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We study the linear stage of the dynamo instability of a turbulent two dimensional flow
with three components (u(x, y, t), v(x, y, t), w(x, y, t)) that sometimes is referred to as
a 2.5 dimensional (2.5D) flow. The flow evolves based on the two dimensional Navier
Stokes equations in the presence of a large scale drag force that leads to the steady
state of a turbulent inverse cascade. These flows provide an approximation to very fast
rotating flows often observed in nature. The low dimensionality of the system permits
the realization of a large number of numerical simulations and thus the investigation of a
wide range of fluid Reynolds numbers Re, magnetic Reynolds numbers Rm and forcing
length scales. This allows the examination of the dynamo properties at different limits
that can not be achieved with three dimensional simulations. We examine dynamos for
both large and small magnetic Prandtl number Pm = Rm/Re turbulent flows, close and
away from the dynamo onset, as well as dynamos in the presence of scale separation.
In particular we determine the properties of the dynamo onset as a function of Re and
and the asymptotic behavior in the large Rm limit. We are thus able to give a rather
complete description of the dynamo properties of these turbulent 2.5D flows.
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1. Introduction

The dynamo instability caused by the motion of conducting fluids is the main source
of magnetic field generation in astrophysical objects like planets, stars, the interstellar
medium and galaxies. In many cases these objects are rotating, rendering the flow
strongly anisotropic (Pedlosky 1987; Izakov 2013). The Coriolis force introduced by
rotation suppresses the variations along the axis of rotation leading the flows to become to
some extent two-dimensionalized depending only on two spacial coordinates while retain-
ing in some cases all three velocity components depending on the boundary conditions.
This result was first shown in Hough (1897) for linear perturbations and proven in more
detail in Taylor (1917) and Proudman (1916). The tendency for two-dimensionalization of
rotating flows and its implications has been further examined in theoretical investigations
(Waleffe 1993; Hopfinger & van Heijst 1993; Scott 2014), numerical simulations (Hossain
1994; Yeung & Zhou 1998; Smith & Waleffe 1999; Chen et al. 2005; Thiele & Müller 2009;
Mininni & Pouquet 2010; Yoshimatsu et al. 2011; Sen et al. 2012; Deusebio et al. 2014;
Alexakis 2015) and laboratory experiments (Sugihara et al. 2005; Staplehurst et al. 2008;
van Bokhoven et al. 2009; Yarom et al. 2013; Campagne et al. 2014; Gallet et al. 2014).
The extend of this two-dimensionalization, depends on the rotation rate and is subject
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to current investigation (Nazarenko & Schekochihin 2011; Baqui & Davidson 2015).
Recently, theoretical work has shown that the flow becomes exactly two-dimensional for
free-slip or periodic boundary conditions provided that the rotation is above a critical
value (Gallet 2015). This allows one to consider the large rotation limit which leads to a
flow (u(x, y, t), v(x, y, t), w(x, y, t)) that is independent of the coordinate along the axis
of rotation (from here on taken as the z-direction). These flows are referred in literature
as “two and a half” dimensional (2.5D) flows or 2 + ε model.

Two-dimensionalization of the flow drastically alters its statistical properties. Perhaps
the most important consequence is the change in the direction of the energy cascade:
while three dimensional (3D) flows cascade energy to small scales two dimensional
(2D) flows cascade energy to the large scales. The small scales in 2D turbulence are
controlled by the forward cascade of the enstrophy (the second invariant of the 2D-
Navier-Stokes equations). The fate of the energy that cascades to the large scales
depends on the presence or absence of a dissipation mechanism in the large scales. In
the presence of such dissipation, (as for example Ekman friction (Pedlosky 1987)) the
injected energy that cascades to the large scales is balanced and Kolmogorov power-law
energy spectrum E(k) ∝ k−5/3 is formed (Boffetta & Ecke 2012). In its absence however,
energy accumulates to the large scales leading to condensates that take the form of vortex-
dipoles (Kraichnan 1967; Chertkov et al. 2007; Laurie et al. 2014). This process saturates
when the dipole amplitude is so large that viscous dissipation at the large scales balances
the inversely cascading energy, leading to amplitude inversely proportional to viscosity.
In fact it can be shown that for single mode forcing and in the absence of any large
scale dissipation both energy and enstrophy are dissipated by viscosity at large scales
(Constantin et al. 1994; Eyink 1996; Alexakis & Doering 2006). The energy spectra in
this case are not power-laws but are rather peaked at the smallest wave-numbers. Thus
in many respects these flow have a more laminar than turbulent behaviour irrespective
of the value of the Reynolds number that can be very large. It is not surprising then,
that these two different situations (with or without large scale dissipation) have different
dynamo properties and require separate treatment.

The importance of rotation on the dynamo properties of stellar and planetary flows
has been known for some time (Proctor & Gilbert 1995; Davidson 2014). Clearly,
when rotation is strong enough so that the flow is two-dimensionalized the dynamo
properties differ from three dimensional isotropic flows. A strict two dimensional flow
(two-dimensions, two-components) does not give rise to dynamo instability (Zel’dovich
1958). A 2.5D flow however can result to dynamo instability and thus it is perhaps the
simplest dynamo flow to be examined that can merit analytical and low-cost numerical
treatment. One of the first studies of dynamo of 2.5D flows was done by Roberts (1972)
that examined four different laminar 2.5D flows. The flows were stationary which in two
dimensions prevents Lagrangian trajectories from being chaotic. Since chaotic Lagrangian
trajectories are required for fast dynamos (dynamos whose growth rate remains finite in
the high conductivity limit) (Vishik 1989), the resulting dynamos were slow (dynamos
whose growth rate decays to zero in the high conductivity limit). Time dependent 2.5D
flows however, allow for the presence of chaos and thus pose a computationally tractable
system to investigate the existence of the fast dynamos. 2.5D flows were in fact the first
smooth flows to demonstrate fast dynamo action (Galloway & Proctor 1992; Otani 1993).
The low computational cost also allows to examine flows with scale separation between
the velocity length scale and the domain size. This permits to test mean field theories
that predict large scale dynamo action (alpha dynamos) in the large magnetic Reynolds
number limit (see Rädler & Brandenburg (2009); Courvoisier et al. (2006)). Finally 2.5D
flows were also the first to demonstrate recently the propagation of large dynamo-waves
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(Tobias & Cattaneo 2013; Cattaneo & Tobias 2014), whose existence was postulated
more than 60 years ago (Parker 1955).

Dynamo studies of turbulent 2.5D flows that evolved based on the Navier-Stokes
equations were first performed by Smith & Tobias (2004). They considered flows in
the absence of large scale dissipation. Despite the large Reynolds numbers used the
inverse cascade of energy led to a large scale condensate that took the form of a vortex
dipole which drove the dynamo instability. The flow despite its almost laminar structure
resulted in fast dynamo action. The behaviour of the growth rate for a wide range of
Reynolds numbers (both kinetic and magnetic) were examined. In particular this flow
was the first to demonstrate the persistence of dynamo action in the small magnetic
Prandtl number limit (the ratio of viscosity to magnetic diffusivity). The role of these
large scale coherent structures in dynamo were further studied in (Tobias & Cattaneo
2008a,b) where a modified version of the 2D Navier-Stokes (Pierrehumbert et al. 1994)
was used that allowed to vary the energy spectrum of the flow. A differentiation between
the scales ` responsible for the dynamo was made by using spectral filters. They argued
that the scales responsible for dynamo action are those which have short times scales
(ie large shear S` ∝ u`/` ) provided that the local Reynolds number (ie the Reynolds
number based on that scale Re` = u``/ν) is sufficiently large.

The present work considers turbulent 2.5D dynamos in the absence of large scales
condensates. This is achieved by considering the presence of a linear drag force that
dissipates large scale energy. In geophysics the linear drag force, referred to as Ekman
friction, models the boundary layer drag force on the large scale flow dynamics. The
amplitude of the drag force is tuned so that the inverse cascade is damped before
the largest scales of the system are excited. Thus no condensates are formed and
a continuous turbulent spectrum of excited scales is present. The study is based on
numerical simulations of forced 2.5D turbulence in a two dimensional periodic box. Both
helical and non-helical flows are considered. The aim of this study is to cover a wide
range of parameter space for both types of forcing, so that a rather complete description
of the dynamo properties of this system is given.

The remaining of the paper is structured as follows. We describe the system in detail
in Section 2 and discuss the hydrodynamic cascades that happen in this set-up in Section
3. The results for the helical forcing are presented in Section 4 and for the non-helical
forcing in Section 5. The critical magnetic Reynolds number is discussed in section 6. The
dependence of the dynamo instability with respect to the forcing length-scale is discussed
in Section 7. We present our conclusions in Section 8.

2. Governing equation

We consider a 2.5D flow in a periodic box of size [2πL, 2πL,H] where the height
H is along the invariant direction z. The equations governing the velocity field u =
u

2D
+ uzêz = ∇× (ψêz) + uzêz are

∂t∆ψ + (∇× ψêz) · ∇∆ψ = ν ∆2ψ − ν
h
∆ψ +∆fψ

∂tuz + (∇× ψêz) · ∇uz = ν ∆uz + fz. (2.1)

The first equation corresponds to the vorticity equation of the 2D components of the flow
while the second equation is an advection equation for the vertical velocity component
uz. ∆ stands for the two dimensional Laplacian, ∇× stands for the curl operator. fψ, fz
denote the forcing functions that inject energy to the system. Two forcing functions are
used, one with mean helicity and the other without any mean helicity. More precisely
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Table 1. Range of values of each parameter explored in the DNS separated in three cases based
on the forcing wave number kfL. N is the numerical resolution in each direction and T is the
typical eddy turn over time over which the growth rate is calculated.

Case A1 A2 A3

kfL 4 8 16
N [256, 2048] [512, 2048] [512, 2048]
Re [0.5, 1200] 81, 92 91, 97
Rm [0.1, 2000] [0.5, 1000] [0.5, 1000]
Rh [35, 53] [163, 184] [364, 389]
kzL [0, 21] [0, 31] [0, 45]
T [300, 2000] [300, 600] [300, 600]

we chose fψ = fz = cos (kfx) + sin (kfy) for the helical case and fψ = cos (kfx) +
sin (kfy) , fz = sin (kfx) + cos (kfy) for the nonhelical case. It is easy to note that for
the helical case the helicity of the forcing given by −〈fz∆fψ〉 > 0 whereas for the
nonhelical case −〈fz∆fψ〉 = 0. ν is the viscosity and ν

h
is the large scale dissipation

coefficient (Ekman friction). The term proportional to ν
h

models the effect of the drag
force experienced by flow due to boundary layer effects (Ekman 1905; Pedlosky 1987; Sous
et al. 2013). We only consider a large scale dissipation for the evolution of u

2D
because the

energy of the uz component of the flow does not cascade to the large scales. In addition
the absence of a large scale dissipation in the uz equation allows for a decorrelation of
uz from the vorticity ωz = −∆ψ that would otherwise follow the same equation (with
the same forcing for the helical case).

The evolution of the magnetic field is governed by the induction equation. Due to
the invariance of the flow in the z direction, the magnetic field can be decomposed into
Fourier modes in z, B = b(x, y, t) exp(ikzz), where b is a three-component complex
vector field. Each kz-mode evolves independently and the induction equation reads

∂tb + (∇× ψêz) · ∇b + uzikzb = b · ∇ (∇× ψêz) + η
(
∆− k2z

)
b (2.2)

where η is the magnetic diffusion. The divergence free condition ∇ · B = 0 for each
magnetic mode gives,

∂xbx(x, y, t) + ∂yby(x, y, t) = −ikzbz(x, y, t). (2.3)

There are different ways to non-dimensionalize the system. Here we are going to use
the forcing lengthscale k−1f and the root-mean-square value of the total velocity U =〈
|u

2D
|2 + u2z

〉1/2
where the angular brackets 〈·〉 denote spatial and time average. We

note however that U is not controlled in the simulations but is measured a posteriori.
Alternatively, we can use the forcing amplitude that is controlled in the simulations.
However, since the forcing amplitude does not appear in the induction equation where
most of the focus of our work lies we have chosen U . The non-dimensional control
parameters of this system are the Re = U/νkf the fluid Reynolds number, Rm = U/ηkf
the magnetic Reynolds number, kfL the forcing wavenumber, and a Reynolds number
based on the large scale friction Rh = Ukf/νh . A fifth non dimensional number is given
by the aspect ratio L/H, however since each kz mode evolves independently we can
equivalently consider kzL as the fifth control parameter.

The equations are solved numerically on a double periodic domain of size [2πL, 2πL]
using a standard pseudo-spectral scheme and a Runge-Kutta fourth order scheme for time
integration (see Gomez et al. (2005)). The initial condition for both the magnetic and
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Figure 1. Plots of the 2D kinetic energy density (∂xψ)2 + (∂yψ)2 (left panel), the vertical
velocity uz (center panel), the vorticity ∆ψ (right panel) for a non-helical flow with kf = 16.

the kinetic field is given by a sum of a few Fourier modes with random phases. Initially
a hydrodynamic steady state is obtained by solving only the hydrodynamic equations at
a particular Re, kfL. With this steady state the dynamo simulation is begun with a seed
magnetic field and evolving both the velocity and the magnetic field. The magnetic field
starts to grow or decay depending on the control parameters in the system. We define
the growth rate of the magnetic field as,

γ = lim
t→∞

1

2t
log

〈
|b|2(t)

〉
〈|b|2(0)〉 . (2.4)

γ then depends on all the non-dimensional parameters Re,Rm, kzL, kfL. A table of runs
is shown in table 1 indicating the range of values of the parameters examined.

3. Hydrodynamic flow and cascades

We first describe the hydrodynamic structure of the flow. A visualization of the 2D
kinetic energy density (∂xψ)2+(∂yψ)2, the uz component of the flow and the vorticity ωz
is shown in figure 1. While the 2D energy is concentrated in the large scales forming large
vortices, the vorticity and the vertical velocity are concentrated at small scales showing
both vortex and filamentary structures.

The quantities conserved by the nonlinearities in the hydrodynamic equations are, the
enstrophy in x − y plane Ω =

〈
ω2
z

〉
with ωz = −∆ψ where the angular brackets 〈·〉

denote spatial average, the energy in x− y plane E
2D

= 〈u
2D
· u

2D
〉 /2, the energy of the

z component of velocity Ez =
〈
u2z
〉
/2 and the helicity H = 〈uz ωz〉. For a more detailed

discussion on the invariants see Smith & Tobias (2004). For sufficiently small viscosity ν
and damping νh the conserved quantities cascade either to the small or the large scales.
For a turbulent 2D flow there is a forward cascade of enstrophy Ω and an inverse cascade
of energy E

2D
. The Ez has a forward cascade since uz is passively advected and thus

has the same phenomenology as passive scalars (Batchelor 1959). Helicity cascades to
small scales since both Ez, Ω cascade to small scales. Between the forcing scale and
the dissipation scale there exists a range of scales (the inertial range) where the energy
spectra have a power law behaviour E(k) ∝ ka for some exponent a. The exponent a of
these power laws is determined by the cascading quantities in the classical Kolmogorov
phenomenology. For 2.5D flows the exponent of the E

2D
spectrum is −3 in scales smaller

than the forcing scale due to the enstrophy cascade and −5/3 in the scales larger than the
forcing scale due to the inverse energy cascade. Similarly for the spectra of Ez we have
−1 in the scales smaller than the forcing scale due to the forward cascade Ez similar to
the variance of a passive scalar (Batchelor 1959). Since there is no inverse cascade for Ez
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we expect equipartition among modes at scales larger than the forcing scale that leads
to the exponent +1.

Figure 2 shows the spectra E
2D

and Ez for different values of Re for nonhelical forcing.
The spectra of the helical forcing case are very similar to the spectra of the flows with
nonhelical forcing so they are not shown here. The figure shows that the exponents of
E

2D
and Ez in the forward cascade change as we increase the Re. As shown in Boffetta

(2007) the exponent for the energy spectra in the small scales tend to the expected value
of −3 as the Re becomes large. In their study they used numerical grids of up to 327682

points to get the expected k−3 spectrum. In this work since the focus is on the dynamo
effect the simulations are done using resolutions only up to 20482 grid points, thus the
exponent in the spectra is less than −3. Figure 3 shows the spectra E

2D
and Ez as kf L

is varied for the nonhelical forcing. Due to the presence of an inverse cascade the energy
spectra form a k−5/3 for scales larger than the forcing scale. While for the vertical velocity
spectra the large scales form an equipartition spectrum of k+1. The inverse cascade of
energy is dissipated by the friction at large scales which inhibits the formation of a large
scale condensate.

The transfer of kinetic energy to the magnetic energy is achieved by the shearing of the
magnetic lines. Thus the amplitude of the shear is a determinant quantity for dynamo
action, that deserves some further discussion. In general besides the shear amplitude
the dynamo growth rate is also a function of the Reynolds number, the coherence and
the complexity of the flow among other quantities (Tobias & Cattaneo 2008a,b; Tobias
& Cattaneo 2015). However, for a sufficiently complex and random flow and if the
magnetic Reynolds number is large enough so the dissipative effects can be ignored from
dimensional arguments alone one expects that that the growth rate will be proportional
to the largest shear of the flow. This is of course a speculation that does not take in
to account some of the particularities of 2.5D flows. Nonetheless, it is worth considering
where the largest shear in the turbulent 2.5D flows lies.

In 2D turbulence, the shear S`
2D

in u
2D

at a scale ` can be estimated by S`
2D
∝ u`

2D
/`

where u`
2D

is the amplitude of the u
2D

at a scale `. We know that for 2D turbulence u`
2D
∼

`, hence S`
2D

is same at all scales between the forcing and the small scale dissipation.
Thus for any `f > ` > `ν we have S`

2D
∼ Sf = uf/`f where the index f indicates the

forcing scale. This is strictly true for k−3 spectra, which is seen at very large Re. Since
most of the study presented here is with an exponent less than −3 in the small scales we
have S`

2D
< Sf . In the large scales u` ∝ `1/3 and thus S` ∝ `−2/3. Thus again for any

` > `f we also have S`
2D

< Sf . Thus the maximum of S`
2D

is found at the forcing scale
`f .

For the vertical velocity field the shear can be estimated by S`z ∝ u`z/`, where u`z is
the magnitude of uz at scale `. At the small scales u`z follows the scaling u`z ∝ `0 in the
small scales and the shear S`z ∝ `−1 increases as ` decreases. Thus it is maximal at the
smallest scales `ν where we obtain S`νz `f/uf ∼ Re1/2. Thus S`

2D
is largest at forcing scale

while for S`z it is largest at the viscous scales. However the dynamo instability requires
the presence of both Sz and S`. Thus we can not a priori determine which scales are
responsible for dynamo action or even if such distinction among scales makes sense.

4. Helical dynamos

4.1. Dependence of γ on kz

We first focus on the helical forcing, the laminar case of which corresponds to the
case studied by Roberts (1972). Figure 4 shows the growth rate γ as a function of kz
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Figure 2. Plots show the spectra of the 2D kinetic energy E2D (k) and the spectra of the vertical
velocity Ez(k) for different values of Re mentioned in the legend. The spectra correspond to
nonhelical forcing case.
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Figure 3. Plots show the spectra of the 2D kinetic energy E2D (k) and the spectra of the vertical
velocity Ez as a function of the rescaled wavenumber k/kf for different values of Re and kf L
mentioned in the legend. The spectra correspond to the nonhelical forcing case.
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Figure 4. Plot shows the growth rate γ as a function of kz for the helical forcing case for
different values of Rm mentioned in the legend for a Re ≈ 46.

for different values of Rm that are mentioned in the legend and for a fixed Re ≈ 46.
The number of unstable kz modes increases as we increase Rm as has been observed in
other laminar and turbulent studies Roberts (1972); Tobias & Cattaneo (2008a); Smith
& Tobias (2004). As we increase Rm the growth rates for kz ∼ O(1) modes saturate.
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Figure 5. The figure on the left shows the growth rate γ as a function of kz in log-log scale.
The corresponding α values are shown by the dotted straight lines at values of Rm mentioned in
the legend. The figure on the right shows α as a function of Rm for two different Re mentioned
in the legend.

There are dynamo unstable modes for all values of Rm, but the range of unstable
modes become smaller as Rm is reduced. This can be attributed to the α-effect which is
a mean field effect that can amplify the magnetic field at arbitrarily large scales. In the
mean field description the large scale magnetic field B obeys the equation

∂tB = ∇× (αB) + η
T
∆B (4.1)

where α is in general a tensor and η
T

is the turbulent diffusivity. For isotropic flows the
diagonal terms in the α tensor are equal and are responsible for the dynamo effect. They
can be calculated numerically by imposing a uniform magnetic field B0 and measuring
the induced field b, (see Courvoisier et al. (2006); Brandenburg et al. (2008)).

α ·B0 = 〈u× b〉 (4.2)

∂tb + u · ∇b = b · ∇u + B0 · ∇u + η∆b (4.3)

In the small Rm limit, η
T

= η and the α coefficient can be calculated analytically
(see Childress (1969); Moffatt (1978); Krause & Raedler (1980); Brandenburg (2009);
Plunian & Rädler (2002); Gilbert (2003)) leading to the scaling α ∼ uRm. In either case
the resulting growth rate for the problem at hand is given by

γ = αkz − ηT k2z . (4.4)

The left panel of figure 5, shows the γ − kz curve in log-log scale with the straight
lines indicating the linear scaling αkz with α calculated from equations 4.2, 4.3. This
demonstrates that the behaviour of γ in the small kz limit is described well by the α-
effect. The right panel of figure 5 shows the dependence of α as a function of Rm for
two different Re. For a turbulent flow and for small Rm the α coefficient scales like
α ∼ uRm, see Gilbert (2003), which is captured well by the numerical data. For large
Rm the α value saturates to a constant of the same order as the velocity field. This is
different from what has been observed in chaotic flows in Courvoisier et al. (2006), where
the α coefficient varies rapidly as one increases Rm.

Figure 6 shows the total magnetic energy spectra E
B

(k) (where k =
√
k2x + k2y) for

different values of Rm and a fixed kz = 0.25 and Re ≈ 530 . When the α effect is more
pronounced, the magnetic spectra is concentrated at large scales. This occurs in the small
Rm limit. For large Rm the magnetic energy spectra becomes more concentrated towards
smaller scales.
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Figure 6. Plot shows the magnetic energy spectra EB (k) as a function of the wavenumber k
for different Rm shown in the legend. These correspond to a Reynolds number Re ≈ 530 and
to the helical forcing case.

10−2 10−1 100 101 102 103 104

Rm

10−4

10−3

10−2

10−1

100

γ
m

a
x

Rm
3 Re=46.26

Re=106.19
Re=241.16
Re=530.33

10−2 10−1 100 101 102 103 104

Rm

10−2

10−1

100

101

k
c z

Rm
1
2

Rm
2

Re=46.26
Re=106.19
Re=241.16
Re=530.33

Figure 7. Figure shows γmax on the left and kcz on the right as a function of Rm for different
values of Re mentioned in the legend for the helical forcing case.

4.2. γmax and kcz

To quantify the behaviour of γ as we change both Re and Rm we consider two
quantities γmax and kcz which characterize the curves shown in figure 4. γmax is the
maximum growth rate for a given Re,Rm whereas kcz is the largest kz that is dynamo
unstable for a given Re,Rm. Figure 7 shows γmax and kcz as functions of Rm for different
values of Re. It can be seen that γmax is independent of Re. In the small Rm limit
the behaviour of γmax is governed by the α-effect, which gives a scaling γmax ∝ Rm3

obtained by finding the maximum of equation 4.1. For large Rm the γmax approaches a
finite asymptote and thus it is a fast dynamo. The most unstable length scale is close to
the forcing scale.

In the plot of kcz in the small Rm limit the behaviour is dominated by the α-effect
leading to kcz ∝ Rm2 obtained from equation 4.1. In this limit kcz does not depend on
Re since kcz = cRm2 with c being independent of Re. For large values of Rm we see the
scaling kcz ∝ Rm1/2 which can be obtained by balancing the ohmic dissipation with the
stretching term. We can also see a clear decrease with the increase of Re which will be
discussed in section 6.1.
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Figure 8. Plot shows the growth rate γ as a function of kz for different values of Rm
mentioned in the legend for a Re ≈ 32. The curves correspond to the nonhelical forcing case.

5. Nonhelical dynamos

5.1. Dependence of γ on kz

The growth rate γ is shown as a function of kz for different values of Rm in figure 8.
Unlike the helical case, there is no dynamo for smallRm due to the absence of a mean-field
α-effect. For sufficiently large Rm dynamo instability occurs with the magnetic spectra
concentrated in the small scales similar to the large Rm case of the helical forcing shown
in figure 6. As Rm is increased the number of unstable modes increases.

5.2. γmax and kcz

Figure 9 shows γmax and kcz as a function of Re,Rm. The dynamo instability starts
at Rm ≈ 10 the critical magnetic Reynolds number for this flow. Unlike the helical case
the maximum growth rate γmax increases slowly with Rm and a clear asymptote has not
yet been reached. Re does not seem to affect the behaviour of the γmax curve indicating
that the most unstable modes are not affected by the smallest viscous scales. The scaling
of kcz ∼ Rm1/2 in the large Rm limit is observed with a prefactor that decreases as Re
is increased similar to the helical case. The magnetic field generated in the small scales
is spatially concentrated in thin filamentary structures. Figure 10 shows the contours
of magnetic energy in the plane - |B

2D
|2 = |bx|2 + |by|2 for increasing values of the

magnetic Reynolds number Rm. These structures become thiner as we increase Rm with
the thickness scaling like Rm−1/2. This gives a physical interpretation for the scaling
kcz ∼ Rm1/2 seen in figures 7, 9 in terms of H: these filaments should be thinner than
the box height H for the dynamo instability to take place.

6. Critical magnetic Reynolds number Rmc

6.1. Layers of finite thickness

In general the onset of the dynamo instability depends on the domain size since it
determines the available magnetic modes. A flow results in dynamo if at least one of
those modes is unstable. For a given height H the allowed wavenumbers satisfy kz >
2π/H ≡ kHz . We thus define a critical magnetic Reynolds number Rmc based on H as
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Figure 9. Figures shows γmax on the left and kcz on the right as a function of Rm for different
values of Re mentioned in the legend. The curves correspond to the nonhelical forcing case.

Figure 10. Contour of the magnetic energy B2D for different values of Rm, from left to right
we have, Rm ≈ 32, Rm ≈ 1030, Rm ≈ 2060 with the Re ≈ 32 for all the three contours. The
figures correspond to the nonhelical forcing case.

the maximum Rm for which all allowed kz modes are decaying

RmH
c

(
Re, kHz

)
= max

{
Rm s.t. γ 6 0 ∀kz > kHz

}
. (6.1)

Thus, for Rm > RmH
c there is at least one kz > kHz that is a dynamo. The value RmH

c

can be calculated from the figures 7,9 imposing that the marginal kz for dynamo equals
the minimum allowed wavenumber kcz(Re,Rm) = kHz . For the helical case in the small
Rm limit we get the relation RmH

c ∝
√
kHz based on the α-effect. Thus for large H a

small Rm is sufficient for dynamo instability RmH
c ∝ (H)−1/2 with the proportionality

coefficient being independent of Re.

The behaviour of RmH
c for thin layers (kHz � kf ) depends on Re for both the forcing

cases considered. In order to measure this dependence on Re, we rescale kcz with Re and
replot it as a function of Rm. Figure 11 shows the rescaled cut-off wavenumber kcz Re

ζ

for the two different types of forcing studied. Here ζ is an exponent used to collapse
the data at large kz. For the helical forcing we find a best fit of ζ = 0.37 · · · ≈ 3/8 and
for the nonhelical forcing we find a best fit of ζ = 0.25 · · · ≈ 1/4. This implies that the
critical magnetic Reynolds number scales like RmH

c ∝ Re2ζ
√
kHz . This is unlike the

three dimensional dynamos (Ponty et al. 2005; Iskakov et al. 2007; Mininni 2007) for
which Rmc is found to reach a constant value in the large Re limit. However, given that
ζ < 1/2, in the limit of large Re, RmH

c � Re thus like three dimensional turbulence,
dynamo can be achieved for any magnetic Prandtl number Pm = Rm/Re provided Rm
is large enough. Whether this behaviour persists for very large Re remains to be seen.
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Figure 11. Figure shows kcz Re
ζ as a function of Rm for different values of Re shown in the

legend, for the helical forcing case shown on left and the nonhelical forcing case shown on the
right.

6.2. Infinite layers

As seen in figure 4, in helical flows due to the α-effect for any Rm there always exists kz
small enough such that the modes are dynamo unstable. Thus for a layer that is infinitely
thick, a helical flow does not have a critical magnetic Reynolds number since unstable
modes exist even for Rm→ 0. For the nonhelical case however there is a critical Rm for
the dynamo instability as can be seen in figures 8, 9. Below this Rmc for any mode kz
there is no dynamo instability. Thus the critical magnetic Reynolds number Rmc in the
infinite domain is defined as,

Rmc (Re) = max
{
Rm s.t. γ 6 0 ∀kz

}
= lim
H→∞

RmH
c . (6.2)

Note that in practice we do not need an infinitely thick layer to capture the onset of the
instability. The height H however needs to be sufficiently large so that it allows the first
unstable mode kz ' 1 (as can be seen in figure 8) to be present. The dependence of Rmc

as a function of Re can be seen in the figure 12. Three different regimes corresponding
to different flow behaviours are identified and are separated by vertical dotted lines in
the figure denoting the critical Reynolds numbers ReT1 , ReT2 . The curve for Re > ReT2

corresponds to the turbulent regime at large Re and the curves in Re < ReT1
, ReT1

<
Re < ReT2

correspond to two different laminar flows. Here ReT2
is the Reynolds number

at which the flow transitions between a turbulent state and a laminar state. While ReT1

is the Reynolds number at which the flow transitions between two different laminar time
independent flows. In the limit of large Re we see that the value of Rmc saturates as is
observed in 3D turbulent flows Ponty et al. (2005); Iskakov et al. (2007); Mininni (2007)
and the condensate case (Smith & Tobias 2004). Across the transition Reynolds numbers
ReT2

and ReT1
, the Rmc curves have discontinuous behaviour because the flow transitions

from one state to the other subcritically. In these laminar states we find that the growth
rate γ scales as k2z for very small kz as shown in figure 13 for a Re = 0.91 < ReT1 in the
laminar regime. This scaling indicates that the dynamo action can be explained by the
β-effect, also known in literature as the negative magnetic diffusivity effect, (see Lanotte
et al. (1999)). The β-effect is a mean-field effect and the magnetic field is amplified also
at the large scales. Figure 14 shows the contour of the |B

2D
|2 = |bx|2 + |by|2 which is the

energy of the magnetic field in the x−y plane. Two different Reynolds number are shown,
on the left ReT1 < Re = 5.4 < ReT2 and on the right Re = 0.53 < ReT1 corresponding
to the two different laminar states. Both the plots show large scale modulations in the
magnetic energy at scales close to the box size.
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Figure 12. Plot shows the critical magnetic Reynolds number Rmc as a function of the fluid
Reynolds number Re. Two vertical dotted lines denote the two transition Reynolds numbers
ReT1 , ReT2 . The curves correspond to the nonhelical forcing case.
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Figure 13. Plot shows the growth rate γ as a function of kz for a Reynolds number
Re = 0.91 < ReT1 is shown along with the dotted line with the scaling k2z . The curve correspond
to the nonhelical forcing case.

Figure 14. Contour of the magnetic energy B2D for the two different laminar flows at two
different Re - Left ReT1 < Re ≈ 5.4 < ReT2 , Right Re ≈ 0.53 < ReT1 . The contours correspond
to the nonhelical forcing case.
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Figure 15. Figure shows γ/(Upkf ) as a function of kz/kf for different values of kf for helical
forcing shown on left and nonhelical forcing shown on the right. The kinetic Reynolds number
and the magnetic Reynolds number are mentioned in the legends.

7. Dependence on kf L

In this section we extend our study to flows with higher values of kf L. The linear
damping coefficient is adjusted for each value of kf L so that maximum inertial range
for the inverse cascade is obtained without forming condensates. As we increase kf L
the inverse cascade becomes more important. Depending on the forcing used and the
scale separation the relative amplitude of u

2D
and uz change as we change kf L. In

order thus to have a fair comparison between the different dynamos we normalize the
growth rates based on the results of the Ponomarenko dynamo (Ponomarenko 1973),
where the growth rate is proportional to the product of the vertical velocity uz and
the planar velocity u

2D
divided by the total rms value. Thus we define a velocity scale,

Up = (
〈
|u

2D
|2
〉1/2 〈

u2z
〉1/2

)/(〈|u
2D
|〉2 + 〈|uz|〉2)1/2 with which we normalize the growth

rate. Figure 15 shows normalized growth rate γ/(Upkf ) as a function of normalized modes
kz/kf for both the helical and nonhelical forcing as we increase kf L for similar values of
Re,Rm. Since kf is increased the growth rate γ and the number of unstable kz modes
increase. The normalized curves seems to follow similar trend for both the forcing cases
considered here. At relative large Rm and as the scale separation is increased the most
unstable wave number appears to be close to the forcing wavenumber kmaxz ≈ 1

3kf in
both helical and nonhelical forcing cases. This implies that the most unstable modes have
similar length scale with forcing and not with the box size.

The normalized maximum growth rate γmax/(Upkf ) and the normalized cut-off
wavenumber kcz/kf for both helical and nonhelical forcing are shown in figure 16. As can
be seen from the figures the normalized quantities follow similar trends to kf L = 4 with
weak (or no) dependence on the box size L. Hence the inverse cascade does not seem
to affect the dynamo instability, and the mechanisms of small scale dynamo effect and
the α-dynamo are mostly governed by the forcing scale where the strongest S2D shear
exists.

8. Conclusions

Our investigation examined the dynamo instability of 2.5D flows for a wide range of
control parameters. This allowed us to test certain limits that are still not attainable
in three dimensional simulations, and to test asymptotic theories and phenomenological
expectations.

For helical flows we were able to test the alpha dynamo predictions for the behaviour
of the large scales (kz � kf ) both for small and large values of Rm,Re. The analytical
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Figure 16. Plots of normalized growth rate - γmax/(Upkf ) on the left and kcz/kf on the right
for 1. Top - helical forcing and 2. Bottom - nonhelical forcing as a function of Rm for different
kf L mentioned in the legends.

predictions of mean field theories for small values of Rm were verified. For large values
of Rm the growth rates were also shown to be in agreement with a turbulent alpha
dynamo (calculated numerically from equations 4.2, 4.3), and the isotropic α was shown
to asymptote to a value independent of Re and Rm. At sufficiently large Rm the fastest
growing mode was always found to have kz close to the forcing wavenumber. Thus in a
three dimensional simulation with random initial conditions for the magnetic field, it is
the scales close to the forcing that would be observed in the linear stage of the dynamo.
This of course does not imply that the large scale instability does not play a role in the
saturated stage of the dynamo and the formation of large scale magnetic fields at high
Rm. To resolve this issue however a nonlinear formalism for the alpha dynamo would be
required.

The non-helical flows were also shown to result in dynamo instability above a value
of the magnetic Reynolds number with similar behaviour in the small scales kz & kf
as the helical dynamo. The critical value of the magnetic Reynolds number for a thin
layer of height H was shown to scale like RmH

c ∝ Re2ζ/
√
H with ζ ' 1/4 for nonhelical

flows and ζ ' 3/8 for helical flows, implying that there is a dependence of RmH
c on

Re even at large values of Re. At infinite layer thickness H the helical flow always
resulted in to dynamo (ie Rmc = 0). On the other hand the non-helical flow Rmc was
reaching asymptotically a finite value in the limit Re→∞. It is worth pointing out that
this asymptotic value Rmc ' 10 is almost an order of magnitude smaller than what is
obtained in three dimensional simulations and thus rotation could play a beneficial role
in liquid metal experiments.

The investigated dynamo flows were motivated by rotating flows that tend to become
two dimensional at sufficiently large rotation rates. As discussed in the introduction this
is justified for layers of finite thickness and for periodic boundary conditions above a
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critical rotation rate that have been considered here. In nature rotating flows are never
fully two-dimensionalized either due to moderate rotation rates or boundary layer effects.

For moderate rotation rates large two-dimensional motions co-exist with three di-
mensional perturbations in the form of travelling inertial waves. The resulting dynamo
then is in general the result of a combination of these effects. However, due to the fast
decorrelation time of inertial waves that has a suppressing effect for dynamo (Herreman &
Lesaffre 2011) we expect that in rotating flows even in the presence of some 3D turbulent
fluctuations the 2.5D part of the flow would play the dominant effect for dynamo.

Boundary layer effects are an other source a flow can deviate from 2D behaviour
in the fast rotating limit. For no-slip boundary conditions the flow is known to vary
rapidly along the rotation direction over a thin layer known as the Ekman layer (Ekman
1905; Pedlosky 1987). This layer is also responsible for Ekman-friction as well as for the
presence of the third component of the velocity along the direction of rotation by Ekman
pumping. In this case the amplitude of the third velocity component of the flow (that
is essential for dynamo action) depends on the rotation rate. An asymptotic study that
investigates these effects for a convection-driven dynamo in the presence of fast rotation
was developed in Calkins et al. (2015a,b).

Further investigations of three dimensional flows in the presence of rotation are required
to address these issues.

The authors would like to thank F. Petrelis, S. Fauve and B. Gallet for their very
useful comments and fruitful discussions. The present work benefited from the computa-
tional support of the HPC resources of GENCI-TGCC-CURIE & GENCI-CINES-JADE
(Project No. x2014056421 & No. x2015056421) and MesoPSL financed by the Region
Ile de France and the project EquipMeso (reference ANR-10-EQPX-29-01) where the
present numerical simulations have been performed.

REFERENCES

Alexakis, A. 2015 Rotating taylor–green flow. J. Fluid Mech. 769, 46–78.

Alexakis, A. & Doering, C. R. 2006 Energy and enstrophy dissipation in steady state 2d
turbulence. Phys. Lett. A 359, 652–657.

Baqui, Y. B. & Davidson, P. A. 2015 A phenomenological theory of rotating turbulence.
Physics of Fluids (1994-present) 27 (2), 025107.

Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in
turbulent fluid part 1. general discussion and the case of small conductivity. J. Fluid
Mech. 5 (01), 113–133.

Boffetta, G. 2007 Energy and enstrophy fluxes in the double cascade of two-dimensional
turbulence. J. Fluid Mech. 589, 253–260.

Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44,
427–451.

Brandenburg, A. 2009 Advances in theory and simulations of large-scale dynamos. Space Sci.
Rev. 144 (1-4), 87–104.
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