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A decomposition of the energy and helicity fluxes is used to analyse turbulent
hydrodynamic flows. The decomposition is based on the projection of the flow to a
helical basis. This allows the roles of interactions among modes of different helicities
to be investigated separately. The proposed formalism is applied to large-scale
numerical simulations of non-helical and helical flows, where the decomposed fluxes
are explicitly calculated. It is shown that the total energy flux can be split into three
fluxes that independently remain constant in the inertial range. One of these fluxes
which corresponds to the interactions of fields with the same helicity is negative,
implying the presence of an inverse cascade that is ‘hidden’ inside the forward
cascade. Similarly to the energy flux, it is also shown that the helicity flux can be
decomposed into two fluxes that remain constant in the inertial range. Implications
of these results as well as possible new directions for investigations are discussed.
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1. Introduction
Hydrodynamic turbulence refers to the state of flow in which eddies self-stretch one

another, generating a continuous spectrum of excited scales (Frisch 1995). At steady
state, the energy supplied by external forces is transferred continuously to the small
scales where it is dissipated by the viscous forces. A similar picture also holds for the
helicity of the flow. Helicity is a topological quantity related to the knottedness of the
vorticity lines (Moffatt 1969) and is a measure of the breaking of parity invariance
(mirror symmetry). Like energy, it is conserved by the nonlinearity of the Navier–
Stokes equations, but, unlike energy, helicity is not a sign-definite quantity. Similarly
to energy, helicity is injected at the forcing scales and cascades by the nonlinearities
to the smaller scales where it is balanced by dissipation.

Helicity and energy cascades are best quantified in Fourier space, where the
amplitude of the wavenumbers k provides a natural notion of ‘scale’ ` = |k|−1. In
Fourier space, the transfer of energy and helicity from large to small scales can be
viewed as the combined result of a large network of triadic interactions of Fourier
modes whose wavevectors k form a triangle. These triadic interactions allow the
exchange of energy and helicity between the three involved modes while conserving
their sum. They thus comprise the building blocks of turbulence since their cumulative
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effect allows the transport of energy and helicity across scales, leading to the turbulent
cascade.

In three dimensions, the three components of the Fourier modes ũk of wavenumber
k satisfy the incompressibility condition ũk · k= 0, leaving two independent complex
amplitudes. Therefore, each Fourier mode can be further decomposed into two
modes. Of all possible bases that a Fourier mode of an incompressible field can
be decomposed into, the most fruitful has been that of the decomposition into two
helical modes (see Craya 1958; Lesieur 1972; Herring 1974):

ũk = ũ+k h+k + ũ−k h−k . (1.1)

The basis vectors h+k , h−k are

hs
k =

ez × k√
2|ez × k| + is

k× (ez × k)√
2|k× (ez × k)| (1.2)

for ez × k 6= 0, while hs
k = (ex + isey)/

√
2 for k parallel to ez. Here, ex, ey and ez are

three orthogonal unit vectors. The sign index s=±1 indicates the sign of the helicity
of hs

k. The base vectors hs
k are unit norm eigenfunctions of the curl operator in Fourier

space such that ik× hs
k = s|k|hs

k and satisfy hs
k · hs

k = 0 and hs
k · h−s

k = 1. They thus
form a complete base for incompressible vector fields. The velocity field ũk for each
Fourier mode k is then determined by the two scalar complex functions ũs

k = ũk · h−s
k ,

as shown in (1.1).
This decomposition has been used in several theoretical and numerical investigations

in turbulence theory. Constantin & Majda (1988) implemented this decomposition to
study organized Beltrami hierarchies in a systematic fashion and Cambon & Jacquin
(1989) to derive an eddy-damped quasi-normal Markovian (EDQNM) model for
rotating turbulence. In a seminal paper, Waleffe (1992) considered triadic interactions
of helical modes. In his work, each triad was studied as an isolated system without
coupling to any other modes. For such isolated interactions, he showed that the
lowest k helical mode is unstable when larger k modes have helicities of opposite
signs, and thus, he argued, it can be interpreted as a mechanism to transfer energy to
smaller scales. In all other cases, the medium wavenumber is unstable and thus there
is transfer to both large and small scales. For the particular case that all three modes
are of the same helicity, most of the transfer of energy is to the smallest wavenumber,
and thus energy is transferred to the large scales. A schematic representation of the
direction of energy transfers obtained in Waleffe (1992) is shown in figure 1, where
the magnitude of the cascade is indicated by the thickness of the arrows. Under the
assumption that the statistical behaviour of the flow is controlled by the stability
characteristics of these isolated triads (referred to as the ‘instability assumption’),
Waleffe (1992) was able to draw conclusions on the direction of the energy cascade
in turbulent flows. Similar conclusions were reached in the recent work of Rathmann
& Ditlevsen (2016a), using nonlinear arguments that were based on additional
conserved quantities of the isolated triadic interactions. Of course, a large network of
triadic interactions as in the Navier–Stokes equation can behave differently from the
collection of isolated triads, as has been noted recently by Moffatt (2014), and care
needs to be taken when interpreting these results.

In order to study the full network of triad interactions and not just isolated triads,
one needs to resort to numerical simulations. It is a difficult task to follow the
dynamics of different helical modes in numerical simulations, not only due to the
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(I) (II) (III) (IV)

FIGURE 1. (Colour online) Transfer of energy in four isolated triadic interactions between
different helical modes based on Waleffe (1992). The remaining four interactions are
obtained by interchanging the ± indices while keeping the same direction of the flux. The
thickness of the arrows indicates the magnitude of the transfer of energy.

computational difficulties involved but also due to the difficulty in interpreting the
results. For this reason, most past investigations of helical-mode interactions have
been limited to simplified shell models (Ditlevsen & Giuliani 2001a,b; Lessinnes
et al. 2011; De Pietro, Biferale & Mailybaev 2015; Stepanov et al. 2015; De Pietro,
Mailybaev & Biferale 2016; Rathmann & Ditlevsen 2016b; Sahoo, De Pietro &
Biferale 2016). The advancement of computational power, however, has allowed
investigation of the effect of different helical-mode couplings in direct numerical
simulations. The first simulations that followed the evolution of the spectral energy
densities E±k of the two fields u±k were performed by Chen, Chen & Eyink (2003).
It was shown in their work that the transfer of energy to small scales produces a
tremendous growth of helicity densities H± separately which tend to cancel each
other and thus restore reflection invariance at small scales.

Biferale, Musacchio & Toschi (2012, 2013) investigated with high-resolution
numerical simulations a modified version of the Navier–Stokes equations keeping
only helicity modes of one sign. In this way, they only kept the triad interactions
of the same sign of helicity, which are the ones that suggest an inverse transfer of
energy to the large scales. Their system conserves both energy and helicity which are
in this case both positive quantities and lead to an inverse cascade of energy and a
forward cascade of helicity. More recently, these investigations of decimated models
of the Navier–Stokes equations were taken further by explicitly eliminating only a
fraction of the ũ−k modes (Sahoo & Biferale 2015; Sahoo, Bonaccorso & Biferale
2015). The inverse cascade observed in Biferale et al. (2012) disappeared in the
presence of even a tiny fraction of modes of the opposite helicity.

An alternative direction was pursued in Kessar et al. (2015), where the effect of
different interactions in the Navier–Stokes equations was investigated by suppressing
the negative helicity modes by a dynamical forcing function. The dynamical forcing
allowed the amount of helicity to be controlled at all scales. These authors showed
that interactions from three positive helical modes transfer energy to the large scales.
However, in the presence of negative helical modes, of even weak amplitude, the
cascade of energy remains forward. Their results were also quantified by calculating
the energy fluxes due to the different interactions among helical modes.

In this work, the Navier–Stokes equations are not modified and all interactions are
kept, but the effect of different possible interactions is followed by monitoring the
decomposed fluxes of both energy and helicity. To this end, large-scale numerical
simulations are performed both in the absence of global helicity and in its presence.
The details of the helical decomposition and the definition of the decomposed fluxes
are given in § 2. Details of the simulations are given in § 3, while the results from
the flux decomposition are given in § 4. Conclusions are drawn in the last section.
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2. Formulation
The present investigation considers the flow in a triple periodic box of size 2πL,

governed by the incompressible Navier–Stokes equation,

∂tu= P [u×w]+ ν∆u+F, (2.1)

where u is the three-dimensional incompressible (∇ ·u= 0) velocity field and w is the
vorticity, w=∇× u; F is the forcing function that acts at some particular length scale
`f ≡ k−1

f . Dissipation occurs due to the viscous forces ν∆u, where ν is the viscosity
coefficient. Here, P is the projection operator to incompressible flows which can be
written as

P[u] ≡−∇×∇×∆−1u= u−∇∆−1(∇ · u)= u−∇P. (2.2)

For a given forcing function F, this system has one non-dimensional control parameter
which is commonly taken to be the Reynolds number Re, defined as Re≡U`f /ν, with
U the velocity root-mean-square value.

The two quantities conserved by the nonlinearities are the energy E≡ (1/2) 〈u · u〉
(where the angular brackets denote space average) and the helicity H ≡ (1/2) 〈u ·w〉.
At steady state, the energy and helicity are injected at the forcing scale `f and cascade
down to the smallest scales where they are dissipated by the viscous forces. The
balance of energy injection to dissipation leads to the relations

〈F · u〉
T
= ν 〈w ·w〉

T
≡ εE and 〈F ·w〉

T
= ν 〈w · ∇×w〉

T
≡ εH , (2.3a,b)

where the angular brackets 〈·〉
T

denote space and time average, and εE and εH denote
the energy and helicity dissipation rates respectively.

The distribution of the two invariants among scales, and their transfer across scales,
is probably best described through the Fourier transform of the fields, defined as

ũk(t)= 1
(2πL)3

∫
e−ikxu dx3, u(t, x)=

∑
k

e+ikxũk, (2.4a,b)

and similarly for the vorticity field w, where w̃k = ik× ũk. The energy and helicity
spectra that quantify the distribution of the two invariants in scale space are defined
as

Ek = L
2

∑
k6|q|<k+1

|ũq|2, Hk = L
2

∑
k6|q|<k+1

ũq · w̃∗q, (2.5a,b)

where k is a positive integer. They express the distribution of the conserved quantities,
E and H, in wavenumber (and thus also scale) space. It should be noted that since
a finite box is considered, Ek and Hk are discrete functions of k. The factor of L
in (2.5) is introduced so that Ek and Hk have units of energy and helicity density
respectively in wavenumber space. In large-Reynolds-number turbulence, both Ek and
Hk are known to show a k−5/3 scaling (Brissaud et al. 1973; Frisch 1995; Borue &
Orszag 1997).

The magnitudes of the two cascades are measured by the energy and helicity fluxes,
which are denoted as ΠE(k) and ΠH (k) respectively. They express the rate at which the
nonlinearities transfer energy and helicity from the set of wavenumbers q that satisfy
|q|6 k to all larger wavenumbers. Their steady-state value is defined as

ΠE(k)≡−
〈
u<k · (u×w)

〉
T
, ΠH (k)≡−

〈
w<

k · (u×w)
〉

T
, (2.6a,b)
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where u<(x) is the velocity field u filtered so that all of the Fourier modes q with
|q|> k are removed (see Frisch 1995),

u<k (x)=
∑
|q|<k

e+iqxũq, w<
k (x)=

∑
|q|<k

e+iqxw̃q. (2.7a,b)

In the limit k→∞, the fields u<(x) take their unfiltered value limk→∞ u<k = u and
the two fluxes become zero, ΠE(∞) = ΠH (∞) = 0, expressing the conservation of
energy and helicity by the nonlinearities. Positive values of ΠE imply that energy
cascades forward to the large wavenumbers, while negative values of ΠE imply that
energy cascades inversely to the small wavenumbers. More care needs to be taken for
the helicity, because it is a non-sign-definite quantity. Positive values of ΠH imply
that the nonlinearities decrease helicity in the large scales and increase helicity in
the small scales. If the helicity is positive at all scales, this can be interpreted as
transfer of helicity from large scales to small scales, and thus a forward cascade. If,
however, the helicity is negative at all scales, the large-scale helicity will increase in
absolute value at the large scales, and thus positive flux can be interpreted as transfer
of negative helicity from small scales to large scales, and thus an inverse cascade. It
is harder to give an interpretation in terms of a cascade when the helicity is not of
the same sign at all scales, and perhaps such an interpretation in terms of a cascade
should be avoided. Nonetheless, the helicity flux is still a well-defined quantity, and
its interpretation as the rate helicity is changing due to the nonlinearities inside a
Fourier-space sphere of a given radius is still valid.

To make contact with the helical-mode decomposition (Craya 1958; Lesieur 1972;
Herring 1974), we need to express the velocity field as the sum of two fields, one u+
with positive helicity and one u− with negative helicity, as

u(t, x)= u+(t, x)+ u−(t, x) where us(t, x)= Ps[u] (2.8)

and Ps stand for the projection operators Ps of real vector fields g(x) to the two
different bases, defined as

gs ≡ Ps[g] ≡
∑

k

eik·xhs
k(g̃k · h

−s
k ). (2.9)

Completeness and incompressibility of the bases allow us to write the projection
operator to incompressible fields as P[g] = P+[g] + P−[g].

The total energy E can be written as E = E+ + E−, where E± = (1/2)〈u± · u±〉 =
(1/2)

∑
k |ũ±k |2. Similarly, the total helicity H is written as H=H++H−, where H±=

(1/2)〈u± · w±〉 = ±(1/2)∑k |k||ũ±k |2. It should be noted that with this definition H+

is a positive quantity and H− is a negative quantity. The spectral densities E±k and H±k
associated with the two fields u±(t, x) can then be defined similarly to (2.5) as

E±k =
L
2

∑
k6|q|<k+1

|ũ±q |2 and H±k =±
L
2

∑
k6|q|<k+1

|q| |ũ±q |2. (2.10a,b)

The evolution of E±k and H±k was first investigated in Chen et al. (2003).
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Using the helical decomposed fields u±, w±, the Navier–Stokes equations can then
be written as

∂tus1 =
∑
s2,s3

Ps1 [us2 ×ws3]+ ν1us1 + Ps1[F]. (2.11)

The nonlinear term of the Navier–Stokes equation is now expressed as the sum of
eight terms Ps1[us2 × ws3] which correspond to all possible permutations of the signs
si=±1, where i= 1, 2, 3. Each of these terms has different properties concerning the
evolution of the averaged quantities E±, H±. The evolution of the quantities E± and
H± can be obtained by taking the inner product of the Navier–Stokes equation (2.11)
with u± and w± respectively, and space averaging. This leads to

∂tEs1 =
∑
s2,s3

〈us1 · (us2 ×ws3)〉 + ν 〈ws1 ·ws1〉 + 〈F · us1〉 (2.12)

and
∂tHs1 =

∑
s2,s3

〈ws1 · (us2 ×ws3)〉 + ν 〈ws1 ·1us1〉 + 〈F ·ws1〉 . (2.13)

It is evident from the expressions above that the nonlinear terms Ps1[us2 ×ws3] in the
sum with s1= s2= s conserve E± independently (i.e. 〈us · (us×ws3)〉= 0), but not H±,
and the nonlinear terms with s1 = s3 = s conserve H± independently (i.e. 〈ws · (us2 ×
ws)〉= 0), but not E±. Thus, only the nonlinear terms Ps[us×ws] in (2.11) with s=±1
conserve all four quantities E±,H± independently. The terms 〈us · (u−s×ws3)〉 that do
not conserve the energies E± and the terms 〈ws · (us2 ×w−s)〉 that do not conserve the
helicities H± are responsible for transferring energy and helicity from one field u+ to
the other u− keeping the total energy and the total helicity unaltered.

With this in mind, we can decompose the energy and the helicity flux into eight
partial fluxes as

Π s1,s2,s3
E

(k)=− 〈us1<
k · (u

s2 ×ws3)
〉

T
, Π s1,s2,s3

H
(k)=− 〈ws1<

k · (u
s2 ×ws3)

〉
T
, (2.14a,b)

where the us<
k express the two helical fields us

k given in (2.8) filtered so that only
Fourier modes inside a sphere of radius k are kept. The decomposition of the energy
flux has also been used in Kessar et al. (2015), while the partial helicity fluxes are
presented for the first time here. The total energy and helicity fluxes can be recovered
by summing these partial fluxes,

ΠE(k)=
∑

s1,s2,s3

Π s1,s2,s3
E

(k) and ΠH (k)=
∑

s1,s2,s3

Π s1,s2,s3
H

(k). (2.15a,b)

From these eight energy fluxes, only the four Π s,s,s3
E

come from conservative terms
for E±, and we will refer to them as conservative fluxes. They have the property

lim
k→∞

Π s,s,s3
E

(k)= 0 . (2.16)

The remaining four partial fluxes Π s,−s,s3
E

transfer energy among the two helical fields
u± and will be referred to as trans-helical energy fluxes. These need to be added in
pairs to result in conservative fluxes, Π s3,th

E
=Π s,−s,s3

E
+Π−s,s,s3

E
. We will refer to Π s3,th

E
as the averaged trans-helical energy flux. It is this averaged trans-helical energy flux
Π s,th

E
that has the property

lim
k→∞

Π s3,th
E

(k)= 0. (2.17)
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For the fluxes Π s,−s,s3
E

, the limit limk→∞ Π s,−s,s3
E

is not in general zero but expresses
the rate T s3

E
at which E+ energy is transferred to E− by interacting with the field ws3 ,

T s3
E
= lim

k→∞
Π+,−,s3

E
(k)=− lim

k→∞
Π−,+,s3

E
(k) . (2.18)

The total rate of transfer of E+ energy to E− energy is TE = T +
E
+ T −

E
.

Similarly, for the helicity, the fluxes Π s,s2,s
H

come from conservative terms and satisfy

lim
k→∞

Π s,s2,s
H

(k)= 0. (2.19)

The fluxes Π s,s2,−s
H

that transfer helicity from H+ to H− and vice versa will be referred
to as trans-helical helicity fluxes. They need to be paired with the averaged trans-
helical helicity flux Π s2,th

H
=Π s,s2,−s

E
+Π−s,s2,s

E
to take a conservative form,

lim
k→∞

Π s2,th
H

(k)= 0. (2.20)

Due to the negative sign of H−, an increase of H− in absolute value implies an equal
increase in H+, so that total helicity is conserved. The total rate of generation Gs

H
of

H+ helicity (equal to the rate of generation of |H−|) through the interaction with the
velocity fields us is defined as

Gs
H
= lim

k→∞
Π−,s,+

H
=− lim

k→∞
Π+,s,−

H
. (2.21)

The total generation rate of H+ (and thus H−) is then given by GH = G+
H
+ G−

H
.

This decomposition of the fluxes allows us to study the roles of different classes
of interactions in a turbulent flow. However, we need to stress here that the
classification of the triads in eight classes presented in Waleffe (1992) is not in
exact correspondence with the eight different energy and helicity fluxes presented
here. This is because the Waleffe (1992) classification of triads is based on the
magnitude of the wavevectors and the helicity of the modes involved. The present flux
decomposition, on the other hand, provides a classification of the interactions based
on the different nonlinearities that appear when the helical decomposition is made,
and has no reference to the magnitude of the wavevectors involved. Furthermore,
the flux Π s1,s2,s3

E
expresses the flux of energy Es1 to Es2 due to the interaction

Ps1[us2 ×ws3] for which the field ws3 only acts as a ‘catalyst’ and does not exchange
energy. Similarly, for the flux Π s1,s2,s3

H
, the field us2 only acts as a ‘catalyst’ for

the helicity transfer. This differs from the analysis of individual triadic interactions,
which is treated as a closed system and the simultaneous exchange of energy and
helicity between all three modes is considered. The only contact made by the two
classifications involves the same-helicity interactions/triads, where the magnitude of
the wavevectors becomes irrelevant for the Waleffe classification. With the present
description, thus, we can link the Π s,s,s

E
and Π s,s,s

H
fluxes with the same-helicity type

of interactions of Waleffe (1992) (type I depicted in figure 1). However, we cannot
link the remaining fluxes with the other types of interactions (types II, III and IV in
figure 1) because the fluxes Π s1,s2,s3

E
and Π s1,s2,s3

H
only provide information about the

direction of the cascade and do not allow us to distinguish between the magnitudes
of the three wavevectors involved in the interactions. Such a comparison could be
made possible to some extent by considering shell-to-shell energy transfers (Alexakis,
Mininni & Pouquet 2005; Verma et al. 2005; Mininni, Alexakis & Pouquet 2006),
which is not attempted here.
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Case ν kf ‖F‖ τf ‖u‖ ε Re≡ ‖u‖/kf ν kmη H/Ekf

Non-helical 0.0002 4 1.0 0.1 0.948 0.194 1185 1.292 0.009
Helical 0.0002 4 1.0 0.1 1.072 0.191 1340 1.373 0.859

TABLE 1. Parameters of the numerical simulations for the helical and non-helical cases.
In both simulations, N = 15363; km=N/3 is the maximum wavenumber and η= (ν3/ε)1/4

is the Kolmogorov length scale.

3. Simulations
To unfold the implications of the proposed decompositions in the previous section,

we performed numerical simulations of the Navier–Stokes equations in a triple
periodic cubic domain of size 2π at a resolution of 15363. The simulations were
performed using the pseudo-spectral GHOST code (Mininni et al. 2011) with a
fourth-order Runge–Kutta method for the time advancement and a 2/3 rule for
dealiasing. The flow was forced by a mechanical forcing F which consisted only
of Fourier modes with wavenumbers q such that kf 6 |q| 6 kf + 1 with kf = 4.
This relatively high wavenumber of the forcing was chosen so that not only was
the forward cascade studied but the behaviour of the flow at scales larger than the
forcing was also examined. The amplitude of the forcing was fixed at unity ‖F‖ = 1
and the phases of the Fourier modes were changed randomly at fixed time intervals
τf = 0.1. Two different forcing functions were considered; in the first, the Fourier
modes of the forcing were not helical (so ‖P+[F]‖ = ‖P−[F]‖ at each instant of
time), while, in the second, each Fourier mode was fully helical with positive helicity
(i.e. F = P+[F] and P−[F] = 0). All of the parameters of the runs and the basic
observables are given in table 1. To reduce computational time, the runs were started
using as initial conditions the results from runs with smaller Re (and smaller grid)
and were continued for 12 turnover times (τu= 1/‖u‖kf ) after the first peak of energy
dissipation appeared.

The resulting energy spectra of these runs compensated by k−5/3 are shown in
figure 2 with a solid black line. The spectra show a close to k−5/3 behaviour,
although a large bottleneck makes the spectra deviate from this value. The bottleneck
effect, although not fully understood, is very well documented (Herring et al. 1982;
Falkovich 1994; Lohse & Müller-Groeling 1995; Martinez et al. 1997; Kurien, Taylor
& Matsumoto 2004), and it is argued that it is related to the quenching of local
interactions close to the dissipative scales which leads to a ‘pile-up’ of energy at
these scales. It is stronger in the helical case which dominates most of the spectrum.

The dashed lines in figure 2 show the spectra E±k given in (2.10). For the non-helical
case (a), the two spectra are indistinguishable and the two fields u+ and u− have
identical statistics. For the helical case (b), the spectrum E+k (top dashed line) for
the positive helical field dominates at the large scales. This is expected since the
forcing injects energy only at the u+ modes. It is also worth noting that the E+k
spectrum shows a clearer k−5/3 scaling. The spectrum E−k for the negative helical field
is sub-dominant at large scales but increases and reaches equipartition with E+k at large
wavenumbers, restoring parity invariance at small scales.

4. Fluxes
The results of these simulations were used to calculate the partial fluxes defined in

(2.14). The calculation was performed at runtime at frequent time intervals, and the
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FIGURE 2. Energy spectra compensated by k5/3 for the non-helical case (a) and the helical
case (b). The solid line shows the total energy spectrum Ek=E+k +E−k and the dashed lines
show the two spectra E±k . For the non-helical case, the spectra E±k are indistinguishable,
while, for the helical case, E+k is significantly larger at small k but reaches equipartition
with E−k at large k. Both spectra show a bottleneck at large k, which is more pronounced
for the helical case.

results were time averaged at the end. The calculation was performed in the following
way. At each output time, the fields us1 , ws1 and the four nonlinear terms us2 × ws3

were calculated. Then, the inner product in (2.14) with us1< and ws1< was obtained
by filtering us1 and ws1 . This procedure is eight times as costly as one Runge–Kutta
time step, but since the fluxes were not calculated every time step, it did not lead to
a significant slowdown of the code. The results were finally averaged over the steady
state, and are presented in the subsections that follow.

4.1. Energy fluxes
First, the energy fluxes are examined. Figure 3 shows with a solid line the total energy
flux for the non-helical run in (a) and for the helical run in (b). The partial fluxes
Π+++

E
+Π−−−

E
are shown with a dashed line, Π++−

E
+Π−−+

E
are shown with a dash–

dot line, while the averaged trans-helical fluxes Π+,th
E
+Π−,th

E
are shown with a dash–

dot–dot–dot line. The fluxes have been summed (symmetrized) over the two signs
for clarity. This has no effect on the non-helical flow, for which the two fields have
identical statistical properties, but it does have an effect on the results of the helical
run which we analyse further later in the text.

Three striking points can be observed from figure 3. First, the three symmetrized
partial fluxes shown in this figure are approximately constant in the inertial range.
This is not a trivial result because conservation of energy implies constancy of
only the total energy flux. A second observation is that the two simulations,
despite having different distributions of energy among helical modes, have identical
symmetrized partial fluxes. Finally, and perhaps most striking, is the fact that the
fluxes Π+++

E
+ Π−−−

E
are constant and negative. The negative sign of this flux has

also been observed in Kessar et al. (2015), but not at sufficiently large Re to claim it
to be constant. This negative flux implies that in turbulence, hidden inside the forward
cascade of the total energy there is a process that transfers energy back to the large
scales at a constant rate across scales. This is also in agreement with the prediction
of Waleffe (1992) that same-helicity interactions transfer energy to large scales. The
amplitude of this inverse flux is approximately 10 % of the total flux. This percentage
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FIGURE 3. Total energy flux ΠE (solid line) and the symmetrized energy fluxes Π+++E +
Π−−−E (dashed line), Π++−E +Π−−+E (dash–dot line) and Π

+,th
E +Π−,thE (dash–dot–dot–dot

line) for the non-helical (a) and helical (b) cases.

–0.2
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k
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k
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FIGURE 4. (a) Symmetrized energy flux Π+++E +Π−−−E (solid line), Π+++E (dotted line)
and Π−−−E (dashed line) for the helical run. (b) Symmetrized energy flux Π++−E +Π−−+E
(solid line), Π++−E (dotted line) and Π−−+E (dashed line) for the same run.

is the same for both simulations and is possibly universal. The Π++−E + Π−−+E and
Π
+,th
E +Π−,thE fluxes are almost equal and positive for all wavenumbers in the inertial

range, with a slight excess of flux for Π++−
E
+Π−−+

E
over Π+,th

E
+Π−,th

E
. These fluxes

are responsible for the total forward flux of energy.
At scales larger than the forcing scale, Π+++

E
+Π−−−

E
remains negative, and it is

balanced by the other two fluxes Π++−E +Π−−+E and Π+,thE +Π−,thE , leading to a zero
total flux for k< kf . Large scales thus reach an equilibrium by receiving energy from
the small scales by Ps[us × ws] interactions and losing energy to the small scales by
the remaining interactions. At the viscous scales, the fluxes Π+++

E
+ Π−−−

E
change

sign and become positive. This is because at these scales the energy spectrum is very
steep and thus these interactions also transfer energy forward.

As discussed before, in the non-helical run, the fields u+ and u− have the same
statistical properties and the fluxes obey Π

s1,s2,s3
E = Π−s1,−s2,−s3

E . This is not true for
the helical case, for which the ũ+ modes have different distributions from the ũ−
modes. To show this difference, figure 4(a) shows the symmetrized flux Π+++E +Π−−−E
along with the individual partial fluxes Π+++E and Π−−−E . At large scales where the
positively helical modes dominate, most of the inverse energy flux is driven by Π+++E ,
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FIGURE 5. The four trans-helical energy fluxes for the non-helical (a) and helical (b)
cases: Π−+−E (solid line), Π+−+E (dotted line), Π+−−E (dashed line), Π−++E (dash–dot line).

but at smaller scales the two fluxes become equal. A similar behaviour is shown in
figure 4(b) for the fluxes Π++−E and Π−−+E . At large scales, the Π++−E dominates
because it involves two ũ+ modes and one ũ− mode, so it is stronger than Π−−+E
which involves only one ũ+ mode. At small scales, however, that parity invariance is
restored and the two fluxes become equal.

The trans-helical energy fluxes Π−+−E , Π+−+E , Π+−−E , Π−++E are plotted in figure 5,
for the non-helical case in figure 5(a) and the helical case in figure 5(b). As discussed
in the introduction, these fluxes originate from terms that do not conserve the
individual energies E± but transfer energy from modes of one helicity sign to modes
of the opposite helicity. More precisely, Π+−−E and Π+−+E represent the rate at which
E+ energy is transferred from the large scales to E− energy (at all scales) through
the interaction with the w− and w+ fields respectively. Similarly, Π−+−E and Π−++E
represent the transfer rate of E− energy from the large scales to E+ energy through
the interaction with the w− and w+ fields respectively. Energy conservation then
implies that at k→∞ we have

lim
k→∞

Π−+−E =− lim
k→∞

Π+−−E and lim
k→∞

Π−++E =− lim
k→∞

Π+−+E (4.1a,b)

as a direct consequence of (2.17).
We begin with the non-helical case. As can be seen, Π+−+E is positive at all scales.

This implies that the interactions P+[u− ×w+] remove energy from the positively
helical large-scale modes. On the contrary, Π+−−E is negative at all scales, and this
implies that the interactions P+[u− ×w−] increase the energy of the positively helical
large-scale modes. The same conclusion can be drawn for Π−+−E and Π−++E for
the energy of the negatively helical modes. The end values at k→∞ of the flux
Π+−s

E indicate the total rate T s
E

at which the energy is transferred from the u+
field to the u− field through the interactions P+[u− ×ws]. What is observed is that
T +

E
= limk→∞ Π

+,−,+
E (k) > 0; thus, this transfer removes energy from the positively

helical field, while T −
E
= limk→∞ Π

+,−,−
E (k) < 0, and thus this transfer feeds with

energy the modes with positive helicity. In other words, interactions with modes
w̃s

k tend to transfer energy from Es to E−s. At the non-helical steady state, the
interactions reach an equilibrium, with zero net transfer of energy across the two
fields. This is realized by observing that in the limit k→∞, we have Π−+−E 'Π+−+E
and Π−++E 'Π+−−E .
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This is no longer true for the helical case. Although these fluxes have the same
sign as in the non-helical case, their amplitudes are not equal. The interactions that
involve more (i.e. two) positive helical modes dominate in absolute magnitude over the
interactions with more (i.e. two) negative helical modes. Thus, the fluxes Π+−+E ,Π−++E
that lead to the transfer of energy T +

E
from the positive helical modes to the negative

helical modes dominate over the fluxes Π+−−E , Π−+−E that display a transfer from E−
to E+. This indicates how parity invariance is recovered at small scales: the initial
excess of E+ energy favours interactions with two u+ modes, and this leads to a faster
transfer T +

E
(from E+ to E−) compared with T −

E
(from E− to E+) until the balance

is restored. Furthermore, the end values in the limit k→∞ indicate that Π−+−E =
−Π+−−E ' 1/2Π+−+E =−1/2Π−++E ' 1/2εE . Thus, the total rate of transfer of energy
from u+k modes to u−k modes is T = limk→∞(Π+−+E + Π+−−E ) ' 1/2εE . This can be
explained with the following reasoning. While energy is injected only in the u+ field,
the two fields dissipate energy at the same rate since parity invariance is restored at
small scales. In order to achieve this, half of the injected energy at the u+k modes has
to be transferred to the unforced u−k modes.

4.2. Helicity fluxes
In this section, we focus on the flux of helicity. The important difference between
the energy and helicity fluxes is the negative sign of H−. For the energies E±, the
nonlinear interactions can increase E− only at the cost of decreasing E+, keeping their
sum the same. For the helicities H±, the negative H− can be increased in absolute
value by simultaneously increasing H+, thus generating both H+ and H−. This
generation of H± is important for the sustainment of the forward energy cascade.
As the energies E± are transferred to small scales, the helicities H± that scale
like H±k = ±kE±k have to increase. This can be achieved through the interactions
〈ws · (us2 ×w−s)〉 which do not conserve H± individually. This simultaneous generation
of H+ and H− is measured by the trans-helical fluxes Π s,s2,−s

H
. The remaining fluxes

conserve H± individually and can be interpreted as cascades. The fluxes Π
+,s,+
H

originate from terms that conserve H+ that is a positive quantity. Thus these fluxes
give a measure of the forward cascade of H+ when they are positive and of the
inverse cascade of H+ when they are negative. Similarly the fluxes Π−,s,−H , originate
from terms that conserve H− which is a negative quantity. Thus, these fluxes can
also be interpreted as measures of a cascade, but due to the negative sign of H−6 0,
positive values imply an inverse cascade of H− while negative values imply a forward
cascade of H−.

Figure 6 shows with a solid line the total helicity flux for the non-helical run in
figure 6(a) and for the helical run in figure 6(b). For the non-helical case, the total
helicity flux is of course zero, while for the helical flow, a constant positive flux of
helicity is observed in the inertial range. Since the helicity of the flow is strictly
positive at all scales, this positive flux can be interpreted as a forward cascade of
helicity. The partial fluxes of helicity defined in (2.14) are shown by the non-solid
lines.

None of the partial fluxes appear to be constant in the inertial range; instead,
they appear to increase as the viscous scales are approached, and then decrease
again after the viscous cutoff. The fluxes of helicity due to same-helicity interactions,
Π+++H , Π−−−H , are almost zero in the inertial range, implying that they drive a weak
or no cascade of helicity. This is true for both the helical and the non-helical flow. In
the dissipation range where the spectra are much steeper, Π+++H becomes positive and
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FIGURE 6. Total helicity flux ΠH (solid line) and the partial helicity fluxes Π+++H ,
Π−−−H , Π+−+H , Π−+−H , Π+,thH , Π−,thH for the non-helical (a) and helical (b) cases. For the
non-helical case, the total helicity flux is zero.

Π−−−H negative, transferring thus H+ and H− to the small scales. The fluxes Π+−+H ,
Π−+−H , which also individually conserve H±, are non-zero but not constant. The flux
Π+−+H which measures the transport of H+> 0 is positive and Π−+−H which measures
the transport of H− 6 0 is negative; thus, the quantities H± are transported to the
small scales, i.e. forward cascading. Finally, the averaged trans-helical fluxes Π+,thH

and Π−,thH are shown to be of the same amplitude as Π+−+H , Π−+−H . The positivity of
Π
+,th
H implies that the advection of the vorticity field by the u+ flow tends to decrease

(in sign) the helicity in the large scales, while its advection by the u− flow tends to
increase (in sign) the helicity in the large scales. This phenomenon is analogous to
the cascade of magnetic helicity in magnetohydrodynamic flows. It is known that the
advection of magnetic field lines by a positive helical flow leads to a positive ‘twist’
helicity at small scales and to a large-scale negative ‘writhe’ helicity at large scales
(Gilbert 2002; Brandenburg & Subramanian 2005). This process is referred to as the
stretch, twist, fold dynamo (Vainshtein & Zel’dovich 1972; Gilbert & Childress 1995)
and has also been recently investigated in terms of the helical-mode decomposition
(Stepanov, Frick & Mizeva 2014; Linkmann et al. 2016a,b).

In the helical case, due to the excess of positive helicity, the fluxes are dominated
by Π+−+H and Π+,thH , which involve interactions with two positive helical modes. This
leads to the forward flux obtained for the total helicity. It is worth pointing out that
the values of the partial fluxes close to the dissipation scales are much larger than the
injection values. This is due to the generation of H+ and H− at the small scales by the
trans-helical terms in such a way that their sum remains constant. This is examined
in figure 7, where the trans-helical fluxes Π s,+,−s

H and Π s,−,−s
H are shown.

The trans-helical helicity fluxes for the non-helical (a) and helical (b) flow are
shown in figure 7. The Π++−H flux is positive in the inertial range, and this implies
that these interactions decrease H+. On the contrary, Π+−−H is negative in the inertial
range, implying an increase of H+ in this range. For the non-helical flow, these
effects balance each other, while, for the helical case, there is a dominance of the
fluxes that involve interactions with more u+ modes. The same conclusions can be
drawn for H− and the fluxes Π−−+H and Π−++H . In the limit k→∞, both Π++−H and
Π+−−H are negative, implying net generation of H+, and the terms Π−−+H and Π−++H
are positive, implying net generation of H−. Thus, while there is no net generation
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FIGURE 7. The four trans-helical helicity fluxes for the non-helical (a) and helical (b)
cases: Π++−

H
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(dashed line), Π−++
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FIGURE 8. Total helicity flux ΠH decomposed into Π+++
H
+Π−−−

H
+Π+−+

H
+Π−+−

H

(dashed line) and Π+,th
H
+Π−,th

H
(dash–dot line).

of helicity, there is a net generation of both H+ and H−, given by

GH = lim
k→∞

(Π−++H +Π−−+H )=− lim
k→∞

(Π++−H +Π+−−H ) > 0. (4.2)

This is true for both the helical and non-helical cases. This large generation of
simultaneous H+ and H− causes the fluxes shown in figure 6 to increase. It is also
important to note here that, due to this generation, the individual dissipation rates ε±

H

given by ε±
H
≡ ν〈w± · ∇×w±〉 are much larger (in absolute value) than the injection

rate (and thus also the dissipation rate) of total helicity, |εH |� |ε±H |. The two helicity
dissipation rates ε±

H
peak at the Kolmogorov dissipation length scale η = 1/kη with

ε±
H
∝±εE kη. However, they have opposite signs and cancel each other to give a total

dissipation rate of helicity εH = ε+H + ε−H of much smaller amplitude. Equating ε±
H

with
εH leads erroneously to a different dissipation length scale for the helicity which is
not observed in the simulations (Ditlevsen & Giuliani 2001a,b; Chen et al. 2003).

Despite the simultaneous generation of H+ and H−, it turns out that the total helicity
flux can also be decomposed into two fluxes that remain constant in the inertial range.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

N
S 

Pa
ri

s,
 o

n 
22

 A
ug

 2
01

8 
at

 1
0:

55
:5

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

83
1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.831


766 A. Alexakis

This is demonstrated in figure 8, where the total helicity flux is plotted for the helical
flow along with the symmetrized fluxes Π+++

H
+Π−−−

H
+Π+−+

H
+Π−+−

H
and Π+,th

H
+

Π−,th
H

. It should be noted that for the helicity flux we need to add all conservative
helical fluxes to obtain constant flux in the inertial range. Considering just Π+++

H
+

Π−−−
H

or just Π+−+
H
+Π−+−

H
does not lead to a constant flux. We also note that adding

these fluxes for the non-helical flow leads to zero flux, so it is not displayed. Again,
this is not a trivial result. Conservation of helicity implies only that the total helicity
flux is constant, and we could not a priori have concluded this result.

Implications of this result are discussed in the next section where conclusions are
drawn.

5. Conclusions
In this work, the interactions between different helical Fourier modes were

investigated with direct numerical simulations for large-Reynolds-number turbulent
flows. By projecting the velocity field to the helical basis proposed in Craya (1958),
Lesieur (1972) and Herring (1974), a decomposition of the energy and helicity
fluxes was derived which allowed the roles of interactions among modes of different
helicities to be investigated separately. In this formalism, eight partial energy fluxes
and eight partial helicity fluxes were defined which measure the rate (for nonlinear
interactions of a particular type) of transfer of energy and helicity from a given
spherical set of Fourier modes. The proposed formalism was then applied to the
results of large-resolution numerical simulations. Two flows were considered, one
without mean helicity and one that was positively helical. For these flows, the partial
fluxes were explicitly calculated at steady state. The results are very intriguing.

As shown in figure 3, the partial energy fluxes defined can be grouped together so
that the total flux can be decomposed into three fluxes that are independently constant
in the inertial range. This is a non-trivial result since it cannot be derived from energy
conservation alone which implies constancy of only the total energy flux. Furthermore,
the relative amplitude of these fluxes is the same for both the helical and the non-
helical flow, and thus these fractions are possibly universal. In particular, the fluxes
that correspond to same-helicity interactions are negative at all scales, implying the
presence of an inverse cascade of energy, which coexists with but is overwhelmed
by the forward cascade due to the remaining interactions. The helicity flux, shown in
figure 8, can also be decomposed into two fluxes that are independently constant in
the inertial range, and are both positive. The existence of constant-energy and -helicity
partial fluxes in the inertial range possibly implies the existence of additional Kármán–
Howarth (de Karman & Howarth 1938) relations for the real vector fields u+ and u−.

Furthermore, the present results shed some light on how parity invariance is restored
in the small scales. From the four partial fluxes Π s,−s,s3

E
that exchange energy between

E+ and E−, the two Π s,−s,+
E

tend to transfer energy from E+ to E−, while the other
two Π s,−s,−

E
transfer energy inversely from E− to E+. In the presence of an imbalance

between E+ and E− (say, for example, E+� E−), the fluxes involving two positively
helical modes are greater than the ones involving only one positive helical mode. Thus,
the flux Π s,−s,+

E
that transfers energy to E− overcomes the oppositely directed flux

Π s,−s,−
E

, and E+ and E− become asymptotically equal at small scales.
The present results also have various implications for future investigations both

practical and also theoretical. First of all, they provide a means to test some of
the assumptions made in small-scale turbulence models. The presence of a ‘hidden’
inverse cascade (expressed by the negative fluxes of energy Π+++E and Π−−−E ) implies
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that there is information from the small scales that travels back to the large scales.
The traditional point of view of classical small-scale modelling (Smagorinsky 1963)
assumes that the small-scale turbulent motions act only as a sink of turbulent energy,
transferring it to even smaller scales, and thus they are typically modelled as an eddy
dissipation term. This type of modelling was realized early on to lead to erroneous
results due to the absence of an energy feedback of the unresolved scales to the
resolved scales, often referred to as a ‘backscatter’ of energy (Piomelli et al. 1991;
Menon, Yeung & Kim 1996). More sophisticated models that take this effect into
account by stochastic modelling (Leith 1990; Schumann 1995), EDQNM closures
(Baerenzung et al. 2008, 2011) or Lagrangian averaging (Meneveau, Lund & Cabot
1996; Chen et al. 1998, 1999) have been devised. The present work gives a physical
mechanism for this backscatter effect and provides a quantitative way to test current
models so that they can properly capture the feedback effect of small scales to large.

Second, this investigation indicates how scales larger than the forcing scale reach
an equilibrium. At scales larger than the forcing scale, the averaged energy flux is
zero, so it is assumed that these scales reach a thermal equilibrium (Kraichnan 1973)
where energy is equally distributed among modes with no net exchange of energy.
However, recent results have shown that the largest scales in the domain deviate from
this equilibrium, exhibiting much larger energy (Dallas, Fauve & Alexakis 2015). The
present results indicate that the injection energy from the small scales driven by the
Π s,s,s fluxes is balanced by the removal of energy from the remaining fluxes. There
are thus two distinct processes that add and remove energy from the large scales.
This process might shed light on the deviations observed in the large-scale energy
spectrum from the isothermal equilibrium. Such investigation would, however, require
simulations forced at scales small enough so that there is scale separation.

Finally, we would like to enrich the set of numerical experiments proposed
in Biferale et al. (2013) of modified versions of the Navier–Stokes equation by
considering the following generalized Navier–Stokes equation:

∂tus1 =
∑
s2,s3

αs1,s2,s3Ps1 [us2 ×ws3]+ ν1us1 + Ps1[F], (5.1)

where αs1,s2,s3 is a real 2× 2× 2 matrix. One can then consider continuous variations
of αs1,s2,s3 starting from the Navier–Stokes equation obtained for αs1,s2,s3 =1 to different
possible limits. For example, one can consider the case where the two energies E±

are conserved independently but not the helicity (for αs,−s,s3 = 0 and the remaining
values of αs1,s2,s3 equal to unity) or the case for which the two helicities H± are
conserved but not the total energy (for αs,s2,−s= 0 and the remaining values of αs1,s2,s3

equal to unity). Of particular interest is the case for which αs1,s2,s3 = λ for all values
of si except when s1 = s2 = s3, for which αs,s,s = 1. Then, for λ = 1, one obtains
the Navier–Stokes equation, while for λ= 0, the system (5.1) reduces to the system
studied in Biferale et al. (2013), where E± and H± are conserved independently and
an inverse cascade is observed. One could thus continuously transition, varying λ from
a system that cascades energy forward to a system that cascades energy inversely.
Such systems are known to exhibit critical transitions (Celani, Musacchio & Vincenzi
2010; Deusebio et al. 2014; Seshasayanan, Benavides & Alexakis 2014; Sozza et al.
2015; Seshasayanan & Alexakis 2016). If this is the case, it can open new ways
for exploring the Navier–Stokes turbulence as an out-of-equilibrium system close to
criticality.
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