFr ≃ 0.08.

Rotating and stratified turbulence has a large number of control parameters and it is thus not easy to draw precise
conclusions from the limited amount of data presently available. It is thus possible that the phase diagram for this flow
configuration is much more complex than previously believed. A first systematic analysis of many different realizations
at varying all parameters in simulations and experiments has been attempted only recently [343,344]. Further numerical,
experimental and theoretical studies are needed to address this issue.
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Fig. 52. The ratio RΠ = ϵα/ϵν as a function of RoFr for different values ofN/f (where f = 2Ω in our notation) measured from high-resolution DNS together
with data from observation in the ocean. The inset gives the slope of the variation of RΠ with FrRo for various N/f .
Source: The figure is taken from [47] and used after permission.

Fig. 53. The plot showsQα andQν as a function of RoFr based on the data extracted from Fig. 52 of [47]. As suggested in [47]Qν follows the scalingQν ∝ RoFr ,
while Qα displays a sharp decrease that could be a steep power law Qα ∝ (RoFr)−2 or the indication of a critical 2nd order transition at FrRo ≃ 0.08.

4.5.1. Summary
We have briefly summarized recent results in rotating and stratified turbulence whose complexity is higher than what

encountered for only stratified or only rotating flows. Flows in the presence of rotation and stratification can also display
split cascades. However the precise location, properties or even existence of the critical surface is not clear yet. It is thus an
open problem to determine how the turbulent cascades behave in the various different limits that can be considered.

4.6. MHD (3D and 2D)

In this section we discuss the properties of turbulence in conducting fluids coupled to magnetic fields known as
Magnetohydrodynamic (MHD) turbulence. It is met in a variety of systems such as in the stellar interiors [345], the solar
wind [346,347], accretion disks [348] and the galaxies [349,350] but also in industrial applications [92,351]. Even in its
simplest form, MHD turbulence possesses a vast richness of phenomena and different regimes that is not possible to fully
cover in this review. The interested reader can refer to many reviews and books on this subject [352–355] and most
recently [356]. Here, we focus on the properties of the cascades of the different invariants in the following five different
limiting flow configurations: isotropic and anisotropic 3D-MHD turbulence, 2D MHD, quasi-static MHD and helical MHD. It
is shown that in MHD turbulence a change of cascade direction can be observed and, most importantly, it can be realized in
the laboratory too. Fig. 54 shows the visualization of three different flow realization with increasing uniformmagnetic field
(from left to right) that demonstrates the quasi-two-dimensionalization as the magnetic field increases.

4.6.1. Formulation and invariants for 3D MHD
The simplest model for flows of a conducting fluid is given by the incompressible MHD equations:

∂tu + u · ∇u = B · ∇B − ∇P + ν∆u − αu + fu (188)

∂tB + u · ∇B = B · ∇u + η∆B − αB + fb (189)

where B is the magnetic field, the two fields are divergence-free ∇ · u = ∇ · B = 0, the coefficients ν and η are the
viscosity andOhmic diffusivity respectively and tomaintain a high level of generalitywe have included a large scale damping
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Fig. 54. Top row: vorticity component aligned along the meanmagnetic field, B0 = B0ẑ from aMHD simulation at increasing intensity B0 from left to right.
The visualizations are based on the runs in [66]. The lower panel shows the energy flux for the three cases with dashed line for the smallest value of B0 solid
line for the medium value and dashed dot for the largest value.

term for both fields. Here we have allowed the possibility that energy is injected in the system by both mechanical, fu, and
electromotive, fb, forces. For simplicity the domain is assumed again to be a periodic box. It will be convenient to split the
magnetic field B as B = B0 +bwhere B0 = ⟨B⟩ is the uniform component of B and b is a spatially varying component. Unless
forced, the uniform component B0 is constant time. If B0 = 0 and fb = 0 then b = 0 is always a solution, however this
solution is in general unstable. A weak initial magnetic field b can be amplified and sustained by a dynamo process [357].

The new control parameter for this system other than the kinetic Reynolds number is the magnetic Reynolds number Rm

Rm =
uf ℓin

η
(190)

where as usual uf stands for the rms velocity at the injection scale or uf = (ϵinℓin)1/3 if the non-dimensionalization is based
on the energy injection rate as defined in (2)–(3). The ratio of the two Reynolds numbers is referred to as the magnetic
Prandtl number PM = ν/η. In the presence of a non-zero mean magnetic field, B0, also the Alfvén Mach number must be
introduced to express the relative amplitude of the velocity fluctuations to the amplitude of the mean field B0:

M =
uf

B0
. (191)

An alternative and useful way to write the MHD equations is using the Elsässer variables z±
= u ± b:

∂tz±
± B0 · ∇z±

+ z∓
· ∇z±

= −∇P + ν∆z±
− αz±

+ f± (192)

where f± = fu ± fb and we have assumed ν = η for simplicity. Written in this way, it can be seen that a uniform magnetic
field B0 advects z+ fluctuations along its direction while the z− fluctuations are advected in the opposite direction. This
transport of the z± fluctuations corresponds to the so called Alfvén waves [358] that follow the dispersion relation:

ωk = B0 · k. (193)

Furthermore, z+ advects z− and vice versa without having any self-interactions (z+ with z+ or z− with z−). As a direct
consequence if one of the two Elsässer variables is zero the other variable advected by B0 is a solution of the inviscid MHD
equations because the non-linearity is zero, no matter how complex the remaining field is.

There are three ideal quadratic invariants for the 3D MHD equations. The total energy

E =
1
2
⟨|u|

2
+ |b|

2
⟩, (194)

the cross helicity

Hc = ⟨u · b⟩, (195)
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Fig. 55. A general picture of energy cascades in isotropic MHD turbulence.

and the magnetic helicity (if B0 = 0)

HM =
1
2
⟨a · b⟩ (196)

where a is the magnetic field vector potential, b = ∇ × a. Note that the kinetic helicity (4) is not conserved by (188)–(189)
for a non-zero magnetic field. Concerning the above quantities, only the energy is positive definite, while the two helicities
can take either sign. The total energy however and the cross helicity can be combined to give two positive definite invariants
that in terms of the Elsässer variables are written as

E±
=

1
2
⟨|z±

|
2
⟩ = E ± Hc (197)

and we will refer to them as the Elsässer energies.
The balance for the total energy then reads

∂tE(t) = ϵin(t) − ϵν(t) − ϵη(t) − ϵα(t) (198)

where now ϵin(t) = ⟨u · fu⟩ + ⟨b · fb⟩, ϵη(t) = η⟨|∇b|
2
⟩ and ϵα(t) = 2αE . In terms of Elsässer energies the balance reads

∂tE±(t) = ϵin
±(t) − ϵ±(t) − ϵα

±(t) (199)

where ϵin±(t) = ⟨z±
· f±⟩ and ϵ±(t) =

ν+η

2 ⟨|∇z±
|
2
⟩ +

ν−η

2 ⟨∇iz±

j ∇iz∓

j ⟩ is the viscous and Ohmic dissipation rate of the two
energies and ϵα±(t) = 2αE±. The second term in the definition of ϵ± is not sign definite and is related to the dissipation of
the cross-helicity that is given by ϵc(t) = (ν + η)⟨∇iuj∇ibj⟩. Note that ϵ±

= (ϵν + ϵη) ± ϵc .
Finally the magnetic helicity satisfies the balance:

∂tHM(t) = µin(t) − µη(t) − µα(t) (200)

whereµin(t) = ⟨fb ·a⟩ is the magnetic helicity injection rate,µη(t) = η⟨b ·∇ ×b⟩ is the magnetic helicity Ohmic dissipation
rate and µα(t) = 2αHM(t) is the large scale drag. Note that the mechanical forcing fu cannot inject magnetic helicity in
the system but nonetheless magnetic helicity can be generated by µη or µα that are not sign definite. This is discussed in
Section 4.6.6.

4.6.2. Isotropic 3D MHD turbulence
As a first step we consider the B0 = 0 case and assume the flow to be isotropic. It is an empirical fact [352,359] that for

B0 = 0 the energies E, E± and the cross helicity Hc cascade forward to the small scales while the magnetic helicity HM
cascades inversely to the large scales. The general picture of the developed cascades is shown in Fig. 55. The helical case will
be treated separately in Section 4.6.6, here we proceed by assumingHM = 0. The same phenomenology that we used for 3D
hydrodynamic turbulence can be used for MHD turbulence and it predicts a K41 energy spectrum, E(k) ∝ ϵin

2/3k−5/3. Here
E(k) stands for the total energy spectrum that is composed of the kinetic energy spectrum Eu(k) and the magnetic energy
spectrum

Eb(k) =
1

2∆k

∑
k≤|k|<k+∆k

|b̃(k)|
2
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Fig. 56. Domain of the flow embedded in uniform magnetic field layer.

that measures the energy in the magnetic modes so that E(k) = Eu(k) + Eb(k). It can be argued that the magnetic field
fluctuations, ⟨b2

⟩
1/2, can directly influence the small scales by acting locally as a guiding field that suppresses the nonlinear

interactions. This suppression then is expected to modify the energy spectrum (see Eq. (255) in Section 5.1) to a less steep
power-law E(k) ∝ ϵin

2/3
⟨b2

⟩
1/2k−3/2 referred to as the Iroshnikov–Kraichnan (IK) theory [360,361]. In configuration space,

the existence of inertial cascades lead to a series of exact relations for third order quantities similar to the ones derived
in (26) for hydrodynamical turbulence [362,363]. Using longitudinal velocity and magnetic field increments, for the total
energy one obtains

⟨δru3
− 6b2r δru⟩ = −

4
5
(ϵν + ϵη)r. (201)

Anisotropic versions have been examined in [364–366] and have been extended to high Prandtl number regimes in [367]
and to Hall MHD in [368] (see [369] for a review). It is important to note that in (201) both field increments and single point
quantities, br = b · r̂, appear. In fact, the latter term was shown to be dominant [370]. In terms of the Elsässer variables, a
different law, involving only field increments, can be derived [363,371,372]:

⟨δrz∓
|δrz±

|
2
⟩ = −

4
3
ϵ±r (202)

where ϵ± are the dissipation rates of the E± energies, and both longitudinal and perpendicular components appear.
Returning to the u, b variables, adding and subtracting the relations (202) and assuming isotropy, we have [364,365]:

⟨δru(|δru|
2
+ |δrb|

2)⟩ − 2⟨δrb(δru · δrb)⟩ = −
4
3
(ϵν + ϵη)r (203)

and

⟨δrb(|δru|
2
+ |δrb|

2)⟩ + 2⟨δru(δru · δrb)⟩ = −
4
3
ϵcr (204)

where ϵc is the dissipation rate of cross helicity. The scaling relations obtained for the third order structure functions suggest
the Kolmogorov phenomenology, δrz±

∝ r1/3; however IK scaling: δrz±
∝ r1/4 cannot be excluded due to possible scale

dependent correlations between the two fields.
Numerical investigations for isotropic MHD [373–377] also tend to favour the Kolmogorov E(k) ∝ ϵin

2/3k−5/3 spectrum
contrary to the anisotropic case that is examined in the next section and seems to favour the k−3/2 prediction. The discrepancy
between the two predictions is due to the assumption made in the IK theory that large-scale magnetic fluctuations might
play the role of a uniform –locally anisotropic – magnetic field. Furthermore another possibility exists that the cascade in
the presence of large scale but not-uniform fields is restricted in regions of space where amplitude of the magnetic field is
small [377]. Due to the limited scale separation achieved in numerical simulations, it is difficult to distinguish among the
different predictions. We discuss the issue of the two different spectral predictions further in the next section where the
anisotropic case is examined.

4.6.3. Anisotropic MHD
Wenext treat the case of 3D turbulence in the presence of a uniform fieldB0 as shown in Fig. 56.We consider a conducting

fluid embedded in a fluid layer of finite heightH that is penetrated by a uniformmagnetic field of intensity B0 across the layer.
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Fig. 57. Anisotropic Cascade in MHD turbulence. The dashed lines indicate the critical balance relation B0k∥ ∝ ϵin
1/3k2/3

⊥
. If the k∥ = 0 modes become

isolated an inverse cascade can develop also. Blue-sky circle represents the modes were energy is injected (here imagined isotropically at k = kin).

A strong guiding field results in the Alfvén waves having a large frequency (185) except for those modes with wavevectors
perpendicular to B0, i.e. (k∥ = 0), that have zero frequency and compose the slow manifold in MHD. We need to distinguish
three different regimes, depending on the intensity of the guiding field and on the domain thickness.

For infinite vertical domains and strong B0, so that the Alfvén wave period, τwave(k) = 1/B0k, is much smaller than the
typical non-linear time-scale, τnonlin(k) = E(k)−1/2k−3/2, the non-linearity isweak and the system falls in theweak turbulence
regimewhere it can be treated by an asymptotic expansion (see Section 5.1). If τwave > τnonlin, then the system is in the strong
turbulence regime. Finally, for finite domains and strong B0 there is a third regime where quasi-2D behaviour together with
an inverse cascade occurs.

Weak turbulence regime. For infinite domains, the slow manifold is not isolated due to quasi-resonances and the 2D–2D
interactions play a sub-dominant role.

In this case the cascade is driven by weak wave interactions and can be treated perturbatively [378]. The cascade is
strongly anisotropic with the magnetic field reducing the rate of energy transfer across scales by a factor τwave(k)/τnonlin(k)
as will be discussed in Section 5.1. Assuming isotropy and using (255), one obtains the IK spectrum E(k) ∝ ϵ2/3B1/2

0 k−3/2

[360,361]. However the assumption of isotropy is far from being realized. An anisotropic version of the IK argument can be
made by noting that for strong magnetic fields the cascade occurs dominantly in the direction perpendicular to B0 and time
scales must be corrected as τwave(k⊥, k∥) = 1/B0k∥ and τnonlin = [E(k⊥, k∥)k∥k⊥]

−1/2k−1
⊥

where we have assumed k∥ ≪ k⊥

and used the energy spectrum defined in (135). Wave turbulence theory prediction for the flux (257) leads to [378]:

E(k⊥, k∥) ∝ f (k∥)k−2
⊥

k−1/2
∥

(205)

where the spectrum is defined up to an arbitrary non-dimensional function f (k∥) that might depend on the forcing
mechanism because the cascade proceeds only along the k⊥ direction.

Strong turbulence. For strong turbulence further assumptions are needed to derive an expression for the energy spectrum.
Themost popular point of view is given by the critical balance theory [317,379] as already discussed for rotating and stratified
flows. In the critical-balance description, energy is concentrated around wavenumbers that satisfy a ‘balance’ between the
wave time scale and the nonlinear time scale τwave ∼ τnonlin. Substituting the latter equality in equation for the wave
turbulence energy balance (256) we obtain:

ϵin ∼ (E(k⊥, k∥)k∥k⊥)3/2k⊥; B0k∥ ∝ ϵ
1/3
in k2/3

⊥
(206)

where the second relation is obtained by the equality of the two time scales. For the spectrum along the critical line we then
obtain:

E(k⊥, k∥) ∼ ϵ
2/3
in k−5/3

⊥
k−1
∥
. (207)

In this description, one assumes that energy is mainly transferred along the critical line in k∥, k⊥ space. This is graphically
summarized in Fig. 57 where energy flows along the dashed lines. However, numerical simulations show that energy is
concentrated in the entire strong turbulence region below the critical balance line where τnonlin(k⊥, k∥) < τwave(k⊥, k∥) and
strong interactions take place. Alternative descriptions that take some of these issues in to account can be found in [380,381].
Based on the previous assumptions of critical balance the anisotropic cylindrically averaged energy spectrum (see definition
(137)) follows the scaling E⊥(k⊥) ∝ k−5/3

⊥
. Although this spectrum has been observed in some recent simulations [382],
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most numerical studies have shown a spectrum closer to E(k⊥) ∝ k−3/2
⊥

[383]. This was interpreted as an effect of a scale-
dependent alignment of the two fields u, b that reduced the non-linear interactions [384]. The two spectra are debated in
the literature and a recent review of the results on the issue can be found in [355,385]. As of now, it is fair to say that we do
not have an accurate and commonly-agreed description of the anisotropic energy spectrum E(k⊥, k∥) in MHD even from a
phenomenological point of view.

Layers of finite thickness. For layers of finite height, H , further complications arise since the slow modes can have isolated
dynamics. In this case the slow modes at k∥ = 0 can dominate and drive an inverse cascade. This is similar to the strongly
rotating flows as a strong magnetic field also tends to suppress fluctuations and bi-dimensionalize the flow. This result has
been proven in [250]. Using the same arguments as in Section 4.3 for rotating turbulence and summarized in Fig. 41 the flow
will become 2D when the smallest non-zero k∥ = 2π/H has a time period τwave = H/B0 smaller than the eddy turnover
time evaluated at the forcing scale [66,386], i.e. when 2π/H is above the critical balance line:

H
B0

≤ ϵ
−1/3
in k−2/3

in . (208)

In 2D-MHD flows, energy cascades forward (see next section), so a bi-dimensionalization does not necessarily imply an
inverse cascade of energy. Nonetheless, if only a mechanical force is used, the hydrodynamic 2D modes cannot excite a
magnetic field and a genuine 2D inverse energy cascade develops. This was indeed observed in [66,67]. The 2D MHD case is
discussed in more detail in the next section.

4.6.4. 2D MHD
We now consider MHD turbulence in 2D for which the equations simplify significantly when expressed in terms of the

vector potential a = a(x, y, t)ez and of the vertical vorticityw = w(x, y, t)ez . In this case we have:

∂tw + u · ∇w = b · ∇j + ν∆w − αw + fw (209)

∂ta + u · ∇a = ez · (u × B0) + η∆a − αa + fa, (210)

where j = −∆a is the current density in the z direction and B0 is assumed to be on the x, y plane. Setting a = B0 = fa = 0
one recovers the 2D hydrodynamic NSE (50).

In the absence of forcing and dissipation this system conserves the total energy E = Eu + Eb written as the sum of the
kinetic energy Eu =

1
2 ⟨u

2
⟩ plus the magnetic energy Eb =

1
2 ⟨b

2
⟩ and, if B0 = 0 , the square vector potential A =

1
2 ⟨a

2
⟩. The

latter satisfies the following equation:

∂tA = ⟨aez · (u × B0)⟩ − αA − ηEb + ⟨afa⟩. (211)

The square vector potential is a positive-definite quantity that is restricted by the evolution of the energy cascade like the
enstrophy in hydrodynamic 2D turbulence. In particular the square vector potential spectrum satisfies EA(k) = Eb(k)k−2

≤

[Eb(k)+Eu(k)]k−2
= E(k)k−2. Thus, the vector potential spectrum falls as k−2 with respect to the energy spectrum. Following

the arguments given in (80) and (82) we can deduct thatA cascades inversely [352,387–389]. Furthermore, it is empirically
known that the energy cascade in 2D MHD is forward. Therefore, in 2D MHD turbulence a dual counter-directional cascade
is expected with a forward cascade of energy and an inverse cascade of the squared vector potential. Assuming that the
dominant time scale is that of the eddy turnover time τr = r/⟨|δru|

2
⟩
1/2 and further assuming that the two fields have

similar amplitudes

δru ∼ δrb (212)

one recovers the Kolmogorov prediction for the forward energy cascade

Eb(k) ≃ Eu(k) ∝ ϵin
2/3k−5/3, for k > kin (213)

and the spectrum

Eb(k) ≃ Eu(k) ∝ (ϵin/kin2)2/3k−1/3, for k < kin (214)

for the inverse cascade of the square vector potential [387,388]. However the assumption (212) is hard to justify in the case
of the inverse cascade and indeed different spectral exponents have been measured in the literature [389,390].

We need to further notice that in the absence of an external magnetic field or magnetic forcing, the vector potential
decays and therefore any magnetic fluctuations that exist at t = 0 will die out. This property is referred to as the anti-
dynamo theoremof 2D flows [391]. In this case, the system reduces to 2D fluid turbulencewith an inverse cascade for energy.
Furthermore, if the vector potential is non-zero but too weak to feedback on the flow, it acts passively and its variance A
cascades forward (see next Section 4.7.2).We have therefore two different limits. For fakin2 ≳ fw there is a forward cascade of
E and an inverse cascade ofA, for fakin2 ≪ fw there is an inverse cascade of E and a forward cascade ofA. It is thus interesting
to examine how the system transitions from one case to the other when the magnetic forcing is varied.
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Fig. 58. The kinetic and magnetic energy spectra for weak (left), intermediate (centre) and strong (right) magnetic forcing.

Fig. 59. Left Panel: Amplitude of the relative large-scale drag energy dissipation rate (blue lines) and square vector potential (green lines) as a function of
µ = ∥fb∥/∥fu∥. Dark lines imply larger box sizes. The red solid line corresponds to a fit for the infinite box size limit extrapolation, supporting the existence
of two distinct critical values νc one for the transition of the energy cascade and one for the transition of the square vector potential cascade. Right Panel:
Summary of the phase space at changing the injection rate ratios and the Reynolds number (with Re = Rm). The figures are based on the results of [68,69].

For very weak magnetic forcing, the kinetic energy dominates Eu(k) ≫ Eb(k) and the flow does not feel the effect of the
magnetic field (Lorentz force). Thus, the flow behaves as a hydrodynamic system cascading energy inversely with the kinetic
energy spectrum following (58) and (59) at scales smaller and larger than the forcing scale, respectively. At the same time,
the vector potential a is advected passively and A cascades forward like the variance of a passive scalar (see Section 4.7)
forming a spectrum

EA(k) = k−2Eb(k) ∝ ϵbϵ
−1/3
u k−8/3

in k−1

where here ϵb = ⟨b · fb⟩ and ϵu = ⟨u · fu⟩. This implies that the kinetic and magnetic energy spectra read:

Eb(k) ∝ ϵbϵ
−1/3
u k−8/3

in k, Eu(k) ∝ ϵ2/3u k4/3in k−3.

For moderate values of Re, Rm (here we will assume Re = Rm for simplicity) the magnetic field will always be sub-
dominant and the flow will be at this hydrodynamic state with passive a at all scales. However, for large Re, Rm since Eu(k)
decreases with k and Eb(k) increases with k, the condition Eu(k) ≫ Eb(k) will necessarily break down at some wavenumber
kc = kin(ϵu/ϵb)1/4. This will happen if Re is large enough so that kc < kν . For 2D turbulence kν ∝ kinRe1/2 (see Eq. (61))
therefore the magnetic field becomes non-linear when ϵu/ϵb > Re2. For wavenumbers larger than kc a forward cascade of
energy will take place similar to the forward cascade of energy observed in thin layers when k > 1/H (see Section 4.2). The
spectra for k > kc will thus follow (213): Eb(k) ∼ Eu(k) ∝ ϵν

2/3k−5/3.
As the magnetic forcing is further increased, the magnetic field becomes active at larger and larger scales until the flow

becomesmagnetically dominantwith a forward cascade of E and an inverse cascade ofA and the spectra (213), (214) are valid
for the two cascading ranges. There are thus three regimes for 2D-MHD flows, (i) for very weak magnetic forcing it behaves
like 2D hydrodynamics at all scales, (ii) for intermediate magnetic forcing the system behaves like 2D hydrodynamics up to
scales k−1

c and like a 2D-MHD at smaller scales, and (iii) for strong magnetic forcing the system behaves as 2D-MHD at all
scales. Spectral properties for all three regimes are summarized in Fig. 58.

The transition from a forward to inverse cascade was investigated in [68,69] using the relative amplitude of the forcing
µ = ∥fb∥/∥fu∥ as a control parameter. The left panel of Fig. 59 shows how the amplitude of the inverse cascade changes
both for the energy (blue lines) and for the square vector potential (green lines). In agreement with the previous discussion,
it was shown that for µ < Re−1 the magnetic field acts like a passive scalar, while for larger values a split cascade of energy
is formed. The transition from split to forward cascade of E and from a forward to a split cascade ofAwas found empirically
to occur when

µc ∝ Rm−1/2.

This result implies that in the limit Re, Rm → ∞ there is a forward energy cascade and inverse vector potential cascade for
any non-zero value of fa which is consistent with the results in (80) for the inverse cascade of the square vector potential.
The phase diagram of the transition is shown in the right panel of Fig. 59.
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Fig. 60. Left panel: View of an experimental set-up to study liquid metal flows in the quasi-static limit. Right panel: Visualization by tracer particles of the
resulting large-scale vortex in the presence of an inverse cascade. The images provided by J. Herault display the experimental apparatus used in the works
[393–395].

4.6.5. Quasi-static MHD flows
Quasi-static MHD flows refers to a special limiting case of MHD for which the magnetic Reynolds number of the flow is

very small but there is a strong magnetic field that sustains magnetic fluctuations. This limit is applicable to flows of liquid
metals that have very small magnetic Prandtl numbers PM = Rm/Re = O(10−5) and has received considerable attention
due to its industrial applications. Furthermore, because liquid metals are more easily accessible in the lab than plasmas, the
quasi static limit of MHD is easily investigated in the lab [34,74,76,238–240,392–395] as can be seen in Fig. 60.

In limit of Rm ≪ 1 but with a uniform magnetic field strong enough (so that B0ℓin/η is of order one) the induction
equation reduces to a balance between the diffusive and the magnetic shearing terms of the uniform component due to
velocity fluctuations. We thus obtain B0 · ∇u = −η∆b. Solving for the magnetic fluctuations and substituting this balance
in the NSE we obtain

∂tu + u · ∇u = −
B2
0

η
∇

−2∂2z u − ∇P + ν∆u + fu. (215)

We have thus reduced to a single equationwhere the effect of themagnetic field is limited to the first term on the right-hand
side of (215). This is a dissipative term that removes energy from velocity fluctuations that vary along the direction of the
magnetic field. The energy balance equation therefore reads:

∂tE = ϵin − ϵν − ϵα −
B2
0

η
⟨(∇−1∂zu)2⟩. (216)

Note that the Ohmic dissipation affects 3D modes that vary in the direction of the field B0 only. If the latter are not forced,
and if a sufficiently largemagnetic field is used, the ohmic dissipation will render the flow 2D. As in the previously discussed
cases varying the strength of the magnetic field the flow can transition from a 2D state that cascades energy inversely to
a 3D state that cascades energy forward. For a system where only the 2D modes are forced, the transition from forward to
inverse cascade happens at the onset of the instability of a 3D mode, when the dissipation time scale due to the Lorentz
force ηH2/(B2

0ℓin
2) becomes comparable to the eddy turnover time ℓin/uf ∼ ϵin

−1/3ℓin
2/3 both evaluated at the forcing scale.

Equating these two time-scales we can predict that the transition occurs when:

B2
0 =

ηϵ
1/3
in H2

ℓ
8/3
in

, (217)

whereH is the height of the layer. These different states have been demonstrated in numerous numerical simulations [72,73,
396–401]. We should note that unlike for the cases of fast rotating flows and MHD at large Rm, where the tendency toward
a 2D dynamics is the result of fast-decorrelating waves, in this case the 3D modes are directly damped. This renders the
equations analytically more tractable and one can rigorously prove the two-dimensionalization [250]. Besides the analytical
treatment, there exist many experiments that test both the MHD predictions and 2D turbulence properties [34,74,76,238–
240,393–395]. In these experiments, a layer of a liquidmetal is embedded in a uniformmagnetic fieldwhile smallermagnets
are placed under the layer. Dividing a current either across the layer or through an array of contacts one controls the injection
mechanism via the Lorentz force. Depending on the strength of the magnetic field this system can give rise to an inverse
energy cascade. This setup was one of the first that demonstrated an inverse cascade whose strength can be varied with a
control parameter.
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Fig. 61. The flux of energy (in blue) and of magnetic helicity (in purple) in a dynamo (no magnetic forcing) driven by a positively helical flow for three
different magnetic Reynolds numbers Rm1 < Rm2 < Rm3 . The amplitude of the inverse/direct flux of magnetic helicity retains the same sign across all
scales but is decreased as Rm → ∞.

4.6.6. Magnetic helicity
In this section, we discuss the effects of magnetic helicity for 3DMHD. Like kinetic helicity, themagnetic helicity is a sign-

indefinite quantity and does not provide a restriction on the direction of the energy cascade. The cascade of the magnetic
helicity itself cannot be forward in the presence of a forward energy cascade. Using the same arguments as in (80) one can
show that the absolute value of the magnetic helicity flux has to decrease at large k [402,403]. A recent rigorous proof of
the absence of a forward cascade of magnetic helicity can be found in [404], see also the discussion provided in [31]. The
inverse cascade of helicity was first shownwithin turbulent EDQNMmodels [405,406] leading to a power-law behaviour for
the magnetic helicity, HM (k), and energy E(k) spectra for k < kin:

HM(k) ∝ µ2/3
α k−2 and E(k) ∝ µ2/3

α k−1. (218)

These spectra can be obtained using the same arguments discussed for the kinetic helicity case in Section 4.1 and further
assuming that velocity and magnetic field have similar amplitudes δru ∼ δrb. The inverse cascade of magnetic helicity has
been demonstrated in various simulations [25,26,407–410]. Nonetheless, recent simulations at large scale separations have
shown strong deviations from this spectral exponent and find HM (k) ∝ k−3.3 [411,412]. The difference was attributed to
the presence of kinetic helicity and different modelling schemes have been proposed to account for the deviations from the
dimensional prediction (218) [411].

In configuration space, one can derive a series of inertial relations for third-order moments that are linked to the cascade
of magnetic helicity. These have been examined by [372] and more recently for anisotropic turbulence in [364,365,368]:

⟨b · (δrb × δru)⟩ = ϵM. (219)

As in (201), the presence of single-point quantities together with velocity and magnetic field increments makes the
derivation of a scaling law difficult, if not impossible.

It is also worth examining the case of dynamo flows for which there is no magnetic forcing in (189) and the magnetic
field is sustained by the dynamo of the fluid motions alone. In this case, magnetic helicity is not externally supplied,µin = 0,
but it can be generated by the Ohmic forces. This will lead to the stationary balance

µα = −µη (220)

from (200). For finite values of Rm, one can imagine that Ohmic forces generate helicity at small scales, which then cascades
up to the large scales where it is dissipated by the drag term. This is indeedwhat happens in dynamo flows at finite Rmwhen
the flow has kinetic helicity, as predicted by the alpha dynamo theory [357,413,414] that provides the large-scale magnetic
field evolution in the kinematic regime when the magnetic field is advected passively. In a dynamo, positive kinetic helicity
generates large-scale negative magnetic helicity and small-scale positive magnetic helicity, keeping the averaged helicity
generation due to non-linear interactions zero. The positive helicity that arrives at the small scales is dissipated by Ohmic
dissipationwhile thenegativemagnetic helicity by the drag termsuch that the balance (220) is satisfied . Thus, although there
is no injection of magnetic helicity by the non-linearity, the flow self-organizes such that positive helicity is preferentially
dissipated at small scales. This process can be viewed as an inverse transfer of negative magnetic helicity (or equivalently
a forward transfer of positive helicity). The opposite happens when the dynamo flows is of negative kinetic helicity. Fig. 61
demonstrates this mechanism. In the absence of a drag term, µα = 0, the negative magnetic helicity will pile up at large
scales forming a condensate, see Definition 13 of Section 3.6.

However, the magnetic helicity transfer cannot continue for arbitrary large Rm because at small scales the flux of helicity
is constrained in absolute value by the forward energy cascade (see (80)) so eventually the amplitude of the flux of helicity



Please cite this article in press as: A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows, Physics Reports (2018),
https://doi.org/10.1016/j.physrep.2018.08.001.

A. Alexakis, L. Biferale / Physics Reports ( ) – 67

must go to zero as Rm → ∞. Thus, although a constant flux of negative/positive magnetic helicity can be built from the
smallest diffusive scales to the largest scales of the system this process is not a cascade according to the definitions that we
have given in Section 3.6.1 because in the large Rm limit the amplitude of the magnetic helicity flux vanishes.

Before concluding this section it isworth noticing that the combined effects of kinetic andmagnetic helicity can be studied
by applying the same chiral decomposition (102) studied in Section 4.1 to both velocity and magnetic fields. In the MHD
case, the number of possible different Fourier-helical triads becomes larger and the analysis more involved. A first series of
attempts in this direction can be found in [28,29,31].

4.6.7. Summary
In this section we discussed the different limits of MHD turbulence and reviewed the different phenomenological

predictions and recent numerical and experimental results. For isotropic flows we summarized the different exact relations
for third-order quantities connected to the flux of all ideal invariants. For the anisotropic case, we discussed three different
limiting configurations: strong, weak and quasi-2D that appear in layers of finite thickness and which can lead to an inverse
cascade of energy. In 2D we also discussed the transitions from a forward to an inverse cascade that can occur due to the
presence of the additional conservation of the square vector potential. A particular limit that deserves further attention is
that of quasi-static MHD where most liquid metal experiments operate. Finally, we discussed the subtle case of magnetic
helicity transfer that despite the agreement of phenomenological approaches with numerical simulations for the direction
of the cascades, the resulting spectra are still far from all predictions.

4.7. Passive and active scalars

In this section we review the main findings concerning the transfer properties of passive and active scalars in turbulence
by changing the dimensionality of the embedding space and the statistical properties of the advecting velocity field.
Active/passive advection/transport/diffusion equations describe a huge set of natural phenomena, ranging from atmospheric
physics [415], combustion [416] transport and amplification of magnetic fields [357] or transport of density in stratified
fluids as already discussed in Sections 4.4 and 4.6. Here we limit ourselves to review what is known for some of the most
generic and important configurations, as for the case of the advection of a dye or contaminant in 2D and 3D compressible and
incompressible velocity fields, for the passive case, and for 2D magnetic potential, 2D vorticity and potential temperature
in surface flows, for a few paradigmatic active cases. In particular, most of the physics concerning the active cases has
already been discussed in the previous sections, here we revisit some of the previous results by putting them face to
face with the evolution of a passive field advected by the same velocity configuration in order to highlights the main
differences/similarities.

Detailed results about the most rigorous aspects can be found in [417–422], experimental and numerical results
concerning passive scalar advection can be found in [423–428]. The linearity of the equations in the passive case allowed
considerable analytical progress andmany important theoretical achievements have been obtained, in the last two decades.
The problem is considered solved in some idealized cases. In particular, this is the case for the advection of a passive scalar
in a stochastic, self-similar, Gaussian and delta-correlated in time velocity field, the so-called Kraichnan model [430].

Analytical and rigorous progress has been made both using Eulerian and Lagrangian approaches, i.e. following the
evolution of tracers particles along fluid streamlines. In Lagrangian coordinates, the existence of spontaneous stochasticity,
i.e. the explosive separation of two nearby trajectories in the presence of rough advecting velocity field is connected to
the existence of the dissipative anomaly for the passive field and to a direct cascade (see Fig. 62 for a visualization of
a passive scalar Eulerian configuration [431] and for a Lagrangian evolution of a particle bunch [432]). Phase transitions
from direct to inverse cascades are then possible as a function of the degree of compressibility of the advecting field
and its dimensionality [32,433]. In Eulerian coordinates intermittent corrections and their universality can be analytically
approached as it will be briefly discussed in Section 5.2.

The presence of an active feedback on the flow leads to a plethora of new phenomena that can change the transfer
direction depending on the coupling with the velocity field and/or the degree of correlation among the external forcing
field and the advecting velocity.

4.7.1. Background definitions
The typical setup describing the combined evolution of a turbulent flow and advected scalar field θ (x, t) is described by

the following set of equations:

∂tu + u · ∇u = −∇P + ν∆u − αu + f (221)

∂tθ + u · ∇θ = κ∆θ − αθθ + fθ (222)

where we have introduced the scalar diffusion coefficient, κ and the large-scale scalar sink, αθ needed to reach stationarity
in the presence of inverse cascades (if any). It is important to remark that in the presence of a compressible velocity field, a
passive concentration, i.e. the density of a pollutant, evolves in a different way from θ (x, t) in (222) because of the presence
of the extra term (∇ · u)θ on the LHS of the evolution equation. The field θ (x, t) in (222) is considered as active and not
passive if at least one of the following three conditions is satisfied:
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Fig. 62. Left: A 2D Eulerian snapshot from a 3D DNS of a passive scalar in a highly turbulent flow, with the characteristic front/cliff structures where scalar
dissipation is concentrated and leading to a direct cascade for the passive scalar variance. Courtesy of T. Gotoh and T. Watanabe, adapted from [429]. Here
Rλ = uf λ/ν where λ is the Taylor scale defined in terms of the rms velocity gradient [3]. Right: Lagrangian evolution of a bunch of tracer particles injected
in a tiny region of size ≪ ℓν . In the first stage of the evolution, until the bunch remains smaller then the dissipative scale ℓν , the dispersion is deterministic
and exponential. At a late time, the typical distance among particles is> ℓν , the underlying flow increments become rough and the bunch blows up, with
trajectories of nearby particles that reach distances r ≫ ℓν in a finite time and with a spontaneous stochasticity behaviour.
Source: (Courtesy of R. Scatamacchia.)

(i) it enters in the definition of the velocity forcing mechanism:

f → f[θ,∇θ, . . . ], (223)

(ii) there exists a functional relationship that gives u in terms of θ :

u(x, t) =

∫
ddyK(x − y)θ (y, t) (224)

(iii) scalar and velocity injections are correlated, i.e. their PDFs are such that:

P[fθ , f] ̸= P[fθ ]P[f]. (225)

Convection is a paradigmatic case belonging to (223), while (224) is realized for the relation among vorticity and velocity in
2D or for the evolution of density fluctuations in the quasi-geostrophic approximation of stably stratified fluids, where the
scalar is coupled to the stream function, (ux, uy) = (∂yψ,−∂xψ), of the flow by the relation:

θ (x, t) = (−∆)1/2ψ(x, t). (226)

The case (225) occurs when the velocity field and the scalar injection are strongly correlated. One example is the advection
of a scalar θ in a 2D flow for which fθ = fw = ẑ · ∇ × f [284]. In the latter case, the field θ (x, t) cannot be considered
active strictly speaking, because it does not influence directly the evolution of u(x, t). Still because the two fields θ and
w = ẑ · ∇ × u follow the same equation, the correlation among the two inputs make the problem different from the one of
a passive advection where the forcing term must be independent of the velocity field.

For incompressible flows and in the absence of sinks and inputs, Eq. (222) conserves all moments, ∂t⟨θn⟩ = 0, as one can
easily verify considering that the scalar field is conserved along velocity streamlines:

dθ (X(t), t)
dt

= 0; (227)

when fθ , κ, α vanishes and we have denoted with
dX(t)
dt

= u(X(t), t) (228)

the evolution of a tracer in the flow. Of course, the same happens for the active field under similar conditions.
Beside Reynolds number, there exists a dimensionless number that characterizes the evolution of the active/passive

system (222), which weighs the relative importance of the viscous and molecular diffusion, the so-called Schmidt number:
Sm = ν/κ (also often referred as the Prandtl number). Alternatively we can define the Péclet number: Pe = (⟨|u|

2
⟩)1/2ℓθin/κ

where ℓθin is the typical length scale where the scalar fluctuations are injected by the forcing fθ . In this work we only consider
cases forwhich ℓθin = ℓin inwhich case Pe = ReSm. A discussion of cases forwhich ℓin ≪ ℓθin (homogenization limit [434,435])
or ℓin ≫ ℓθin (Townsend Batchelor limit [436,437]) can be found in [438–441]. The Péclet number is a measure of the relative
importance of velocity advection and scalar diffusivity in (222).
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4.7.2. Passive scalar cascades
In the presence of a stationary evolution, with an incompressible velocity field, a balance among input and output of

scalar variance must establish similarly to (8) for the kinetic energy:

χin = χκ + χα, (229)

wherewe have introduced themean passive scalar variance injection χin = ⟨θ fθ ⟩, mean variance dissipation χκ = κ⟨(∇θ )2⟩,
and large-scale sink, χα = α⟨θ2⟩. For the two-point correlation function in a homogeneous statistics, Cθ2 (r) = ⟨θ (r)θ (0)⟩,
one can write the equivalent of (26) to get:

−
1
4
∇r · ⟨(δrθ )2δru⟩ = κθ∆rCθ2 (r) + Fθ (r) − αθCθ2 (r) (230)

where we have introduced the injection correlation Fθ (r) = ⟨θ (r)fθ (0)⟩. To control the existence of inverse/direct scalar
cascades we need to distinguish two different ways to perform the limit of vanishingly small diffusivity. Either we send first
Re → ∞ (i.e. ν → 0 for fixed flow configuration) and then Pe → ∞ (κ → 0) or we send first Pe → ∞ and then Re → ∞.
Let us first consider sending Re → ∞ and let us suppose for the sake of simplicity that the velocity is described by a 3D
turbulent homogeneous and isotropic forward cascade at all scales with a k−5/3 spectrum. By repeating the same arguments
used for the direct cascade of homogeneous and isotropic kinetic energy, one expects that if passive fluctuations are only
transferred to small scales the large-scale dissipation must vanish, χα = 0, and a dissipative anomaly of scalar fluctuations
must exist for Pe → ∞. This is a direct consequence of the fact that stationarity implies χin = χκ :

lim
Pe→∞

κ⟨|∇θ |2⟩ = χκ = Const. (231)

As a result, for any finite Pe, we can define a typical length scale ℓκ ∼ k−1
κ where the dissipative term starts to counterbalance

the advection. In the inertial range of scales for the scalar field, ℓθin > r > ℓκ , we can further simplify the exact relation (230)
by noticing that the diffusive term, κ∆rCθ2 (r) → 0 for fixed r and κ → 0, and that the forcing-scalar correlation is dominated
by its value for r = 0, Fθ (r) ∼ Fθ (0) + O(r2) ∼ χin. As a result, from (230) one gets the celebrated isotropic inertial-range
Yaglom relation concerning the third order correlation made of longitudinal velocity increments and scalar increments:

⟨δru(δrθ )2⟩ = −
4
3
χinr, (232)

where δru refers to the longitudinal field increment as introduced in Section 4.1.1. For a pure inverse scalar cascade, one
proceeds by repeating exactly the same balancing used to lead to (30), now we assume χκ = 0 and the balancing in (230)
for r > ℓθin will be among the LHS and the large-scale scalar sink, leading to

⟨δru(δrθ )2⟩ =
4
3
χαr. (233)

The exact scaling relations (232) and (233) are not closed in terms of the scalar fluctuations only, since they depend on the
velocity field aswell. Hence, it is not possible to derive an explicit expression for the scalar spectrum (or for high-order scalar
correlations). Standard dimensional and phenomenological arguments, based on the idea that there exists the equivalent of
the Richardson cascade also for the scalar field, lead to prediction that ⟨δru(δrθ )2⟩ ∼ ⟨(δru)2⟩1/2⟨(δrθ )2⟩ and to:

⟨(δrθ )2⟩ ∼ ϵ
−1/3
in χinr2/3 (234)

where we have assumed the inertial range K41 scaling for the velocity fluctuations, ⟨(δru)2⟩ ∼ ϵin
2/3r2/3. It is important to

notice that the conceptual steps leading to (234) are complicated by the need to control the correlation among the velocity
and scalar cascades, as also evident from the fact that the RHS of (234) is expressed in terms of a negative power of ϵin. As
a matter of fact, the entanglement among the two transfers has defeated, up to now, any systematic attempt to go beyond
the above rough estimates, including cases when joint multi-fractal cascades have been proposed [442,443]. The spectral
counterpart of (234) is given by a −5/3 law similar to the forward energy cascade:

Eθ (k) ∼ ϵ
−1/3
in χink−5/3. (235)

It is instructive to double check the self-consistency of the derivation, by estimating the scalar diffusive scale ℓκ in terms
of the Péclet number by assuming the −5/3 spectrum for the scalar inertial range of scales. It is easy to see that balancing
the scalar diffusive term in (230) with the inertial LHS one gets ℓκ ∼ Pe−3/4. As a result, by taking first the limit Re → ∞

we found that the infinite Péclet number limit discussed above is consistent with the existence of a range of scales where
ℓκ < r < ℓθin because, ℓκ → 0. For ℓν < r < ℓκ we have for the scalar a balance between diffusion and advection by a rough
velocity field, a case discussed in [444] for which the spectrum Eθ (k) ∼ k−17/3 is predicted.

If we change the order of the limits and take first Pe → ∞, we need to consider that the viscous Kolmogorov scale is
not vanishingly small, ℓν > 0. For Pe larger and larger, the scalar diffusivity becomes negligible and we need to study the
advection of a scalar in a smooth velocity field, r < ℓν . The advection of a (passive) scalar by a smooth incompressible
stochastic velocity field is another important application, first studied by Batchelor in the 50’s [128,437]. In this case, the
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Fig. 63. Kinetic energy spectra EK (k) and scalar variance spectra Eθ (K ) for small Sm (left) and large Sm (right) numbers.

spectrum of the scalar is characterized by a Eθ (k) ∼ k−1 scaling range, corresponding to logarithmic scaling properties for
the two-point correlation function in configuration space.

We can summarize the phenomenological prediction for the advection of a passive scalar advected by an homogeneous
and isotropic incompressible turbulent flow in the phase space (Re, Pe) as follows.

If ℓκ ≫ ℓν (small Schmidt number regime) we have :⎧⎪⎨⎪⎩
r ≫ ℓκ ≫ ℓν → Cθ2 (r) ∼ r2/3 (convective – inertial)

ℓκ ≫ r ≫ ℓν → Cθ2 (r) ∼ r2 (diffusive – inertial)

ℓκ ≫ ℓν ≫ r → Cθ2 (r) ∼ r2 (diffusive – dissipative)

(236)

If ℓκ ≪ ℓν (large Schmidt number) we have :⎧⎪⎨⎪⎩
r ≫ ℓν ≫ ℓκ → Cθ2 (r) ∼ r2/3 (convective – inertial)

ℓν ≫ r ≫ ℓκ → Cθ2 (r) ∼ log(r/ℓχin) (convective – dissipative)

ℓν ≫ ℓκ > r → Cθ2 (r) ∼ r2 (diffusive – dissipative).

(237)

The scaling behaviour for the scalar spectrum is also summarized in Fig. 63 below.

4.7.3. Active scalar cascades
If the advected scalar is active, it is not possible to make any general conclusions about its cascading properties. This

is evident when the scalar is active in the sense of (223) as for the case of convection. In the latter case, the feedback on
the velocity is given by the buoyancy f(x, t) = −gβ ẑθ (x, t), expressed in terms of the gravity, g , the thermal expansion
coefficient,β and the active temperature (or density) field θ (x, t), (see Section 4.4). The velocity field aswell as the correlation
between the velocity and the advected fieldmight change scaling properties depending on the dimensions of the embedding
space and on whether the system is stably or unstably stratified, as discussed in Section 4.4. This is a paradigmatic example
of what was discussed after (232): the existence of an exact scaling law for the mixed third order correlation function is not
enough tomake a prediction on the scaling of velocity and temperature/density separately. Even the direction of the cascades
of active and passive scalars, transported by the same velocity field, can be different, as discussed later in Section 4.6.4, where
the magnetic potential plays the role of an active field.

Similarly, no universality among passive and active quantities are expected when a functional relation among the
advecting velocity and the advected scalar fields (224) exist. This is well exemplified in the two paradigmatic cases of
vorticity evolution in 2D turbulence and potential temperature in the surface quasi-geostrophic (SQG) approximation [445].
The dynamic equations for both cases can be written by generalizing the Navier–Stokes equation in 2D by introducing a
relation that connects the Fourier-space velocity field, ũ with its vorticity w̃ such that

∂tw + u · ∇w = ν∆w − αw + fw (238)

where

(ũx(k), ũy(k)) = −ik−z(ky,−kx)w̃(k, t). (239)

The value of z corresponds to different degrees of locality in the functional relation [446–449]. Indeed, for z = 2 we have
the equivalent of the relation connecting vorticity and velocity w = ∇ × u, while for z = 1 we recover the relation among
velocity and potential temperature (226). The system (238), (239) conserves the variance of the advected scalar, A = ⟨w2

⟩,
and an energy-like quantity, E = ⟨w(−∆)−z/2w⟩. The quantity A corresponds to the enstrophy for z = 2. Note that E has
units of velocity square only for z = 2when the 2D Navier–Stokes is recovered. For z = 1,A has units of velocity square. The
spectra of the two quantities EA(k) and EE (k) are related by EA(k) = kzEE (k) and thus according to the discussion leading to
(80)–(82) we can conclude thatA cascades forward and E cascades inversely for z > 0, while the opposite occurs for z < 0.



Please cite this article in press as: A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows, Physics Reports (2018),
https://doi.org/10.1016/j.physrep.2018.08.001.

A. Alexakis, L. Biferale / Physics Reports ( ) – 71

Thus, we observe a discontinuous (1st order) transition as z is varied across 0, as discussed in Section 3.7. Note, however,
that for z = 0 the non-linearity vanishes. The standard dimensional arguments for the two spectra lead for z > 0 to the
predictions:

EE (k) ∝ ϵ
2/3
E k−7/3+z/3, EA(k) ∝ ϵ

2/3
E k−7/3+4z/3, for k ≪ kin (240)

EE (k) ∝ ϵ
2/3
A k−7/3−z/3, EA(k) ∝ ϵ

2/3
A k−7/3+2z/3, for k ≫ kin (241)

where ϵE is the rate of injection of E and ϵA ∼ kinzϵE is the rate of injection of A. The spectra reduce to the 2D turbulence
spectra (58)–(59) for z = 2. Note that for the 2D turbulence case the spectrum of the advected quantity (the enstrophy
spectrum) follows up to logarithmic corrections a k−1 scaling as for the cascade of the variance of a passively advected
field by a smooth flow. For vorticity in 2D turbulence, as already discussed in Section 3.2, phenomenological and numerical
results predict that in the absence of a large scale sink (Ekman friction), the enstrophy develops a direct cascade with a
−1 spectrum corresponding to a smooth velocity field with a spectrum given by the −3 Batchelor–Kraichnan law (59). As
a result, enstrophy evolves similar to a passive quantity in a differentiable flow, developing the same Batchelor scaling as
predicted by the log(r) law discussed by . Extensive numerical simulations [164] have shown that also in the presence of the
Ekman friction, α ̸= 0, the enstrophy behaves as a passively advected scalar, at least for what concerns the scaling properties
in the forward cascade range, despite the fact that the enstrophy spectrum changes to a E(k) ∼ k−1−y and the exponent y
depends on the intensity of α, due to non-local effects induced by the large-scale drag on the entire direct enstrophy cascade
range. The equivalence of the scaling properties of enstrophy and a passive scalar advected by a 2D turbulent flow cannot
be proved analytically. However, phenomenological arguments based on the observation that both fields are stretched
exponentially along Lagrangian trajectories is provided in [162,419]. For the SQG case (z = 1 in Eq. (239)) the spectrum
of the advected field variance follows the spectrum of a scalar advected by a 3D turbulent flow. Numerical evidence exists
where the passive and the active (the SQG density) fields have a direct cascade but with different scaling properties [419].

Finally, we comment on the case examined in [284] where the simultaneous advection of vorticity w and passive scalar
θ by a 2D flow was investigated with ν = κ . This case corresponds to 2D3C-flow where the scalar is the vertical component
of the velocity that is advected passively. It was shown that the spectrum of the scalar quantity can be strongly affected by
varying the degree of correlation between the scalar and vorticity injections (225). When the passive scalar forcing fθ is fully
correlated with vorticity forcing fw ∝ fθ , the two scalars follow exactly the same equation and it is straightforward to show
that at late times θ∥fw∥ = w∥fθ∥. Such a case corresponds to a 3D forcing injecting maximal helicity into the system. By
varying the degree of correlation of the forcing it was shown that the spectrum at large scales of the passive field changed
from the thermal spectrum k when the forcing were uncorrelated to that of the enstrophy, ∝ k2E(k) ∝ k1/3. We note that
the scalar field θ does not fed back to the flow. However, its persistent correlation with the vorticity field induced by the
helical forcing leads to a change in the spectral exponent.

4.7.4. Active vs passive scalar cascades in Lagrangian coordinates
It is important to revisit the existence of direct and inverse cascades for passive and active scalars advected by a turbulent

flows by using Lagrangian coordinates, i.e. by solving the advection equations (222) for the scalar field by the method of
characteristics. Let us for the moment put the large-scale sinks to zero αa = αθ = 0. In the absence of external forcing and
scalar diffusivity the solution along a fluid characteristic is given by (227), which simply states that the scalar is constant
along fluid–particle trajectories. In order to take into account of the diffusivity we need to generalize (228) considering the
stochastic evolution of all particle paths that are at point x at time t:

dX(s|x, t)
ds

= u(X(s|x, t), s) +
√
2κ η̇(s); X(t|x, t) = x. (242)

where η̇ is aWiener vector process with components given by a Gaussian variable of zeromean and delta-correlated in time.
It is possible to show [450] that for any realization of the external forcing fθ (x, t) and of the advecting velocity u(x, t) the
value of the passive scalar at the position x at time t , can be expressed as

θ (x, t) =

⟨∫ t

0
dsfθ (X(s|x, t), s)

⟩
η

, (243)

wherewehave assumedwithout any loss of generality that at time t = 0 the scalar is identically zero, θ (x, 0) = 0. Eq. (243) is
telling us that the value of the Eulerian scalar field evolved under (222) can be reconstructed by summing the contributions of
the forcing estimated along all stochastic Lagrangian paths that end on x at time t . The statistical properties of the trajectories
of a given velocity configuration can be summarized by the particle propagator P(y, s|x, t) = ⟨δ(y−X(s|x, t))⟩η which is the
probability to find a particle that evolves according to (242) in x at the final time t provided that it is at the earlier time s in
y. By writing the backward-in-time Kolmogorov equations, ∂tP + ∂x(uP) = κ∆xP with final condition P(y, t|x, t) = δ(y− x)
we can express the value of the scalar field without making anymore reference to the trajectories as in [419]:

θ (x, t) =

∫ t

o
ds

∫
dydfθ (y, s)P(y, s|x, t). (244)
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An active field evolving in the same velocity configuration can be described by the same stochastic Lagrangian evolution and
the propagator would also be the same. The difference is that for the active case the forcing, fa and the propagator in the RHS
of (244) will not be uncorrelated because a(x, t) influences the evolution of u and therefore the expression of P itself.

Starting from the Lagrangian stochastic expressions (243) or (244) one can understand the meaning of the dissipative
anomaly and connect the existence of forward or inverse cascade with the properties of the propagator P in the limit for
Pe → ∞, i.e. in the zero-noise case κ → 0 in (242). Before doing that, let us remember that for vanishing large-scale sink,
the exact balancing for the passive fluctuations at all times must satisfy:

∂t⟨θ
2
⟩ = χin − χκ . (245)

As a result, in the absence of the dissipative anomaly, χκ → 0 for κ → 0, the passive variance would growth indefinitely
in time, being always possible to choose χin > 0. Let us now go back to (244), by averaging over the forcing realization and
over uwe can write for the two-point scalar correlation function:

Cθ2 (x1, x2|t) =

∫ t

0
ds

∫
dyd1 dy

d
2⟨P2(y1, y2, s|x1, x2, t)⟩uF (|y1 − y2|/ℓθin) (246)

where we have introduced the two point propagator P2 which gives the probability for two particles being in y1 and y2
at time s to arrive at points x1 and x2 at time t . In the above expression we have disconnected the average of P2 over the
velocity realization from the two-point forcing correlation, ⟨fθ (y1, t)fθ (y2, t ′)⟩ = δ(t − t ′)F (|y1 − y2|/ℓθin), because for the
passive case the velocity field does not depend on the injection of the passive scalar. For simplicity we have also considered
the forcing to be delta correlated in time. If we evaluate the above expression at coinciding points, x1 = x2 = x, we get the
passive variance ⟨θ2(x, t)⟩ = Cθ2 (0, t). From (245), one derives that the existence of a dissipative anomaly is equivalent to the
requirement that the passive variance saturates to a constant (does not grows in time) even in the limit κ → 0. Translated
to (246), it implies that the probability to have two trajectories that end at the same point x at time t is not proportional to a
delta function of the initial distance, i.e. that ⟨P2(y1, y2, s|x, x, t)⟩u is not proportional to δ(y1 −y2). Indeed, in the latter case,
the RHS of (246) would grow linearly in time and the passive variance cannot be bounded. On the other hand, if P2 is not a
delta-function of y1 − y2, since F (r) is vanishingly small for separation larger than the forcing length, ℓθin, the time integral in
(246) will be cut-off at the -finite- time needed for two coinciding particles to separate a distance of the order of the forcing
correlation length. This is the mechanism leading to the existence of the dissipative anomaly.

The fact that even in the limit of zero diffusivity, κ → 0, the 2-particles propagator with coinciding final positions does
not collapse on δ(y1 −y2) is themathematical equivalent of the so-called spontaneous stochasticity, i.e. the possibility for two
particles to separate for any, arbitrarily small, noise intensity in (242) even in the limit of coinciding initial points. In other
terms, the existence of a forward passive cascade and the presence of a dissipative anomaly for the scalar goes together with
the requirement that the process obtained by sending the noise to zero in (242) is still a stochastic process with a non-trivial
2-point and multi-point kernel. This is possible only when the advecting flow is rough (i.e. by sending first Re → ∞ for the
case of a turbulent scaling flowwith Kolmogorov scaling at all scales). It can be understood considering that if the advecting
flow is not Lipschitz continuous, trajectories starting from the same point are not unique. Two coinciding particles might
separate forward or two initially different trajectories might cross at the final point. Applied to passive scalars this is one of
the assumptions at the basis of the well-known Richardson turbulent dispersion, where two particles with initial distance
r0 = |y1 − y2| are advected by a rough velocity field and they separate with a law: ⟨r(t)2⟩ ∝ ϵint3 which is asymptotically
independent of r0, i.e. there exists an explosive separation of trajectories.

For any realizable flows in Nature, it is impossible to have an infinitely extended inertial range and the advecting flow
must be smooth for separations smaller then the Kolmogorov scale, ℓν . If two tracer particles start with an initial separation
r0 < ℓν we will observe a transient initial exponential stretching due to the smoothness of the underlying flow, followed by
an explosive separation for large times (see, e.g., the right panel of Fig. 62 for an example of thewhole process). As a result, the
spontaneous stochasticity will emerge as soon as the separation is larger then ℓν , i.e. for any separation if Re → ∞. Standard
phenomenology predicts that for a long enough time the Richardson law is recovered independently of r0 [432,451,452].

For advection–diffusion in an everywhere smooth velocity field (Batchelor limit), two nearby trajectories will only
separate exponentially in time, and two coinciding trajectories will lead to a unique evolution if κ = 0, as a result there
is not dissipative anomaly and the total passive energy ⟨θ2⟩ will not reach stationarity as is also reflected by the existence of
the logarithmic singularity for r → 0 in .

We have now the possibility to understand also the opposite case, i.e. when we are in the presence of an inverse passive
cascade. Whenever all Lagrangian trajectories collapse into a unique trajectory in the limit κ → 0 the P2 propagator tends
to a delta-function and the scalar variance will grow linearly in time, as it must be the case for an inverse cascade in the
absence of a large scale sink. Spontaneous stochasticity is absent and cannot have a dissipative anomaly.

For active fields, nothing can be derived using the previous arguments because the particle propagator P2 is correlated
with the active forcing. Let us indeed re-interpret in terms of Lagrangian evolution the instructive case of 2DMHD turbulence
(see Section 4.6.4), where the active (magnetic potential) field develops an inverse cascade, while the passive scalar has a
direct cascade. It is clear that the inverse cascade for the active field cannot be due to the collapse of the trajectories of the
active tracer: both passive and active fields are advected by the same rough velocity field and we must have spontaneous
stochasticity for both cases. To understand what happens we need to go back to the Lagrangian stochastic evolution by
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Fig. 64. Summary of the transition among direct/inverse cascades for passive scalars in d-dimensions in a compressible flow within the Kraichnan model
as a function of the roughness exponent ξ and compressibility C [433].

writing the equivalent of (243) for two-point observables in a form that explicitly considers the cumulative effect of the
forcing along trajectories that end on points x1 and x2 at time t . For the active case we have:

Cθ2 (x1, x2|t) = ⟨θ (x1, t)θ (x2, t)⟩ =

∫ t

0
ds1

∫ t

0
ds2⟨fθ (X(s1|x1, t), s1)fθ (X(s2|x2, t), s2)⟩u,f ,η. (247)

It is key to understand that even in the limit of coinciding points x1 → x2, the stochastic trajectories that must be used to
evaluate the effect of the forcing are independent. As a result, for the direct cascade of the passive scalar the mean on the
RHS of (247) will suffer from strong cancellations and does not grow in time. For an active field, it might be dominated by
a systematic correlation among the trajectories and the value of the forcing, if the latter is correlated with the advecting
velocity. For 2D MHD (see Section 4.6.4) this is exactly what happens: despite the separation of nearby trajectories, the
contribution of the forcing for the active field is biased and leads to a value for (247) that grows in time when the two final
points coincide [453].

4.7.5. Compressible flows and transitions to inverse cascades
A transition from a forward to an inverse cascade of a passively advected scalar can be observed when the flow is

compressible. Wewill refer to a direct cascade when a dissipation anomaly exists at the small scales, Lagrangian trajectories
separate explosively, thus generating a small scale dissipation of scalar variance. Similarly we refer to an inverse cascade if
Lagrangian trajectories tend to collapse in time, and thus transfer scalar variance to large-scale structures as discussed in
the previous subsections.

Transition from direct to inverse cascade can be rigorously analysed [433] in the d-dimensional compressible Kraichnan
modelwhere the advecting velocity field is Gaussian, self-similar and delta-correlated in time,with two-point variance given
by

⟨δrui(t)δruj(t ′)⟩ = δ(t − t ′)Dij(r)

with Dij(r) = A(d, ξ )δijrξ + B(d, ξ )rirjrξ−2, where 0 ≤ ξ ≤ 2 is the roughness exponent of the advecting field and A, B are
two functions which depend on the degree of compressibility of the field defined as the ratio: C = ⟨(∂iui)2⟩/⟨

∑
ij∂iu

2
j ⟩.

In the compressible Kraichnan model, a phase transition from a direct to inverse cascade develops as a function of the
dimensionality, d, of the roughness exponent ξ and of the degree of compressibility, C as shown for the first time in [433]
and graphically summarized in Fig. 64. The transition from a forward cascade to an inverse cascade is discontinuous and
thus it falls in case (c) of the transition scenario discussed in Section 3.7.

Another case that displays a transition of cascade direction is passive scalar advection when the domain in one of two
dimensions is severely constrained similar to turbulence in thin layers. This casewas examined alsowithin the compressible
Kraichnanmodel in [32].When the 2D layer is very thin the flow behaves like 1Dwith the variance cascading inverselywhile
when the thickness of the layer becomes very large the flow behaves like 2D and the scalar variance cascades forward. It
was shown that in this system, small-scale dissipation and transfer to large scales coexist. The asymptotic analysis done
in [32] revealed that the transition from one extreme case to the other as the layer thickness is varied is smooth and the
amplitude of the forward cascades scales like a power-law and thus falls in case (a) of the transition discussed in Section 3.7.
The dispersion of fluid particles on the surface of a d-dimensional cylinder was further investigated in [454], where it was
shown that the compactification results in to an invariant measure for the two-particle separation transition probability.

4.7.6. Summary
In this section,we have summarized themost important phenomenological and theoretical advancements on the transfer

of scalar quantities advected by turbulent flows at changing the properties of the advecting field and the forcingmechanisms.
We have also discussed the different scaling regimes expected at changing the relative intensity of Reynolds and Péclet
numbers.
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We have analysed the main difference among the passive and active case. For the former, we have connected the
existence of a forward cascade and of the dissipative anomaly in the Eulerian framework to the phenomenon of spontaneous
stochasticity for the equivalent Lagrangian description in terms of tracer particles. As a result, the passive scalar is supposed
to cascade forward unless the advecting field is compressible enough to collapse two (or more) trajectories on a unique
path when their starting points tend to coincide. In the latter case the transition shown in Fig. 64 from forward to backward
cascade is predicted to happen sharply, following the scenario illustrated in panel (c) of Fig. 13.

For ideal situations when the advecting field is self-similar, Gaussian and delta-correlated in time (Kraichnan model),
the above results can be proven rigorously. For the most general case, the linearity of the problem is typically a sufficient
condition to advocate for similar results to hold, even if no rigorous calculations can be made [455,456].

Active fields might be transferred either forward or backward even in the presence of spontaneous stochasticity, i.e. even
when passive scalar fluctuations cascade to small scales. This is due to the fact that the advecting velocity and the scalar
injections are in general correlated, opening the possibility for a preferential sampling of the effects of the forcing along the
Lagrangian trajectories of the active scalar advection.

Paradigmatic applications to 2D turbulence, 2D MHD, surface-quasi-geostrophic flows and convection have been briefly
discussed. Recently, the signatures of direct and inverse energy cascade properties have also been connected to the breaking
of time-reflection symmetry along single-particle trajectories in 2D and 3D turbulence, as shown by experimental and
numerical data in [457,458].

5. Further topics about cascades

5.1. Wave turbulence

Wave turbulence refers to systems for which the main interactions are dominated by waves. We have already met wave
turbulence in the sections regarding rotating flows 4.3, stratified flows 4.4, and in MHD 4.6 where inertial waves, gravity
waves, or Alfvén waves play a dominant role. Wave turbulence however is not limited to incompressible flows, as it is also
met in elastic plates, quantum turbulence, acoustic waves to mention just a few. In the limit of very fast waves, referred
to as the weak wave turbulence (WWT) regime, the nonlinear equations can be closed and an analytic expression for the
energy spectrum can be derived. In fact, not only the energy spectrum but also the probability distribution function of the
wave amplitudes can be solved for. A comprehensive and extensive coverage of WWT can be found in the book [459] in the
review [268] aswell as in the book [460] that is based on the classical works by Zakharov in collaborationwith other authors.
A review on wave turbulence interactions in the stable atmospheric boundary layer can also be found in [461]. Here, after
shortly describing the main ideas we discuss the implications and limitations of WWT for the systems examined so far.

Weak wave turbulence is realized at scales where the linear wave frequency is much larger than the typical inverse
nonlinear time scale τ−1

nonlin of the system. In this limit, we can define a small parameter ε given by the ratio of the wave
period, τwave, and the eddy-turn-over-time, τnonlin:

ε = τwave/τnonlin ≪ 1. (248)

If measured at the forcing scale ℓin this parameter coincides with the Rossby number for rotating turbulence (147), with the
Froude number in stratified turbulence (161) and with the Alfvén Mach number in MHD turbulence (191). To demonstrate
howWWTproceedswe consider the NSE in Fourier space (103)with an arbitrary dispersion relationωk for the helicalmodes
ũsk
k :

∂t ũ
sk
k −

i
ε
ω

sk
k ũsk

k =

∑
p+q+k=0

∑
sp,sq

C
sk,sq,sp
p,q,k (ũsp

p )∗(ũsq
q )∗ − νk2ũsk

k − αũsk
k + f̃ sk (249)

wherewehave assumed that thewave term,ωsk
k ũsk

k , is orderO(1/ε)with respect to the non-linear contributions. For example,
in rotating turbulence the inertial wave frequency would be ωsk

k = skRo−1kz/k (see Section 4.3). To filter out the fast waves
we can use the substitution

ũsk
k (t) = askk (t)e

i
ε ωkt

to obtain an equation for the slow amplitude askk :

∂t ã
sk
k =

∑
p+q+k=0

∑
sp,sq

e−
i
ε (ω

sk
k +ω

sq
q +ω

sp
p )tC

sk,sq,sp
p,q,k (ãspp )∗(ãsqq )∗ − νk2ãskk − αãskk + f̃ ske−

i
ε ωkt . (250)

We can treat this equation perturbatively by expanding ãskk as

ãskk = ãsk (0)k + εãsk (1)k + ε2ãsk (2)k + · · ·

Before proceeding we need to distinguish two cases that correspond to which order the limits ε → 0 and L → ∞ are taken.
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Discrete wave turbulence. If the limit ε → 0 is taken first, then the fast oscillating term in (250) time-averages to zero for
any finite time window unless the resonance condition:

ω
sk
k + ω

sq
q + ω

sp
p = 0 (251)

is satisfied. Therefore, in the limit of ε → 0 only Fourier modes that satisfy both k + p + q = 0 and (251) can interact. If
these exact resonances exist they lead to a network (that could be finite or infinite) of interacting wavevectors [462,463].
The convolution term in (250) is thus significantly reduced. Finding waves that satisfy the resonance condition (251) on a
discrete lattice is not an easy task and only a few cases have been treated [464]. If no exact resonances exist, then higher
order terms in the expansion need to be considered and the system evolves on a slower time scale.

Continuous wave turbulence. In the case that the large box size limit is considered first, the sums in (250) need to be replaced
by integrals over dq3, dp3 and the condition k + p + q = 0 by a Dirac delta function δ(k + p + q). A time average of the
oscillating term becomes

⟨e−
i
ε (ω

sk
k +ω

sq
q +ω

sp
p )t

⟩T ≃ εδ(ωsk
k + ω

sq
q + ω

sp
p ). (252)

where we have defined

⟨f (t)⟩T =
1
2T

∫ T

−T
f (t ′)dt ′.

For any small but finite value of ε the resonance condition does not need to be exact but can be violated up to order ε,
i.e. ωsk

k + ω
sq
q + ω

sp
p = O(ε). These interactions are referred to as quasi-resonances. We further note that (252) reduces the

intensity of the nonlinearity by ε, thus the expansion needs to be carried out until order ε2. Wave turbulence proceeds by
calculating the evolution of the statistical average of different moments like nk = ⟨|ãsk,(0)k |

2
⟩S (where the subindex S stands

for an average over an ensemble of initial conditions). The energy spectrum E(k) is obtained by spherically averaging nk over
the surface of a sphere of radius k. This procedure leads to a kinetic equation that takes the form

∂tnk =

∫
(V 1

k,q,pnqnp + V 2
k,q,pnknp + V 3

k,q,pnqnk)δ(k + p + q)δ(ωsk
k + ω

sq
q + ω

sp
p )dq3dp3

− ν ′k2nk − αnk + Fk (253)

where the potentials V i
k,q,p are obtained from the non-linear coupling term, ν ′ is a rescaled viscosity ν ′

= νε−1, and Fk is the
rate the forcing injects energy at the wavenumber k. If there are no modes that satisfy the resonance conditions then the
expansion needs to be carried over to the next order where 4-wave interactions take place.

There are a few remarks that need to be made. The weakening of the non-linearities implies that the LHS of balance (29)
is multiplied by a factor ε. This leads to the following estimate for the drag coefficient:

lim
Re→∞

ϵin

E2/3
in kin

= O(ε). (254)

The above expression has been often used as a good proxy for the system to be in a wave turbulent state [63,187,266,377]. It
also provides a phenomenological way to predict scaling relations for the structure functions or energy spectra by assuming
constancy of the energy flux. The idea is to assume that in thewave-regime, thewave–wave interaction time-scale is shorter
than the eddy-turn-over-time, τwave(k) < τnonlin(k), hence the energy is transferred via a less efficient mechanism due to the
quasi-Gaussian wave background and the total flux is depleted by a factor τwave(k)/τnonlin(k):

ϵin ∼
(δru)3

r⊥

τwave(r)
τnonlin(r)

or ϵin ∼ E(k)3/2k5/2
τwave(k)
τnonlin(k)

(255)

where τnonlin(k) ∼ k3/2E(k)1/2 is the eddy turnover time and τwave(k) is evaluated from the dispersion relation τwave(k) = ω−1
k .

The isotropic result can be extended to higher wave interactions assuming isotropy [459]. For anisotropic systems we need
to use the 2D energy spectrum E(k⊥, k∥) with δru2

∼ E(k⊥, k∥)k⊥k∥ and 1/τnonlin(k) ∼ [E(k⊥, k∥)k⊥k∥]
1/2k. The same relation

then reads:

ϵin ∼ [E(k⊥, k∥)k⊥k∥]
3/2k

τwave(k⊥, k∥)
τnonlin(k⊥, k∥)

= E2(k⊥, k∥)k2∥k
2
⊥
k2ω−1

k . (256)

The relations (255), (256) can be used to predict the energy spectra in the wave turbulence regime as

E(k⊥, k∥) ∼ ϵin
1/2ω

1/2
k (k∥k⊥k)−1. (257)

We need to warn the reader that the anisotropic case (257) does not take into account the direction of the cascade in the
(k⊥, k∥) plane, and sometimes further assumptions are required. In fact, we have already used these relations to derive the
energy spectra in rotating, and MHD turbulence. We also note that since the non-linearity is depleted by a factor of ε, in
order for the viscous effects to be neglected in the inertial range we need to require that εRe ≫ 1 and not just Re ≫ 1.
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Concluding this short section about wave turbulence we need to express a few words of caution. First we note that the
condition (248) is not uniform in wave-number space because both τwave and τnonlin depend on k. It is thus common that
wave turbulence theory breaks down at some scale where τwave/τnonlin = O(1) after which turbulence becomes strong. We
also stress that changing the ordering of the limits ε → 0 and L,H → ∞ can drastically impact the dynamics of the system.
Not only the nonlinearity can appear at different order but as seen in rotating and in MHD flows (see Sections 4.3 and 4.6)
confinement can change the direction of the cascade. Finally we stress the difficulty to realize a weak turbulent state in
experiments or numerical simulations. The problem originates from the different limits that need to be considered. First the
large box size limit needs to be taken H, L → ∞, then the fast wave ε → 0 and the large rescaled Reynolds limit εRe → ∞,
and finally the system needs to run long enough, of the order O(τnonlin/ε), for the cascade to build.

5.2. Intermittency and multi-scaling

Up to now, we have investigated cascades and transfer properties in turbulence by mainly using mean fluxes, i.e. by
performing a global average over the configuration or Fourier representation, as summarized by (17) and (24) in Section 2. On
the other hand, it is crucial to understandwhether the cascade proceeds smoothly from the injection scale to the scale where
it is dissipated or if strong spatial and/or temporal fluctuations arise. The possibility to develop highly non-homogeneous
spatial fluctuations during the direct cascade process is already implicitly contained in Richardson’s poem cited at the
beginning of this review, evoking turbulence as the result of an infinite set of nested structures made of smaller and smaller
whorls. Indeed, it is well known that despite the fact that the large-scale energy distribution is close to Gaussian, the energy
dissipation in 3D turbulence is a highly fluctuating field [465], with an instantaneous spatial distribution characterized by
intense localized peaks in a sea of almost laminar regions. This is qualitatively and quantitatively summarized in Fig. 65
where we show the results for the local energy dissipation, ν|∇u|

2 and enstrophy |w|
2 on a 2D cut of a 3D turbulent flow,

together with their PDF.
The changing from a close-to-Normal statistics at the injection scale to a highly skewed and non-Gaussian distribution

at the viscous scale is the phenomenon called turbulence intermittency, the tendency of some flow realization to develop
stronger and stronger fluctuations by changing (usually decreasing) the scale, or by increasing Reynolds numbers. In order
to have a proper definition, independent of the flow properties at the injection scale, we need first to define dimensionless
scale-dependent fields normalized with their rms fluctuations, δru → δrX = δru/⟨(δru)2⟩1/2, where, e.g. we have used
the longitudinal velocity increments as defined in (44) and that we denote here as δru for simplicity. Then, we define the
realizations of the X field to be intermittent if the PDF of its increments, PDF (δrX) depends on the scale r and tends to develop
larger and larger tails by changing r in the inertial range. In particular, as we will see below, 3D turbulence in the forward
cascade regime develops intermittency due to the existence of anomalous power laws for velocity structure functions, but
the requirement to have power laws behaviour is not strict.

The importance of intermittency is multi-fold. First of all, theoretically speaking, it is believed to be the signature of the
multi-fractal nature of the energy cascade [3,466,467]. It reflects the important phenomenological fact that the Richardson
cascade does not proceed in a space-filling way and it tends to concentrate very intense dissipative events in a small sub-set
of the 3D space. Explaining the presence of intermittency, not to speak about the possibility to derive it from the original
Navier–Stokes equations, is considered the theoretical problem for all basic turbulent flows, being a phenomenon ubiquitous
to all flows in 3D. Up to now, all analytical attempts to produce a systematic under-control protocol to calculate from first
principle intermittent properties have failed (see [3,147,468,469] for old and recent contributions in this direction). It is
worth to mention a recent attempt based on a field-theoretical description [470,471]. In the latter, anomalous scaling is
derived by separating a background K41 field theory from the fluctuations induced by the action describing the Nambu–
Goldstone boson connected to the breaking of the dilatation symmetry. The final formula for the scaling exponent generalizes
the log-normal description: ζn −n/3 = G(d)ζn(1−ζn), where G(d) is the only free parameter and depends on the embedding
dimension. The above formula is interesting because it has not the same drawbacks of the log-normal prediction (see [3] for
a discussion about the inconsistency of log-normal distribution) and leads to a square root dependency of ζn on n for large
moments. For low order moments is almost undistinguishable from the She–Leveque prediction [472] which is known to be
a very good fit of empirical data for the anomalous exponents. Finally, the existence of strong non-Gaussian fluctuations is
also a key problem in many applications where small-scale turbulence must be modelled as in the Large Eddy Simulations
approach (see Section 5.3.1). Empirical observations support the idea that the direct energy cascade intermittency is robust
and universal, independent of the way the flow is forced, if the injection is limited to a restricted set of scales [473,474].
Moreover, intermittency is present both in the Eulerian and Lagrangian domain, i.e. also following velocity fluctuations
along the evolution of tracer particles [475]. Intermittency is observed in the direct enstrophy cascade in 2D [162–164]
but it is absent for the inverse energy cascade [164,476], the latter being partially understood invoking the fact that in the
inverse transfer energy goes from faster to slower variables. Furthermore, intermittency is not restricted to the turbulent
velocity field, being also observed in passive and active scalars [418,419,426,430,453] in magnetic fields [375,477–479], in
bounded flows along homogeneous directions [303,480], in compressible flows [135,481,482] and inmany other systems as
summarized in [3,466,483].
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Parisi–Frischmultifractal approach. A popularway to quantify intermittency is based on the analysis of the scaling properties
of velocity increments in the inertial range, the so-called structure functions already introduced in Section 3.1.2. As expressed
by (48), it is an empirical fact that the inertial range scaling properties in HIT are anomalous, i.e. longitudinal and transverse
increments are characterized by a set of scaling exponents which do not follow the self-similar K41 prediction, i.e. ζn ̸= n/3.
A powerful phenomenological way to explain intermittency is based on the multifractal theory as first introduced by Parisi
and Frisch in [484] (see also [485] for a recent historical review). The idea is based on the observation that the inertial terms
of the NSE are invariant for a simultaneous rescaling operation where, u → λhu, x → λx and t → λ1−ht with an arbitrary
exponent h. Unlike in Kolmogorov theory which assumes that h = 1/3 everywhere in the 3D volume, Parisi and Frisch
proposed that a fully developed turbulent velocity field is characterized by a continuum spectrum of local scaling exponents
h ∈ [hmin, hmax] which appears in fractal sets of dimensions D(h) in the embedding 3D volume:

δru ∼ (
r
ℓin

)h, with probability Ph(r) ∼ (
r
ℓin

)3−D(h), (258)

where, here, we do not distinguish among longitudinal or transverse increments for the sake of simplicity. Following the
ansatz (258) one might write for the generic longitudinal or transverse structure function:

Sn(r) = ⟨(δru)n⟩ ∝

∫ hmax

hmin

dh Ph(r)rhn ∼ rζn with ℓν ≪ r ≪ ℓin (259)

where we have assumed ℓin = 1 for simplicity and

ζn = min
h

(3 − D(h) + nh) (260)

are the scaling exponents obtained in the saddle-point approximation in the inertial range of scales, supposing r/ℓin ≪ 1 in
(259). It is important to stress that (i) the formula (260) implies a non-linear concave shape for the scaling exponents ζn as a
function of the order n and that (ii) the skewness, and all hyper-skewness, based on normalized odd moments m = 2n + 1
with n ≥ 1, follow a power-law behaviour:

Km(r) =
Sm(r)

(S2(r))m/2
∼ (

r
ℓin

)ζm−
m
2 ζ2; ℓν ≪ r ≪ ℓin (261)

which tend to diverge when r → 0 in a way that becomes faster and faster by increasing the order m if the exponents are
concave. The growth of the moments (261) corresponds to the existence of larger and larger tails when r → 0 in the PDF of
the normalized velocity increments, δrX defined earlier in this section, i.e. to an intermittent velocity distribution.

The normalized moments (261) can also be considered as a measure of the out-of-equilibrium properties, because form
odd we would have Km(r) = 0 at equilibrium. As a result, we can conclude that in the presence of intermittency, fluctuations
of different intensities enjoy different out-of-equilibrium properties.

For completeness it is important to remark that empirical observations show that at small and moderate Re, longitudinal
and transverse velocity increments scale slightly differently [129,135], with a slow tendency toward a recovery of similar
scaling properties by increasing the Reynolds number [127]. Indeed, theoretical arguments based on invariance under
rotation of the NSE suggest that both increments should have the same scaling behaviour for large enough Re and that
the observed deviationmust be due to some sub-leading effect (see [134] and Section 5.2.2). On phenomenological grounds,
to describe different scaling properties it is enough to introduce two different spectra of fractal dimensions, DL(h) and DT (h)
for the two sets of structure functions (45).

From the structure of the Legendre transform (260), it is clear that the scaling exponents ζn will deviate from n/3 as
soon as the distribution of local Holder exponents h does not follow the K41 prediction and D(h) ̸= 3δ(h − 1/3). The most
recent state-of-the-art numerical data [127] provide an estimate for the scaling exponents of longitudinal structure functions
ζ L2 = 0.720(2), ζ L4 = 1.300(5), ζ L6 = 1.78(1), ζ L8 = 2.18(2) and slightly different for the transverse ones. Most recent
experimental data [126], exploits Extended Self Similarity [486] to extract with high precision the ratio ζ L4/ζ

L
2 = 1.86(1)

which is in agreement with the DNS data given above. It is important to stress that the multi-fractal phenomenology can
be easily extended to the energy dissipation distribution by introducing the Refined Kolmogorov Hypothesis [3], which
links the velocity increments to the average of the energy dissipation in a ball of size r in the inertial range, ϵr (x) =

1/r3
∫

|x−y|≤r d
3yϵν(y − x):

(δru)3/r ∼ ϵr . (262)

Doing that, one recovers a unified multi-fractal description for the energy dissipation measure and the velocity increments
in the inertial range, which is in very good agreement with experimental and numerical data [487–489]. Furthermore,
descriptions based on the multi-fractal model have been successfully used to reproduce empirical data also for viscous-
scale fluctuations, including velocity gradients PDFs [490], multi-scale fusion rules [491,492], Lagrangian acceleration and
Lagrangian structure functions [474,493,494] and many others observables.

In the presence of intermittency, gradient statistics develop a non-trivial dependency on the Reynolds number, ⟨(∂iuj)n⟩ ∼

Reξ (n), where the exponent ξ (n) are connected to the scaling in the inertial range following the multi-fractal ansatz [3] (see
also [488] for a comparison between multifractal and other closures connecting viscous to inertial-range physics [495]). To



Please cite this article in press as: A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows, Physics Reports (2018),
https://doi.org/10.1016/j.physrep.2018.08.001.

78 A. Alexakis, L. Biferale / Physics Reports ( ) –

Fig. 65. 2D snapshot of the local energy dissipation field (left) and the enstrophy distribution (middle) from a 3D HIT flow. Notice the strong burst-like
structures typical of spatial intermittent configurations. Right: standardized PDF of the two fields.
Source: Data are taken from a 10243 simulations (courtesy of M. Buzzicotti).

date, the multi-fractal model remains the most efficient way to reproduce many of the intermittent properties observed
in 3D turbulent flows, including non-Gaussian fat tails, long-range correlations and bridge relation among Eulerian and
Lagrangian statistics [493,496,497]. There exist many stochastic approaches based on random multiplicative models to
construct either the multi-fractal energy dissipation field or the inertial-range velocity increments. All rely on some basic
assumption that cannot be derived from first principles from the NSE. Some of the most popular models can be found in the
following references [466,467,472,494,498]. Interestingly enough, recent rigorous progresses meant to prove the Onsager
conjecture for the Euler equations have provided a first constructive way to build up weak solutions with a multi-fractal
structure [205,499]. It remains to be clarified whether such a solutions are also relevant for the NSE.

It is important to stress that while anomalous power-law scaling implies intermittency, as shown by (261) the reverse is
not true: one can have an intermittent flow even in the absence of any statistical power-law properties. As discussed earlier
in this subsection, intermittency refers to the existence of a scale-dependent PDF for some dimensionless observables. As
such, it is a property that can be studied also in systems that break scaling invariance, as, e.g., in bounded flows.

Before concluding this section, let us stress again that intermittency seems to be an ubiquitous property of all direct
cascades even for passive/active scalars and vectors, while it is not observed in inverse transfers. Intermittency is also present
in other hydrodynamical systems as in Burgers’ equations [500], in MHD turbulence [359,375,501–507], in rotating and
stratified turbulence [43,292], quantum turbulence [508,509], in shell models [510,511] (see Section 5.3.2) and it can be
defined for anisotropic turbulence too as discussed in Section 5.2.2. Moreover, and more importantly, intermittency is fully
understood for the case of Kraichnan’s stochastic passive advection , where the linear structure of the equations allows
to identify the origins of the anomalous scaling with the existence of non-trivial zero modes of the inertial differential
operator. In the latter case, anomalous intermittent exponents can be calculated perturbatively both in the isotropic and
anisotropic sectors andnon-perturbatively in shellmodels, proving their universalitywith respect to the large-scale injection
mechanisms and their robustness at changing Reynolds numbers [418,430].

5.2.1. Turbulence under unconventional Galerkin truncation
Galerkin truncation is conventionally introduced in pseudospectral direct numerical simulation to limit the number of

active degrees of freedom that fall below some ultraviolet cutoff kc , projecting the evolution on a finite dimensional phase-
space made of all modes with |k| < kc . Such a spherical truncation is considered harmless if viscosity is large enough
to resolve the Kolmogorov scale, kν < kc . We have already discussed in Sections 4.1.2 and 4.1.3 the evolution of the
3D NSE under different unconventional truncation protocols, e.g. ad-hoc removal of Fourier modes with a given helical
component in the flow evolution. In this section, we briefly summarize some recent results obtained by performing a
Galerkin truncation in sparse homogeneous or fractal sets in the whole Fourier space [184]. The aim is to understand the
effects of the removal of degrees of freedom on both themean transfer properties and intermittency [101,183–185,512,513].
The question goes back to the dichotomy among Fourier and configuration-space descriptions, often encountered in
many physical phenomena. From one side, intermittency is the result of non-trivial alternating events of high and low
dissipation in configuration space, eventually induced by the presence of complex fluid structures [514–516]. On the other
hand, analytical and phenomenological theories of turbulence are often – and mainly – based on Fourier space, where
a proper decomposition in divergence-less degrees of freedom is available. Closures as the Eddy Dumped Quasi Normal
Markovian Approximation [517], Direct Interaction Approximation [518] or the Renormalization Group [519–521] being
three paradigmatic examples. The signature of intermittency in Fourier space must be searched in the phase correlation,
i.e. any field with random Fourier phase is Gaussian and with strictly zero energy transfer. Fourier variables are fully
delocalized in the configuration space, and it is difficult to imagine what should be the proper superposition to reconstruct
the correct anomalous scaling properties. It is fair to say that we do not control the meaning of intermittency in Fourier
variables.

A generic random Galerkin decimation is defined by introducing a projector on a vector field as follows:

ĝ(x, t) ≡ Pg(x, t) ≡

∑
k

γk g̃k(t)eik·x. (263)
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Fig. 66. Left: distribution of Fourier modes for original undecimated Fourier space (red points). Right: an example of fractal Galerkin decimation for a 2D
Fourier slice.

Fig. 67. Left panel. Flatness of one component of the vorticity in a DNS of HIT with Galerkin decimation (264) and πk ∝ kDF −d as a function of the fractal
dimension of the Fourier support, DF (adapted from [512]). Right panel: same quantity plotted as a fraction of the total number of modes decimated and
comparing both fractal and homogeneous decimations (adapted from [522]).

The factors γk are chosen to be either 1 or 0 with the following probabilistic rule:

γk =

{
1, with probability πk
0, with probability 1 − πk.

(264)

Once defined, the set of factors γk are kept unchanged, quenched in time. Moreover, the factors γk preserve Hermitian
symmetry γk = γ−k so that P is a self-adjoint operator.

The evolution of the NSE restricted to the random set of Fourier modes is then given by:

∂t û = P[−∇P − (û · ∇û)] + ν∆û + f̂ . (265)

where, similarly to (120), the nonlinear term must be projected on the quenched decimated set to constrain the dynamical
evolution to evolve on the same set of Fourier modes at all times. Similarly, the initial condition and the external forcing
must have a support on the same decimated set of Fourier modes. In the L2-norm the self-adjoint operator P commutes
with the gradient.

It then follows that the inviscid invariants of the dynamics are the same as of the original problem, namely energy and
helicity in d = 3 and energy and enstrophy in d = 2.

If the probability is chosen to be a power law, πk ∝ (k/kin)DF−d where d is the configuration-space dimension of the
original problemwe endupwithNSE evolving on a fractal support of dimensionDF in Fourier space (see Fig. 66 for a graphical
representation).

Effects of fractal decimation for the inverse energy cascade in 2D turbulence has been investigated in [184], where a
tendency toward a flux-less equipartition state forDF = 4/3has been observed, in agreementwith the theoretical arguments
that predict equipartition of enstrophy to coincide with the −5/3 inverse energy cascade spectrum for such a fractal
dimension. In a series of more recent papers [101,183,185,512,522] the effects of fractal decimation on the intermittency
of the 3D direct cascade has been studied. Surprisingly, it was found that a tiny reduction of the embedding space, DF < d,
is enough to strongly deplete the small-scale non-Gaussian turbulent fluctuations as summarized in Fig. 67 where in panel
(a) we show that the flatness of one component of the vorticity field, Kω = ⟨ω4

x ⟩/⟨ω
2
x ⟩

2 is already close to the Gaussian
value, ∼3 for DF ∼ 2.98. In panel (b) of the same figure we collect all results for Kω by presenting also data where the
Galerkin projector produces a uniform random decimation in Fourier-space, πk = α with 0 < α < 1. The latter plot
shows that the reduction of intermittency is apparently independent of the way the decimation is performed, the only
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relevant factor is given by the amount of degrees of freedom removed, at least for the decimation protocols investigated
up to now. In conclusion, we can summarize that many of the aspects connected to intermittency are still not understood.
In particular, intermittent fluctuations in the forward energy cascade are highly sensitive to random decimation of Fourier
degrees of freedom, suggesting that the signatures in Fourier space of strong non-Gaussian velocity and energy dissipation
statistics is due to non-trivial correlations among phase variables involvingmany degrees of freedom. The latter observation
supports the idea that small-scale burst-like structures in turbulence need a high degree of entanglement among Fourier
modes explaining why approximations based on quasi-Gaussian fluctuations as it is the case of WWT theory described in
Section 5.1 and the Eddy Dumped Quasi Normal Markovian (EDQNM) Approximationmodels of Section 5.3.3 do not develop
any intermittency.

5.2.2. Scaling in anisotropic flows
As we have discussed at length in this review, all flows are different in Nature. Even in the simplified assumptions

of homogeneity, neglecting the effects induced by solid boundaries, the presence of confinement, rotation, stratification,
coupling with other fields always introduces some anisotropy in the system. A very important technical issue is connected
to the existence and quantification of scaling laws in such conditions. On one side, in the presence of some anisotropy,
turbulent statistics cannot be fully universal, depending on the way the breaking of isotropy is introduced, e.g. by large
scale shear, by buoyancy, rotation etc. On the other hand, the notion that all turbulent flows tends to recover some universal
isotropic properties at small scales, regardless of themacroscopic details, has been a key concept for fundamental and applied
turbulent research [2,3,5,134]. As such, anisotropic fluctuations are always connected to some degree of non-universality,
i.e., dependence on the empirical set-up.

It is clear that anisotropy prevents us from calculating scaling properties independently of the selected direction.
Similarly, one cannot imagine that there might exists a continuum of different scaling exponents as a function of the angle
selected for the analysed direction. It is now well clarified that the only way to analyse scaling properties in the presence of
anisotropic statistical fluctuations is to decompose the set of correlation functions in terms of the eigenvector of the group of
rotation, SO(3) [456,523,524] and [134] for a review. Just to fix the ideas, let us consider the longitudinal velocity structure
functions (45) in the presence of some anisotropic statistics. In this case, we must consider the whole dependency on the
vector increment r and not only on its magnitude r . As a result, each SLn(r), for any fixed r , can be decomposed in spherical
harmonics Yjm(θ, φ), that forms an eigen-basis for functions on the sphere, being invariant under the transformations of the
group of rotation SO(3) in D = 3:

SLn(r) = ⟨(δru)n⟩ =

∞∑
j=0

j∑
m=−j

SL,jmn (r)Yjm(θ, φ) (266)

where SL,jmn (r) represent the projection on the (j,m) SO(3) sector for any fixed scale separation. The decomposition (266)
is exact and labels more and more anisotropic fluctuations by increasing j, starting from the case j = 0,m = 0 that is the
purely isotropic one. Using symmetry argument for the advection and diffusion operators in the NSE, one can argue that, for
Re → ∞, each projection in each different anisotropic sector will have its own scaling behaviour [525], opening the Pandora
box of determining the scaling properties of each separate anisotropic sectors too:

SL,jmn (r) ∝ C L,jm
n rζ

L,j
n , (267)

wherewe have assumed that the exponents cannot depend on them-eigenvalue because of the arbitrariness in the definition
of the orientation axis and the prefactors C L,jm

n are non-universal dimensional constants. It is easy to see that in terms
of the sector dependent scaling exponents, ζ L,jn , the recovery of small-scale universal and isotropic fluctuations requires
that a hierarchical organization exists, with exponents for high j-sectors being larger than the isotropic one, ζ L,0n for any
n. This is what has been measured in some experimental [524,526–529] and numerical data [530,531]. Nevertheless, a
proper and systematic analysis of anisotropic small-scale fluctuations in different flow set-ups is still lacking and we do
not knowwhether the scaling exponents pertaining to high-order anisotropy are universal or not. Recently, a novel efficient
algorithm to perform the decomposition has been proposed and tested on high-resolution numerical data in [531], opening
the road to the application of this systematic technique to other data-sets too. Both recovery of small-scale isotropy and
universality of scaling exponents can beproved rigorously in the case of passive scalar andmagnetic advection by aKraichnan
flow [134,418]. In the presence of a mean profile, the analysis is more complicated and less well-posed theoretically, due to
the additional breaking of homogeneity too, see e.g. [532–535]. Similarly, in the presence of very strong anisotropy, as in the
case of almost two-dimensional flows in strongly rotating turbulence, MHD, shallow layers or close to a solid boundary one
might need to resort to the SO(2) decomposition in the homogeneous 2D directions to study anisotropic contribution in the
plane [536].

5.3. Modelling

In this section we present a short survey of some of the main issues connected to cascades in turbulence models. In
particular, we first briefly summarize the concept of backscatter in Large Eddy Simulations. Second,we describe two different
attempts to attack multi-scale high Reynolds numbers turbulence based on deterministic simplified dynamical shell models
and on statistical closure of two-point correlation functions (EDQNM approximation).
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Fig. 68. Left: log-lin plot of the SGS energy transfer PDF using two different filter mechanisms: a sharp Fourier filter (empty squares) and a Gaussian filter
(filled circles). Right: 2D snapshots of the SGS energy transfer as measured from a direct numerical simulation of HIT at 10243 resolution for sharp-Fourier
(left) and Gaussian (right) filters. Notice the presence of regions with positive and negative energy transfer.
Source: Data are adapted from [550].

5.3.1. Large eddy simulations
A huge sector of researchwithmany applications is represented by numerical methods introducing small-scale turbulent

closures. The idea is to resolve the spatio-temporal evolution of the largest scales only, which goes under the name of Large
Eddy Simulation (LES) [5,517,537–544]. The motivations to resort to LES can be both applied and theoretical, in order to
reduce the number of degrees of freedom that need to be simulated for the former or to understand the sensitivity of the
turbulent motion on the ultraviolet physics for the latter. Theoretical motivations include the possibility to have a sort of
ideal infinite Reynolds number simulation, where the effects of an infinitely extended inertial range of unresolved scales is
perfectly reabsorbed in a suitable model.

The literature on the subject is vast, starting from the early works in [539,545,546] and including recent attempts based
on fully reversible closures (see [547] and reference therein).

Here we briefly summarize the main points connected to the presence of the forward/backward energy transfer by
referring to the representation already introduced in Section 2.5.

In particular the key role is played by themodelling of the subgrid-scale (SGS) stress tensor in terms of the resolved fields,
ûℓ:

τ ℓij (u,u) → τ ℓij (û
ℓ, ûℓ) (268)

such as to be able to close the evolution (32) and solve for ûℓ only on a less refined grid. The degree of success of such a strategy
is of course dependent on the model used for the SGS stress. There is an extensive literature discussing the state-of-the-art.
Models are typically ad-hoc adapted depending on the different turbulent realization (see [5,517,540,541,545,548,549] for
a series of text books and reviews on fundamental and applied aspects). The most popular (and robust) approach is based
on the Smagorinsky closure [537] τ ℓij (û

ℓ, ûℓ) = −νE(S)Ŝℓij where Ŝℓij is the resolved stress tensor at the filter scale ℓ as defined

after (35), νE(S) = (cSℓ)2
√
ŜℓijŜ

ℓ
ij is a positive definite eddy viscosity and cS is a dimensionless number. The Smagorinskymodel

leads to a positive definite SGS energy transfer (35), which cannot be exactly correct, as shown by a direct comparison with
data coming fromDNS of the full NSE equations. In Fig. 68we show the PDF of the exact SGS energy transfer (35) asmeasured
using the full field from high resolution DNS [550] and using two different filters G̃ℓ(k), a sharp cut-off or a Gaussian filter
as introduced earlier in this review in the discussion of (32). It is clear that the local (in configuration space) SGS energy
transfer has strong fluctuations with both positive and negative tails, reaching values as intense as 30–40 times the standard
deviation. This high fluctuating field is also visualized in the two right panels of the same figure. The presence of such strong
fluctuations, order of magnitudes larger then the spatial mean, is a serious problem for the physical interpretation of the
local quantityΠ ℓ(x, t). It is difficult to interpret the sign changes and the variations in the intensity as genuine fingerprints
of the energy cascade in configuration space. This is because there is no clear meaning of local energy conservation and
the statistics of Π ℓ(x, t) is certainly strongly influenced by the advection term in (34) that will move kinetic energy across
the volume. As a result, while the averaged properties over the whole volume have a clear physical meaning (36), the PDF
shown in Fig. 68 must be interpreted with caution. On one side, the presence of a left negative tail must be connected to the
existence of some sort of local backscatter events. On the other hand, one cannot strictly speak about a local inverse energy
cascade, being the latter uniquely defined only as an average over the whole volume. This difficulty to build up a one-to-one
correspondence between local properties of the SGS energy transfer and the cascade direction is particularly clear when
one analyses the results from systems where both forward and backward cascades exist, as for rotating turbulence at small
Rossby numbers. In the latter case, the PDFs of the SGS energy transfer show little differences in the two regimes, with the
mean fluxes being always much smaller then the typical local fluctuations [269].

Nevertheless, it is considered key to have SGSmodels for LES which go beyond the Smagorinsky approximation and have
a non-positive definite SGS energy transfer, in order to be able to reproduce some of the complex features shown by the
exact data in Fig. 68.
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5.3.2. Shell models
Shell models have been introduced in the 70s as a suitable modelling of the Fourier-space dynamics of the Navier–Stokes

equations [551,552]. They can be thought as drastic simplifications of the original Navier–Stokes equations by preserving
only a few representative dynamical variables for spherical shells in Fourier space and keeping only local or quasi-local
interactions. As a result, the geometrical structure in configuration and Fourier representations is lost, and only partial
information among spectral properties is retained. Despite the drastic simplification, shell models have proved to share
many non-trivial dynamical and statistical properties with the original Navier–Stokes equations, such as the presence of a
forward energy cascade for models of 3D turbulence, the existence of a dissipative anomaly, the presence of intermittency
with anomalous scaling for the shell velocity statistics [443,553–555], the presence of an inverse energy cascade for specific
2Dmodels [556], and for suitable helical submodels [233,557]. There exist many extensions of hydrodynamical shell models
to discuss also helical turbulence [16,20,558,559], MHD [559–562], thermal convection [563,564], rotating turbulence [207]
passive scalars [565,566], superfluids [567,568] and many other flow configurations [3,226,510,511]. Shell models are also
almost as difficult as the original NSE to be considered from rigorous mathematical aspects. Indeed, only a few exact results
are known about blow-up of the inviscid limit and regularity for all times, see e.g. [569–571]. In this section we simply
summarize the general set-up for the simplest hydrodynamical back-bone.

As said, shell-models are a drastic simplification of thewhole set of Fourier interactions of the original equations, reducing
the embedding space to a logarithmically equispaced set of wavenumber shells, representing all degrees of freedom within
kn < k < kn+1, where kn = 2nk0, and retaining only one (or a few) complex variables per shell, un. The equation of motion
for one of the most popular models used nowadays [554] is given by:

u̇n = ikn
(
2aun+2u∗

n+1+bun+1u∗

n−1+
c
2
un−1un−2

)
− νk2nun + fn (269)

where the set of variables is limited in the IR and in the UV by requiring that u0 = u−1 = uN+1 = uN+2 = 0 if the velocity
shells exist only for n = 1, . . . ,N . On the RHS of (269) we recognize the viscous operator, −νk2n, the external forcing fn and
the three non-linear quadratic terms with three free coefficients, a, b, c which can be tuned such as when ν = fn = 0, the
model has two quadratic invariants. The choice a + b + c = 0 guarantees that the non-linear evolution conserves the total
energy E =

∑
n|un|

2 . By changing b, c and keeping a = −b− c , one can also obtain the conservation of the total helicity (as
in 3D) or of the total enstrophy (as in 2D). Among the advantages of using shell models wemust cite the possibility to extend
the inertial range by using a small number of degrees of freedom. It is indeed easy to realize that thanks to the introduction of
only a fewdegrees of freedom for each shell, the number of shell variables growonly logarithmically as a function of Reynolds
number: N ∝ log(Re). Because of that, shell models are often the only test-bed where proving quantitatively the robustness
of scaling properties as a function of Re, and for measuring anomalous exponents with high accuracy. On the other hand, the
restriction of the dynamics to a one-dimensional Fourier-chain, is a strong constraint on the energy cascade. For example,
it is difficult to have models that are able to develop a robust inverse energy cascade, due to the different role played by
the equipartition solutions for models with one single complex variable per shell (269) [233,556]. The possibility to have
a critical discontinuous transition from forward to inverse cascade at changing the model’s parameters has been discussed
by [179,182]. Shell models are also characterized by the presence of quasi-coherent instantonic solutions that bring energy
from large to small scales [572–575]. As a result, the energy transfer must be seen as the superposition and interaction of
a statistical background plus quasi-coherent burst-like solutions travelling to small scales. This is similar to the dichotomy
among random cascade multifractal models and coherent structures in NSE. We cite also attempts to build up shell models
with a more complex network of shell interactions, trying to approach a closer description of turbulence dynamics also
in configuration space. In particular, ultra-metric shell models have been proposed to reproduce the Richardson cascade
in 3D [576,577] and models considering anisotropy and/or real three dimensional embeddings using nested polyhedra in
Fourier space [578,579].

5.3.3. Eddy dumped quasi normal Markovian approximation
The Eddy Damped Quasi Normal Markovian approximation is a statistical closure that was developed to model isotropic

turbulence [580,581]. A recent review can be found in [517]. It solves for the two-point correlation (energy spectra) of
a statistically homogeneous and isotropic turbulent flow by assuming that the relevant statistical fields have a quasi-
normal behaviour that allows to expand higher moments in terms of second-order moments and thus close the hierarchy
of moments. Departures from normality (Gaussianity) is imposed by an eddy-damping term and a Markovianization step is
used to ensure the realizability of the two-point correlationmoments. For 3D homogeneous isotropic andmirror-symmetric
(non-helical) turbulence the equation for the evolution of the energy spectrum E(k, t) is given by [207]:(

∂t + 2νk2
)
E(k, t) =

∫∫
k
pq
θkpq(t)b3(k, p, q)

[
k2E(p, t)E(q, t) − p2E(p, t)E(k, t)

]
dpdq (270)

where b3(k, p, q) = (p/k)(xy + z3) is the geometrical coefficient introduced by Kraichnan (x, y, z being the cosines of the
angles opposite to sides k, p, q in the interacting triad) and

θkpq(t) = t/[1 + (µk + µp + µq)t], with µk = νk2 + λ

(∫ k

0
p2E(p)dp

)1/2
(271)
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with λ an adjustable parameter. The EDQNM equations have been extended for helical turbulence [207], two dimensional
turbulence for both inverse energy and direct enstrophy cascades [582], MHD including the inverse cascade of magnetic
helicity [406] to mention some of the applications. An anisotropic version of EDQNM approximation has also been applied
to rotating flows [221].

Like the shell models examined in the previous section the EDQNM equations provide an oversimplification of the NSE.
Nonetheless, they provide a tractable and very powerful tool to study high Reynolds number flows that go well beyond
what can be attained with DNS nowadays. Unlike shell models, due to the assumed quasi-normality EDQNM cannot develop
any intermittency. On the other hand, the EDQNM equations have the advantage to take account nonlocal interactions, thus
they provide a more realistic model for flows where widely separated scales are coupled. Recently, the EDQNM equations
have been used to study the energy transfer properties of homochiral turbulence [209,230]. EDQNM can thus provide an
indispensable tool to study transitions of cascades at high Re.

5.4. Cascades in bounded flows and with multi-scale injections

In the presence of solid boundaries, the assumption of homogeneity and isotropy is lost and one needs to cope with a
series of new phenomena connected to the possibility to have a net transfer of momentum in the direction of the wall. The
literature concerning the energy–momentum balance inwall bounded flows is huge. A series of recent reviews of numerical,
experimental and theoretical ideas can be found in [583–585]. Here we want to summarize only the major new problems
arising in such a situation and to connect themwith the phenomenological set-ups discussed in themain part of this review.

Channel flows. Let us fix the notation for this important set-up by supposing to have a channel flow with periodic span-wise
boundary conditions and two boundaries at y = ±L0. The stream-wise stationary mean velocity profile averaged over a
plane parallel to the wall at a given height y will be denoted as U(y) while the fluctuating stream-wise, wall-normal and
span-wise components as u = u1, v = u2 and w = u3 respectively. One can then write a height-dependent kinetic energy
balance [5], generalizing the global balance (8):

−⟨uv⟩
dU
dy

−
1
2

d
dy

⟨uiuiv⟩ +
ν

2
d2⟨uiui⟩

dy2
−

d⟨pv⟩
dy

− ⟨ϵ(y)⟩ (272)

where all averages ⟨•⟩ in this section are meant only along the homogeneous directions x, z and ϵ(y) = ν⟨∂iuj∂iuj⟩ is the
dissipation at the given height. By introducing the definition of the turbulent kinetic energy flux: φ(y) =

1
2 ⟨uiuiv⟩−

ν
2

d⟨uiui⟩
dy +

⟨pv⟩ one can rewrite the above equations in a conservative form:
dφ(y)
dy

= −⟨uv⟩
dU
dy

− ⟨ϵ(y)⟩ (273)

from where it is clear that energy is also transported to/from the wall due to the possible local imbalance between the
production and the dissipative term on the RHS of (273). The main source of difficulties is in the coupling among the mean
profile and turbulent stress, ⟨uv⟩ dU

dy , which is amulti-scale source of energy, dependent on the distance from thewall. On top
of this spatial transfer,wemust consider the transfer among scales,which couplesmeanprofiles to smaller and smaller scales
at any given height. As a result, one speaks about a scale-by-scale energy budget [586,587] which is now position dependent,
making the global phenomenology much more complicated than for the homogeneous cases. Following [586,588] one can
derive the generalization of the von Kármán–Howarth–Monin relation (24) to this non-homogeneous and anisotropic case.
The resulting scale-by-scale balance between the transfer, production and dissipative terms has been extensively studied
as a function of the distance from the wall y using DNS in the recent years (see [587] and references therein). Two different
kinds of scale energy fluxes have been identified: that connected to the transport of energy in physical space, and that related
to the transfer across the spectrum of turbulent scales. The former is the scale-by-scale extension of the classical turbulent
transport across the channel. The latter describes different forms of energy transfer which occur in awall-bounded turbulent
flow, thus generalizing the concept of the energy cascade in HIT. A certain scale at a given distance from the wall receives
energy by three mechanisms: (i) from the spatial flux (ii) from the inter-scale non-linear transfer and (iii) by the interaction
with themean flow or by possible external stirringmechanisms. In steady conditions, the above dynamics must be balanced
by the local energy dissipation. Furthermore, each kind of scale-energy flux is influenced by two different contributions:
inertial and diffusive which have different relative importance in the viscous layer, buffer region, log-layer or bulk region. In
particular, the buffer layer is the region where energy is produced and transferred to adjacent zones (towards and outwards
the wall). In the log-layer, production and dissipation are in scale-balance, in the sense that at each given scale, there is no
important exchange of energy in the wall-normal direction. On the other hand, the spatial flux is key for turbulence in the
bulk region. In fact, the excess production in the buffer layer crosses the log-layer to reach the bulk of the flow. The latter can
be seen as a sort of inverse energy cascade, from small eddies in the buffer layer to large eddies in the bulk. In the space of
scales, the production range is always followed by a nearly classical Kolmogorov transfer range, ended by dissipation at the
local dissipative scales. The presence of the energy transfer to/from the wall and across different scales is at the basis of the
celebrated Townsend attached eddy hypothesis [589], where the simultaneous energy andmomentum transfer across space
and scale is phenomenologically described in terms of a superposition of a forest of eddies of size comparable to their distance
from the wall. The attached eddies would then be responsible for the inverse energy cascade from small eddies (the ones
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close to the wall) to larger ones, with the double effect of moving energy to larger scales and away from the wall. This model
has been revisited theoretically and studied both numerically and experimentally in a series of recent works [590–593]
where clear evidences concerning the existence of log-laws also for high-order moments in the turbulent boundary layer
have been presented, including the possibility to extend the scaling beyond the log-layer, i.e. in bulk and buffer regions,
using Extended Self Similarity [594].

A channel flow is only one of the many instances where turbulence is fed by multi-scale injections, other paradig-
matic examples are given by natural convection [303], turbulence with power-law [595,596] or fractal forcing [597] and
atmospheric flowswith simultaneous energy injections due to three dimensional small-scale or two-dimensional large-scale
instabilities [174,319,598,599].

Convection. Natural convection is a paradigmatic case where the buoyancy term injects kinetic energy at all scales. For
standard convective set-ups, driven by a hot boundary on the bottom and a cold one on the top, the energy budget is similar
to that described for bounded flows, with an additional term due to the coupling with temperature fluctuations. The small-
scale phenomenology is dependent on the dimension of the embedding space. In 2D, energy dissipation is vanishingly small
for large Reynolds numbers, and the energy flux is balanced by the buoyancy term, leading to a Bolgiano scaling (171) as
discussed in the section devoted to unstably stratified flows [128,303]. In 3D, the forward energy cascade is dominant in the
bulk, leading to a classical local Kolmogorov −5/3 spectrum (170). Close to the walls, the Bolgiano length becomes of the
order of the distance from the wall and the horizontal velocity and temperature fluctuations go back to a Bolgiano 2D-like
regime [324]. Kolmogorov forward cascade (in 3D) or Bolgiano (in 2D) scaling are measured also for purely homogeneous
convection, in the absence of boundaries and with an imposed mean temperature profile in the whole cell or for the similar
non-stationary set-up of Rayleigh–Taylor turbulence [328,600–602].

Power-law stirring. Randomly stirred fluids with a power law energy injection rate have been mainly studied for theoretical
reasons. Renormalization Group techniques are based on perturbative expansions around a solution where forcing is
dominating at all scales [603–605]. Depending on the scale-by-scale energy injection intensity, the non-linear 3D cascade
can be leading or sub-leading. In the latter case, scaling exponents change and the turbulent spectrum follows the scaling
imposed by the forcing power law correlation [595,606]. If the non-linear K41-like transfer is leading, spurious sub-
leading effects induced by the multi-scale forcing might nevertheless lead to complex Reynolds number dependent scaling
properties [596,607,608].

Atmospheric flows are another paradigmatic case where energy can (is) injected at multiple scales by different mecha-
nisms. Some of them, connected to stratification have already been discussed at length in this review. In 3D layers, as for the
atmosphere, 3D and 2D phenomenologies are both relevant. Aircraft measurements [77] reveal that energy spectra in the
troposphere develop two power laws, −5/3 at mesoscale wave numbers and −3 at larger –synoptic – scales, even though
both regimes should already be quasi-2D. In a pure 2D framework, the presence of a −3 spectrum at large scales, followed
by a −5/3 at small scales, can be interpreted as the superposition of two fluxes due to two injection mechanisms [174]: one
at small scales producing the inverse 2D energy cascade and one at large scales producing a direct enstrophy cascade. The
final combination results on the existence of an intermediate range of scales where the two opposite fluxes coexist.

5.5. Guided tour across different turbulent systems

In this section we give a short ‘‘guided tour’’ of different systems that display a turbulent cascade that go beyond
turbulence described by the Navier–Stokes equations. The aim of this section is only to point to different relevant research
directions and give some key references without attempting in any way to present a complete review of these fields.

5.5.1. Gravito-Capillary surface waves
Gravito-capillary waves are observed at the surface of any fluid due to the combined effect of gravity and surface tension

and represent another system where wave turbulence theory can be applied. The wave dispersion relation is:

ω2
k = gk + γ k3/ρ

where g is the gravity ρ is the density of the fluid and γ is the surface tension. In principle gravity waves and capillary waves
can be treated separately if different scales are considered (k ≪

√
gρ/γ and

√
gρ/γ ≪ k) so that either gravity or surface

tension is dominant. Indeed different energy spectra have been derived for gravity-wave [460,609,610] and for capillary
turbulence [611,612]. An important difference between gravity-wave and capillary turbulence is that for the former three
wave interactions are absent and the flow is dominated by four-wave interactions. As a result there is an additional invariant
result related to the wave action that is predicted to cascade inversely [610,613]. In the recent years, gravito-capillary
turbulence has been tested in various limits in carefully designed experiments [614–621]. To isolate gravity from capillary
effects large basins [622–624] or zero gravity environments [625] were used, respectively. These experiments provided
means to compare with the theoretical predictions and against numerical simulations [613,626,627]. Finally, we note that
evidence for a split energy cascade has been observed in gravito-capillary turbulence [96,97] on the surface of liquid Helium.
A recent review of these experimental results can be found in [628].
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5.5.2. Quantum turbulence
Quantum turbulence describes the turbulent motion of quantum systems such as superfluid helium and atomic Bose–

Einstein condensates, which show the presence of quantized vorticity, superfluidity, and two-fluid behaviour for non-zero
temperature. There are threemain characteristics that distinguish quantum from normal fluids: (i) at any finite temperature
the system is composed of a normal and superfluid component, (ii) the superfluid can flow without the effect of viscous
forces, and (iii) the local vorticity is concentrated in thin vortex lines with quantized circulation such that

∮
Cus · dr = h/m

where with us we denoted the quantum component, h is the Planck’s constant,m the mass of the boson and C a closed loop
around the vortex line. There are three main physical set-ups where quantum turbulence is observed: 4He, the B-phase of
3He and ultracold atoms. The physical problem is old, being observed for the first time in 1957 by [629]. The are two main
mechanisms to dissipate energy in quantum flows, either by mutual friction with the normal component, un or by Kelvin
waves along vortex lines which might lead to acoustic emissions at large k. In the weak amplitude limit, Kelvin waves can
be studied by weak wave-turbulence discussed in Section 5.1.

Different equations are used to describe quantum fluids and quantum turbulence depending on the physical set-up. The
Gross–Pitaevskii (GP) model is considered a good description for the zero temperature limit of an interacting Bose–Einstein
condensate, introducing an additional quantum-pressure effect. GP equations have been used to describe atomic conden-
sates [630,631] including the effects of a dual cascade of energy and helicity triggered by Kelvin wave interactions [632,633].
At mesoscale, an approach based on a vortex filament model is also often used [634] where at zero temperature a vortex
line moves due to the self-induced Biot–Savart law plus some algorithmic rule to allow reconnection with close-by vortex
lines [635]. Finally a macroscopic two-fluid approach developed by Hall–Vinen–Bekarevich–Khalatnikov is employed to
describe the large-scale evolution of both normal and superfluid components at any non-zero temperature, coupled by a
mutual friction term [636]. Both viscosities and densities strongly depend on temperature for quantum flows. As a result,
different regimes are possible. For very small temperature, both 4He and 3He are mainly made by a single superfluid
component, energy is dissipated by vortex reconnection [637] which triggers acoustic emissions due to a forward cascade
of Kelvin waves [638–644]. At higher temperature, the normal component of 3He has a relatively high viscosity. As a result,
Kelvin waves can be adsorbed by the mutual friction with the normal fluid and at temperature high enough turbulence
is completely suppressed [645,646]. High temperature 4He is described by two fluids that are both turbulent, energy is
exchanged among the two components in a highly non-trivial way by mutual friction, leading to an enhancement of
intermittency in some temperature ranges [647]. Because of the complicated superposition of different physicalmechanisms,
the spectral properties of quantum turbulent flows are still debated. Inmany experimental and numerical cases, a−5/3 slope
is observed as for the classical turbulence [648–652]. For 3He , the presence of a strongly damped normal component might
induce non-local effects in the energy transfer with a modification of the spectral slope as recently shown by numerical
simulations in [653]. A recent experimental theoretical and numerical review on this relatively young field can be found
in [654].

5.5.3. Elastic wave turbulence
Elastic wave turbulence refers to the evolution of deformations in elastic materials [655] in 2D and 3D systems. Such

materials sustain waves that interact and transfer their energy at different scales much like hydrodynamic turbulence. The
energy is composed of the kinetic and the elastic energy that is not quadratic in the amplitude of the deformation, but
higher-order terms are also present. In recent years a lot of researchhas focused on the evolution of elasticwave turbulence in
elastic plates. The reason for this interest is that recent experimental advancements using profilometry techniques [656,657]
allowed to measure deformations in the entire plate. This technique gives access to full space information contrary to
the previous state-of-the-art restricted to few-point-measurements. Thus experimental data can be Fourier transformed
to obtain spatial energy spectra in exactly the same way as in numerical simulations. Elastic wave turbulence thus provides
a unique opportunity where theoretical work based on weak wave turbulence can be tested [658]. Relations similar to von
Kármán–Howarth–Monin relations have been derived in [659] and comparedwith experimental data in [660–666] andwith
numerical simulations in [658,664,667–671]. This crossing of theory, experiments and numerical simulations has brought
up number of issues such as the effect of finite dissipation coefficients and the role of coherent structures in the formation
of the spectrum that are often neglected in theoretical work.

5.5.4. Compressible and relativistic turbulence
A vast area of research in fluid mechanics is devoted to compressible flows, that we have only partially addressed in this

review concerning the study of passive scalars in Section 4.7.5. The argument is so vast that cannot be usefully summarized
here. We briefly mention the potential applications to fusion [672], supersonic aircraft design [673], reactive flows at
high temperature [674] and in many astrophysical problems, from stars formation to the interstellar medium [675–677].
Moreover, all relativistic fluids are also obviously compressible as those encountered in gamma-rays burst, pulsars and
quark–gluon plasmas [678–680]. The main theoretical issue in compressible turbulence is connected to the existence of
anomalies for viscous dissipation and for entropy production. Recent results have revealed exact relations for compressible
turbulence [681–685] and a flux-loop condensate state (see 15) has been observed in [285]. Furthermore a novel and
comprehensive theoretical analysis of both compressible and relativistic turbulence has been presented in [686,687]. For
compressible turbulence, the analysis is based on a coarse-grained version of the Euler equations as defined in Section 2.5
to show that standard conservation laws are broken by turbulent anomalies and that the kinetic energy is dissipated by a
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cascade of a different mechanism called pressure defect. Anomaly in the entropy conservation is also argued to exist due to
an input of negative entropy by pressure work and a successive cascade to small scales. For relativistic flows, It is possible
to show [686,687] that the Lorentz covariance is broken by the regularization induced by the scale-filtered fields and that
it is restored by sending the size of the filter ℓ → 0 in (31). Also, one can show that the anomalous heat input into the
internal energy for the relativistic equations coincides with the anomalous dissipation in the non relativistic where the
speed of light → ∞. The reader is referred to the two papers [686,687] and references therein for a deeper analysis of
this emerging fields. For a series of recent simulations and analysis on the multiscaling properties of compressible flows
see [135,481,482,688–691]. Finally we mention the recent results on general relativity [692] where wave turbulence has
been applied to gravitational waves and an alternative mechanism to inflation has been proposed.

5.5.5. Active matter
The study of motile (self-propelled) living micro-organisms or artificial colloids has many important connections with

fluid dynamics since the pioneering works of [693]. In many biological and engineering applications, the motion develops
at very small Reynolds numbers and the active agents are diluted. Nevertheless, many important issues are considered
open, in particular connected to the influence of the flow on the behaviour of the micro-organisms both at level of single
swimmers or for an entire population, e.g. concerning the combined effects of flowand gradient-sensing for chemotaxis or for
the optimization of colloids motion in micro-suspensions of active particles [694]. In dense active suspensions, non-linear
feedback on the flow can be triggered and controlled by the activity of the swimmers, leading to the so-called bacterial-
turbulence regime, resulting in complex rheological properties depending on the propulsion mechanism. It is important to
stress that the word turbulence it is sometimes abused, being – in most cases – the complexity the result of the active
swimmers action more than the outcomes of a genuine non-linear flow transfer. Pusher, like bacteria, tend to decrease the
fluid viscositywhile pullers, like bi-flagellate algae, enhance it [695].When the concentration of swimmingmicro-organisms
becomes sufficiently large, the individual motion self-organize in macroscopic patterns typical of fluid dynamics, including
vortices and turbulent motion [696,697] with typical velocities larger than the swimming speed of the single swimmer. The
study of these regimes is at its infancy and we do not have quantitative validated models able to describe on the continuum
the evolution of the complex flows. Evidence of inverse energy transferwith helical properties have been reported both using
experiments and numerical approaches [698]. Recently a continuum model has been proposed for bacterial turbulence at
high concentration [699] and derived from themicroscopic dynamics [700], which qualitatively reproduces several features
observed in the experiments, while models for semi-dilute suspensions are still not fully developed. Recent reviews for this
rapidly evolving field can be found in [701,702]

6. Conclusions and open problems

In this review we have classified many different turbulent systems in terms of their common and distinguished cascade
properties, making clear what the shared phenomena behind the presence of direct/inverse cascades, split and multiple
cascades, bi-directional transfer, flux-loop, condensates and quasi-equilibria states are. This grouping has been made
possible thanks to the precise set of definitions and classifications given in Sections 3.6 and 3.7 that we hope will provide a
common glossary for the different communities working in each particular application. Using this unified approach we have
reviewed recent numerical, experimental and theoretical results in seven different key turbulent configurations, listed in
Section 4, and in Section 5 we have also briefly mentioned applications to other emerging fields where non-linear cascades
develop . To conclude our work, we list a series of open problems that have risen based on the new knowledge that we have
reviewed in this work.

• Critical transitions. For most of the applications discussed in Section 4 that displayed a change in the cascade
direction, the transition was shown to occur at a critical point, either as a 1st order, e.g. in Section 4.1.3, or in a
continuous way as for the cases discussed in Sections 4.2, 4.3, 4.4, 4.6.4. We note however that this conclusion
is only based on very few numerical evidences. Convergence to a critical transition has been demonstrated only
in [21,33,68,69] where the existence of a critical point was supported by the comparison of larger and larger box-
sizes and in the limit of larger and larger Re, Rα . Even in those cases, the values of the Reynolds number examined
were rather moderate due to computational limitations in 3D simulations or they were restricted to examine
2D-configurations to be able to reach larger scale separation. It would then be very desirable to have a more firm
demonstration of criticality from numerical simulations and/or experiments for all cases discussed in Section 4.

Most importantly, there is a lack of theories that support the existence of criticality, explain quantitatively how
these out-of-equilibrium (phase) transitions take place andpredict their exponents and their universality class (if any).
In all the examined cases that displayed critical behaviour there was a competition between different channels, some
that transfer energy to large scales and some to small scales. One paradigmatic example being rotating turbulence
where the competing different channels are the 2D slow and 3D fast manifolds and the homo and heterochiral triads
as discussed in Sections 4.3, 4.3.4 and 4.1. Furthermore, as was suggested in Section 4.2.3 by analysing a model
system, the dominance of a forward or backward transfer is restricted to some special regions in configuration space
and the interactions between these competing transfer processes display predator–prey dynamics, as has recently
been claimed for the transition to turbulence in Couette and Poiseuille flow [703–706], and thus some of these cases
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could fall in the universality class of directed percolation [707] as suggested by [708] for sub-critical instabilities in
turbulence. Nonetheless all these possibilities remain at a speculative level and they need to be further explored.

Finally, although the two different limiting behaviours (forward and inverse cascading) have been confirmed
experimentally for some important systems, including thick layers and rotating turbulence [34,76,81,276] we still
lack a systematic study of the energy flux behaviour close to the critical point. An experimental realization of such a
study for amodel systemwould provide invaluable help for confirming the existence and the understanding of critical
phenomena in out-of-equilibrium turbulent flows.

• Phase space diagram of rotating and stratified turbulence. Rotating and stratified turbulence is perhaps the most
important applied turbulent system that calls for a deeper understanding. The reason being that most stellar and
planetary (including our earth’s atmosphere and ocean) flows have a non-negligible rotation and stratification. To this
day, we have a partial control of some limiting situations only, like the zero rotation or zero stratification limit, and for
some other intermediate (relatively isolated) cases. Nonetheless, the phase-space is very large with Ro, Fr,H/ℓin, Re
being only a few of the parameters involved. A systematic coverage of this large parameter space would be invaluable
for any large-scale atmospheric and oceanic modelling.

• Anisotropic cascades. An issue that has come up often in this review is concernedwith the difficulty to have a precise
description of a cascade in the presence of anisotropy both for quantifying the energy spectra and the flux in different
directions. As of now, this has been attained only for limiting caseswhere the cascade is constrained tomainly develop
either on k∥ or k⊥ as in weak turbulence, in MHD (see Section 4.6.3) and rotating turbulence (Section 4.3.2). The
general anisotropic case remains ambiguous. Attempts to describe anisotropic cascades bymeans of a critical balance
fall short in many respects in giving precise predictions. It is fair to say that in most anisotropic cases as discussed
in Sections 4.2–4.6 we do not have complete quantitative predictions of the 2D spectra E(k⊥, k∥) or of the fluxes in
the perpendicular and parallel directions except, perhaps, for some asymptotic limits when k⊥, k∥ → ∞, which are
difficult to realize in realistic empirical set-ups.

• Non-quadratic invariants.Most of our discussions in this reviewhas been focused onquadratic invariants like energy,
enstrophy, helicity etc. Nonetheless in many cases non-quadratic invariants also exist like all the high moments of
vorticity in 2D turbulence (Section 3.2) and the second and higher moments of potential vorticity in stratified flows
(Sections 4.4, 4.5). Furthermore for non-Boussinesq or compressible flows even the energy ceases to be a quadratic
invariant as it depends on the product of the density and the square of the velocity. For cubic or quartic invariants a
Fourier description of the cascade is not adequate, as the invariant is not any more diagonal in Fourier space and it is
expressed in terms of products of modes at different wavenumbers. Most descriptions of such cases are thus limited
to configuration space [39,682,686,687]. How these higher-order invariants influence the transfer processes is still at
large unknown and extensive research in this direction is required.

• Condensates and thermal equilibrium states. In many of the examined flow configurations we came across systems
that are close to an equilibrium state, often including the formation of condensates (see Section 3.2). To what extent
these systems can be described by equilibrium statistical physics such as a Gibbs ensemble is still only conjectural.
Furthermore, many of the systems developing a condensate saturate to a flux-loop mechanism (see Sections 4.2.4,
4.3.5). These cases, although they have almost zero flux, they are far from an equilibrium state. Further research in
these directions would certainly be beneficial for our understanding of such configurations that arise in many flows
in Nature.

• Quasi-2D Flows Flows close to be exactly 2D are met in thin layers (see Section 4.2), rotating turbulence (Section 4.3)
or in the presence of strongmagnetic fields (Section 4.6). In these cases, on can prove analytically that below a critical
Rec the flows will be exactly 2D with all 3D perturbations decaying exponentially. In the presence of rotation, strong
magnetic fields, or simply for very thin layers this critical Rec however can be very large so that the 2D field has fully
developed turbulence. For Re close to Rec the 3D field exhibits a strong spatio-temporal intermittent behaviour such
that 3D turbulent puffs appear locally in space and time. The 3D energy E3D in this case scales like a high power-law
exponentβwith the deviation from the onset E3D ∝ (Re−Rec)β . This exponentβ still lacks any quantitative theoretical
explanation.

• Intermittency. We could not close this section without mentioning intermittency whose origin still remains poorly
understood. In this review we have mainly focused our attention to low-order moments, such as the spectra and the
fluxes, because these are believed to be enough to control the basic properties of the flow behaviour. Still, one cannot
exclude that close to a critical point rare but intense intermittent fluctuations might influence the way the transition
happens. The latter is a fully open problem that would need to be studied in highly simplified models first. We only
briefly discussed in Section 5.2 the problem of controlling the statistical properties of high-order moments, a fact
that is also important concerning the quantification of the out-of-equilibrium contents of intense rare fluctuations.
Although many of the turbulent intermittent properties can be described by the multi-fractal phenomenology, a
derivation from first principles of the origins and properties of anomalous scaling and intermittency is far from being
achieved. Moreover, very few numerical and experimental studies exist, which quantify intermittency in anisotropic
flow configurations, as the ones discussed in the application section of this review 4 and in the methodology section
concerning anisotropic scaling properties in 5.2.2.
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We hope this review will trigger new studies in this fascinating world at the border between non-linear fluid mechanics
and out-of-equilibrium statistical mechanics, where turbulent flow configurations key for geophysical, astrophysical and
engineering applications display properties common to many other systems in Nature, coexisting in different statistical
or dynamical phases and developing critical transitions among different asymptotic behaviour at changing the control
parameters. Understanding such a criticality is the first step toward controlling and optimizing.
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