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Abstract. Scale interactions in Hall magnetohydrodynamics (MHDs) are studied
using both the mean field theory derivation of transport coefficients, and direct
numerical simulations in three space dimensions. In the magnetically dominated
regime, the eddy resistivity is found to be negative definite, leading to large-scale
instabilities. A direct cascade of the total energy is observed, although as the
amplitude of the Hall effect is increased, backscatter of magnetic energy to large
scales is found, a feature not present in MHD flows. The coupling between the
magnetic and velocity fields is different than in the MHD case, and backscatter of
energy from small-scale magnetic fields to large-scale flows is also observed. For the
magnetic helicity, a strong quenching of its transfer is found. We also discuss non-
helical magnetically forced Hall-MHD simulations where growth of a large-scale
magnetic field is observed.

1. Introduction
The relevance of two fluid effects has recently been pointed out in several studies of
astrophysical and laboratory plasmas (Balbus and Terquem 2001; Sano and Stone
2002; Mirnov et al. 2003; Ding et al. 2004). The effect of adding the Hall current
to the dynamics of the flow was studied in several scenarios, particularly dynamo
action (Helmis 1968; Galanti et al. 1995; Mininni et al. 2002, 2003a, 2005b) and re-
connection (Birn et al. 2001; Shay et al. 2001; Wang et al. 2001; Morales et al. 2005).
Several of these works showed that the Hall currents increase the reconnection rate
of magnetic field lines. However, most of the studies of magnetic reconnection were
done for particular configurations of current sheets. It was shown, in particular by
Smith et al. (2004), that when a turbulent background is present the reconnection
rate is dominated by the amplitude of the turbulent fluctuations. The process of
magnetic reconnection is relevant in several astrophysical and geophysical scen-
arios, such as the magnetopause, the magnetotail, the Solar atmosphere, or the
interplanetary and interstellar medium. Reconnection can also play a role in the
generation of large-scale magnetic fields by dynamo action (Zeldovich et al. 1983).
Some of the works in Hall magnetohydrodynamics (MHDs) present conflicting

results, indicating in some cases that the Hall effect can help the growth of a large-
scale magnetic field (Mininni et al. 2005b) or a large-scale self-organization process
(Mahajan and Yoshida 1998; Numata et al. 2004; Ohsaki 2005), while in other cases
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the Hall currents were observed to generate small scales and filamentation (Laveder
et al. 2002a,b; Rheinhardt and Geppert 2002).
As a result, it becomes of interest to study the physical processes leading to

cascades and the transfer of ideal invariants in three-dimensional Hall-MHD tur-
bulence. Phenomena observed in the laboratory and space plasmas tend to show
an intermittent or impulsive behavior (Bhattacharjee et al. 1999) characteristic
of turbulent flows. The relevance of Hall-MHD turbulence in the Solar wind was
shown by Ghosh et al. (1996). Also, Hall-MHD turbulence can play a crucial role in
the transfer of matter in the magnetopause as was pointed by Rezeau and Belmont
(2001).
In this work, we study both analytically and numerically three-dimensional Hall-

MHD turbulence as the result of a dynamo process, and from a purely electromotive
forcing. Detailed studies of shell-to-shell energy transfer from direct numerical
simulations (DNSs) have been done for hydrodynamic (Domaradzki and Rogallo
1990; Ohkitani and Kida 1992; Zhou 1993; Yeung et al. 1995; Alexakis et al. 2005a)
and magnetohydrodynamic flows (Debliquy et al. 2005; Alexakis et al. 2005b;
Mininni et al. 2005a). To the best of our knowledge, the energy transfer in Hall-
MHD turbulence has not been studied before.
We show evidence of non-locality of the transfer in Fourier space, and that the

Hall effect can increase both the transfer of magnetic energy to smaller scales
(locally), as well as give a novel non-local backscatter of magnetic energy to large
scales. These results become clear when examining the modification to the turbulent
magnetic diffusivity due to the Hall term. Also, we observe that the Hall currents
have an impact on the coupling between the magnetic and velocity fields. The
transfer of energy between these two fields is different than in the MHD case. The
Hall-MHD equations also display a backscatter of energy from small-scale magnetic
fluctuations to the large-scale flows themselves. The transfer of helicity is briefly
discussed as well and observed to be quenched by the Hall effect.
The structure of the paper is as follows. In Sec. 2 we introduce the Hall-MHD

equations and we define the various transfer terms. In Sec. 3 we derive turbulent
transport coefficients for the Hall-MHD induction equation. In Sec. 4 we briefly
discuss the code and details of the mechanically forced numerical simulations for
completeness. Section 5 presents the transfer terms in Hall MHDs as obtained from
the numerical simulations. Section 6 shows backscatter of magnetic energy in non-
helical Hall-MHD magnetically forced simulations. Finally, Sec. 7 summarizes the
results and discusses implications of our work for the understanding of turbulence,
dynamo action, and reconnection in Hall MHDs.

2. The Hall-MHD equations and transfer terms
In dimensionless Alfvénic units, the Hall-MHD equations are

∂tU+ U · ∇U = −∇P + B · ∇B+ ν∇2U+ f , (2.1)

∂tB = ∇ × [(U− εJ) × B] + η∇2B, (2.2)

where U is the bulk velocity field, B is the magnetic field, J = ∇ × B is the current
density, P is the pressure, ν is the kinematic viscosity, and η is the magnetic
diffusivity. From the Maxwell equations and incompressibility of the flow, ∇ · U =
∇ · B = 0.
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The Hall term εJ × B in (2.2) measures the velocity difference between species,
where the electron velocity is Ue = U − εJ. Here, ε measures the relative strength
of the Hall effect, with the Hall term being dominant for wavenumbers larger than
kHall ∼ 1/ε if equipartition between the fields is assumed. The measure of strength
of the Hall effect can be written as ε = LHall/L0 where L0 is a characteristic length
(we will use L0 = 2π, the size of the box in our simulations). In terms of physical
parameters, and for a fully ionized plasma, the Hall length is LHall = cUA/(ωpiU0),
where UA is the Alfvénic speed, U0 is a characteristic speed, c is the speed of light,
and ωpi is the ion plasma frequency (when U0 = UA, LHall reduces to the ion skin
depth). In a partially ionized plasma, expressions for LHall can be found in Sano
and Stone (2002) and Mininni et al. (2003a).
Of special interest is the ratio between the integral length L, the Hall length

LHall, and the Ohmic dissipation length Lη. For LHall�Lη (ε → 0), the Hall-MHD
equations reduce to the well-known MHD case. In several astrophysical problems,
such as accretion disks, protoplanetary disks, or the magnetopause (see, e.g. Birn
et al. 2001; Balbus and Terquem 2001; Sano and Stone 2002), the Hall scale is larger
than Ohmic scales although smaller than the integral scale L of the flow. We will
be interested in this regime in this work, although we remark that the separation
between these scales in astrophysical or geophysical problems is far from what can
be achieved in numerical simulations.
The Hall-MHD equations have three ideal invariants (Turner 1986). In this work

we will focus on two invariants, the total energy

E =
1
2

∫
(U2 + B2) dx3, (2.3)

and the magnetic helicity

H =
1
2

∫
A · B dx3, (2.4)

where A is the vector potential, ∇×A = B. These quantities are also ideal invariants
of the MHD equations (ε = 0). The third MHD invariant, the cross helicity, is
replaced in Hall MHDs by the hybrid helicity (Turner 1986) and is small in the
simulations we will discuss.
The expressions we will use for the shell-to-shell energy transfers have been

derived for the MHD case by Verma (2004), Debliquy et al. (2005), and Alexakis
et al. (2005b). Here we present the derivation of the transfer terms for the Hall-
MHD equations. Equation (2.2) can be rewritten as

∂tB+ U · ∇B = B · ∇U− ε∇ × (J× B) + η∇2B. (2.5)

We introduce a filter in shells in Fourier space, such as FK which denotes the
components of the field with wavenumbers between K and K + 1 (i.e. FK(x) =∑K+1

k=K F̂(k)eik·x), from (2.1) and (2.5) we can write detailed balance equations for
the energy,

∂tEU (K)

=
∫ {∑

Q

[−UK · (U · ∇) · UQ + UK · (B · ∇) · BQ] − ν∇2UK + f · UK

}
dx3,

(2.6)
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∂tEB(K) =
∫ {∑

Q

[−BK · (U · ∇) · BQ + BK · (B · ∇) · UQ

+ εJK · (B× JQ)] − η∇2BK

}
dx3. (2.7)

Here, EU (K) and EB(K) denote the kinetic and magnetic energy in the shell K,
respectively. The above equations can be written in the more compact form

∂tEU (K) =
∑
Q

[TUU(K,Q) + TBU(K,Q)] − νDU (K) + F(K), (2.8)

∂tEB(K) =
∑
Q

[TUB(K,Q) + TBB(K,Q)] − ηDB(K). (2.9)

The functions TUU(K,Q), TUB(K,Q), TBB(K,Q), and TBU(K,Q) express the
energy transfer between different fields and shells,

TUU(K,Q) ≡ −
∫
UK(U · ∇)UQ dx3, (2.10)

TUB(K,Q) ≡
∫
UK(B · ∇)BQ dx3, (2.11)

TBU(K,Q) ≡
∫
BK(B · ∇)UQ dx3. (2.12)

In general, for positive transfer, the first subindex denotes the field that receives
energy, the second subindex the field that gives energy. The first wavenumber
corresponds to the field receiving energy, and the second wavenumber to the field
giving energy. As an example, positive TUU(K,Q) represents energy transferred
from the velocity field at the shell Q to velocity field at the shell K. In the same
way, positive TUB(K,Q) represents energy transferred from the magnetic field at
wavenumbers Q to the velocity field at wavenumbers K.
The transfer of magnetic to magnetic energy TBB(K,Q) in Hall MHDs consists

of two terms

TBB(K,Q) = TMHD
BB (K,Q) + THall

BB (K,Q) (2.13)

where

TMHD
BB (K,Q) ≡ −

∫
BK(U · ∇)BQ dx3, (2.14)

is the usual MHD transfer of magnetic energy through advection by the bulk
velocity field, and

THall
BB (K,Q) ≡ ε

∫
JK · (B× JQ) dx3, (2.15)

is the transfer of magnetic energy due to the Hall current. Note that the definition
of the transfer terms corresponds to the MHD case in Alexakis et al. (2005b), except
for the new term THall

BB (K,Q). However, as will be shown later, the behavior of the
rest of the transfer terms in Hall MHDs will also be indirectly modified by the
presence of the Hall effect.
All of these transfer functions satisfy the identity

Tvw(K,Q) = −Twv(K,Q), (2.16)
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where v, w can be either U or B. This detailed conservation is what allows us to
define the terms as transfers of energy between shells. Note that other groupings of
the nonlinear terms in the Hall-MHD equations would not satisfy this symmetry
condition.
In (2.8) and (2.9) we also have two dissipation functions and the energy injection

rate

νDU (K) ≡ ν

∫
|∇UK |2 dx3, (2.17)

ηDB(K) ≡ η

∫
|∇BK |2 dx3, (2.18)

F(K) ≡
∫
f · UK dx3. (2.19)

Finally, we can also define the transfer of magnetic helicity. From (2.2) we have

∂tH(K) =
∑
Q

TH(K,Q) − ηDH(K), (2.20)

where the transfer of magnetic helicity from the wavenumberK to the wavenumber
Q is given by

TH(K,Q) ≡
∫
BK · [(U− εJ) × BQ] dx3. (2.21)

This transfer function satisfies the relation TH(K,Q) = −TH(K,Q). The first
term in (2.21) proportional to U is the usual transfer of HM in MHD, while the
second term proportional to εJ is the contribution due to the Hall effect. Note that
as a whole, magnetic helicity is transferred between the shells K and Q interacting
with the electron velocity field U − εJ. This is in agreement with the fact that in
the ideal limit the magnetic field in the Hall-MHD system is frozen to the electron
velocity field, instead of the bulk velocity field of the plasma as in MHDs.
The dissipation rate of magnetic helicity at the wavenumber K is given by

ηDH(K) ≡ η

∫
BK · JK dx3. (2.22)

It is also worth noting that, since the magnetic helicity is not a positive defined
quantity contrary to the energy, the interpretation of its transfer is more difficult.
We will not attempt here a separation of its different sign components (see, e.g.
Waleffe (1991) and Chen et al. (2003a,b) for the case of kinetic helicity in hydro-
dynamic turbulence).
The functionsDU ,DB, andDH do not couple fields at different scales. As a result

these functions can damp the amplitude of the transfer functionsT as smaller scales
are reached, but cannot give a transfer of energy or magnetic helicity between
different scales.

3. Transport coefficients
In Mininni et al. (2002), the expression of the α dynamo coefficient was derived for
Hall MHDs. Although an expression of the Hall-MHD turbulent diffusivity was
derived by Mininni et al. (2003b), the closure was only valid for specific solutions
of the Hall-MHD equations. To interpret the results from the energy transfer, it
will be useful to have expressions for all the turbulent transport coefficients in the
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induction equation. To this end, and for the sake of simplicity, we will use mean field
theory (MFT) (Steenbeck et al. 1966; Krause and Raedler 1980) and the reduced
smooth approximation (RSA) (Blackman and Field 1999). RSA was introduced to
solve some ambiguities present in MFT when the magnetic field is strong enough
to affect the velocity field through the Lorentz force. Although there are still
assumptions in MFT not completely justified, at least a qualitative agreement
has been observed with simulations in the MHD case (Brandenburg 2001) and the
Hall-MHD case (Mininni et al. 2003a, 2005b). The transport coefficients can also
be derived using more elaborate closures, such as the Lagrangian history direct
interaction approximation (LHDIA) or the eddy damped quasi normal Markovian
(EDQNM) closures (see, e.g. Lesieur 1997). It is worth noting that the analysis that
follows in Secs 4 and 5 is of general validity and independent of the assumptions
we will use here to derive the turbulent transport coefficients.
We split the fields into

U = Ū+ u+ u0, (3.1)

B = B̄+ b+ b0, (3.2)

where u0 and b0 are isotropic and homogeneous solutions of (2.1) and (2.5) in the
absence of the mean fields Ū and B̄. The fields with overbars are large-scale fields,
and u and b are small-scale corrections to the isotropic and homogeneous solutions
due to the presence of the large-scale fields. The fluctuating fields satisfy 〈u〉 =
〈u0〉 = 〈b〉 = 〈b0〉 = 0, where the brackets denote an average that satisfies Taylor’s
hypothesis (Krause and Raedler 1980). Replacing in (2.5), using the equations for
the u0 and b0 fields, dropping terms quadratic in the fluctuating fields u and b, and
averaging leads to

∂tB̄ = ∇ × [(Ū− εJ̄) × B̄+ ε] + η∇2B̄, (3.3)

where ε is the mean field electromotive force

ε = 〈ue0 × b+ ue × b0〉. (3.4)

Our main aim in this section is to close (3.3) and write ε only as a function of
averages of the fields u0, b0, and spatial derivatives of B̄. A simple argument of
symmetry shows that in the approximately isotropic case

ε = αB̄− β∇ × B̄+ γ∇ × ∇ × B̄. (3.5)

From (2.1) and (2.5), and subtracting the equations for the mean flows, we can
also write equations for the evolution of the turbulent fluctuations u and b. We
drop terms quadratic in u and b, and keep only terms to zeroth and linear order in
B̄,

∂tb = ∇ × (Ū× b0 + ue0 × B̄+ εbe0 × J̄+ ue × b0 + ue0 × b− ε) + η∇2b. (3.6)

In this equation, ε involves averaged quantities, and from the Taylor’s hypothesis
it gives no contribution to the mean electromotive force. The fourth and fifth terms
on the right-hand side can be dropped using RSA, namely that |u|, |b| � |B̄| (note
that this condition is less stringent than the usual assumptions in MFT, since the
amplitude of the fields u0, b0 can be much larger than the amplitude of the mean
magnetic field). We will assume that the viscosity and diffusivity are small, and
as a result we will also drop the last term on the right-hand side of (3.6). Terms
proportional to Ū can be removed in the proper frame of reference. Finally, we
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obtain

∂tb ≈ ∇ × (ue0 × B̄+ εbe0 × J̄). (3.7)

The second term on the right-hand side of (3.7) involves only spatial derivatives of
B̄ and gives no contribution to the α coefficient, but is retained here since it will
give contributions to β and γ.
Following the same steps, we can also write an equation for the evolution of u,

∂tu ≈ B̄ · ∇b0 + b0 · ∇B̄− ∇p. (3.8)

To obtain the mean field electromotive force we replace time derivatives in (3.6)
and (3.8) by the inverse of a correlation time τ . This step, common in MFT, assumes
the existence of a finite correlation time. At present there is no evidence of its
validity in general (see, e.g. Gruzinov and Diamond 1995; Blackman and Field
2002; Brandenburg and Subramanian 2005). Since we are introducing a correlation
time to close these equations, the expressions obtained for the turbulent transport
coefficients will be considered as symbolic expressions.
Before replacing the expression for u in (3.5), (3.8) has to be solved for the small-

scale pressure p.Wewill use a technique developed byGruzinov andDiamond (1995)
(see also Blackman and Field 2002). The α effect is linear in B̄ and therefore the
correct result can be obtained assuming B̄ is uniform. Then ∂tu≈ B̄ · ∇b0. Replacing
the time derivative by τ−1 and replacing the expression in (3.5), we obtain in the
weak isotropic case

α =
τ

3
〈−ue0 · ∇ × ue0 + b0 · ∇ × b0 − εb0 · ∇ × ∇ × ue0〉. (3.9)

To compute β and γ we have to keep spatial derivatives of B̄ in (3.8), and therefore
we have to solve for the pressure. This was done by Gruzinov and Diamond (1995)
transforming (3.8) to Fourier space, and doing a Taylor expansion of the projector
operator for incompressible u assuming a large-scale separation between the mean
and fluctuating fields. In three spatial dimensions, it was shown that the pressure
and b0 ·∇B̄ terms give no contribution to ε in (3.4). As a result, we are only left with
the terms proportional to spatial derivatives of B̄ when (3.7) and the first term on
the right-hand side of (3.8) are replaced on (3.4). Again, assuming weak isotropy,
we obtain the expressions for the remaining turbulent transport coefficients

β =
τ

3
〈ue02 + ε(u0 · ∇ × be0 + b0 · ∇ × ue0)〉, (3.10)

γ = −τε

3
〈b0 · ue0〉. (3.11)

The two last terms in α and the third term in β come from the small-scale mo-
mentum equation and are related with the backreaction of the magnetic field into
the velocity field. In the kinematic regime of a dynamo, α = −τ/3〈ue0 · ∇ × ue0〉,
which for ε = 0 reduces to the MHD case (Krause and Raedler 1980). The general
expression for ε = 0 reduces to the MHD expression first found using the EDQNM
closure by Pouquet et al. (1976), α = τ/3〈−ue0 · ∇ ×ue0 + b0 · ∇ × b0〉. Note also that
in the MHD case in three dimensions, the turbulent diffusivity β = −τ〈u0

2〉/3 is
not changed during the nonlinear saturation (Gruzinov and Diamond 1995).
The turbulent diffusivity β in Hall MHDs is not positive definite, in contrast

to the pure MHD case (note that negative effective diffusivities can be found in
MHDs if the assumption of homogeneity is dropped; see, e.g. Lanotte et al. (1999)).
A negative value of β represents non-local transfer of energy from the small-scale
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turbulent fields to the large-scale magnetic field. This result will be of interest in
the following sections.
It is worth studying the values of β for particular cases. If ε is large enough

and the system is magnetically dominated (EB � EU ), then β ≈ −τε2〈j2
0〉/3, where

j0 = ∇ × b0 and we assumed that the average is a spatial average. In this case, β is
always negative implying transfer of energy from the small scales to the large.
The normal modes of the Hall-MHD equations are circular polarized (∇ × ue0 =

±kue0, ∇ × b0 = ±kb0) and dispersive, and in the limit k � 1 they satisfy dispersion
relations ω ∼ εk2B̄ (whistlers, right-handed polarized) and ω ∼ B̄/ε (ion-cyclotron
waves, left-handed polarized). Also, for these waves the fields are related by b0 =
−kB̄/ωue0 (Mahajan et al. 2005a). If we assume a background of waves, β ∼
τ/3〈ue02〉(1 ± 2εk2B̄/ω), which for k large enough can give positive or negative
turbulent diffusivity according to the orientation of the wave. Note that from the
dispersion relations, at small scales whistlers give a finite contribution to the turbu-
lent diffusivity, while ion-cyclotron waves give a much larger turbulent diffusivity
that grows as k2.

4. Simulations
In this section we summarize the simulations that will be used to compute the
energy and helicity transfer functions defined in Sec. 2. We performed three simula-
tions in three dimensions with periodic boundary conditions, using a pseudospectral
Hall-MHD code as described in Mininni et al. (2003a, 2005b). Runge–Kutta of
second order is used to evolve the system of (2.1) and (2.2). To ensure the divergence-
free condition for the magnetic field, a curl is removed from (2.2) and the equation
for the vector potential is instead solved, with the Couloumb’s gauge ∇ ·A = 0. The
three simulations are done with a spatial resolution of N3 = 2563 grid points. The
2
3 dealiasing rule is used, and as a result the maximum wavenumber resolved by
the code is kmax = N/3 ≈ 85. The kinematic viscosity and magnetic diffusivity are
set to ν = η = 2 × 10−3, and all of the simulations are well resolved, in the sense
that the kinetic [kν = (〈ω2〉/ν2)1/4] and magnetic [kη = (〈J2〉/η2)1/4] dissipation
wavenumbers are smaller than kmax at all times.
In Hall MHDs, the Courant–Friedrichs–Levy (CFL) condition is more stringent

than for MHDs for which, with equipartition of kinetic and magnetic energy, the
CFL condition for explicit time-stepping imposes an upper boundary on the time
step ∆t � ∆x/UA where ∆x is the spatial step. In Hall MHDs, the dispersive
nature of the whistlers impose ∆t � ∆x2/(εUA). As a result, smaller time steps will
be needed as ε is increased. Also, since the time step decreases quadratically as the
spatial resolution is linearly increased, we cannot achieve spatial resolutions higher
than 2563 because of these constraints.
A helical forcing at k0 = 2 given by an ABC flow

f = [C sin(k0z) + B cos(k0y)]x̂ + [A sin(k0x) + C cos(k0z)]ŷ

+ [B sin(k0y) + A cos(k0x)]ẑ, (4.1)

with A = 0.9, B = 1, and C = 1.1 was applied in the momentum equation. This
election of the amplitude coefficients was done to ensure breaking of the symmetries
of the ABC flow and ensuring a faster development of turbulence (Archontis et al.
2003). After a first hydrodynamic run made to reach a turbulent steady state, a
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Figure 1. Kinetic (thick curves) and magnetic energy (thin curves) as a function of time, for
runs with ε = 0 (solid lines), ε = 0.05 (dotted lines), and ε = 0.1 (dashed lines).

random and small magnetic field was introduced at small scales. Initially the ratio
of kinetic to magnetic energy was Eu/Eb ∼ 10−3.
The simulation was continued to see exponential growth of the magnetic energy

(in the following, we will refer to this stage as the kinematic regime), and finally
nonlinear saturation of the small-scale magnetic field (in the following, Hall-MHD
turbulence). Three simulations were done, with ε = 0 (MHD), ε = 0.05 (which
corresponds to kHall ≈ 20), and ε = 0.1 (kHall ≈ 10). Figure 1 shows the time
history of the kinetic and magnetic energies for these three runs.
After t ≈ 20, the small-scale magnetic fields have reached saturation for all values

of ε, while the large-scale magnetic field keeps growing slowly. As ε is increased,
the magnetic energy reached by the system after the nonlinear saturation of the
small scales increases. However, this behavior is not monotonical in ε as shown by
Mininni et al. (2003a).
The saturation of the large-scale magnetic field takes place in a longer time

(Brandenburg 2001; Mininni et al. 2005b). Note that one of the biggest challenges
for DNS is to attain scale separation between the different dynamical ranges that
must be resolved. Reynolds numbers in simulations are much smaller than the
values observed in astrophysics and geophysics. Moreover, compared with hydro-
dynamics and MHDs, the extra characteristic length scale in Hall MHDs (the Hall
scale) makes it even harder to achieve a proper separation between all of these scales.
As a result, we will focus in this work on the energy transfer at scales smaller than
k0 (the energy injection band), and the late time large-scale evolution of these runs
will not be discussed here (more details can be found, e.g. in Mininni et al. (2005b)).
Figure 2 shows the time evolution of the magnetic and kinetic energy spectra,

for the runs with ε = 0.05 and 0.1. As previously mentioned (t ≈ 40) the spectrum
of energy at scales smaller than k0 has saturated and reached a steady state, while
the magnetic energy at k = 1 keeps growing slowly. Note that the ratio of kinetic
to magnetic energy at small scales in the saturated state depends on the value of
ε. The Kolmogorov power spectrum is also shown as a reference in Fig. 2. Ideally,
a large separation between the forcing and dissipation scales would be required in
the simulation to have a clear inertial range. As noted before, the CFL-whistler
condition makes simulations at higher resolutions and Reynolds numbers very
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Figure 2. Spectra of kinetic energy (thick curves) and magnetic energy (thin curves) as a
function of time, for t = 5 (solid), 15 (dash-dotted), 30 (dotted), and 45 (dashed): (a) ε = 0.05
and (b) ε = 0.1. The Kolmogorov scaling is shown as a reference.

expensive. However, it is worth noting here that in the study of energy transfer
in hydrodynamic and MHD turbulence (Alexakis et al. 2005a,b) no qualitative dif-
ferences were observed as the Reynolds number and the resolution were increased.
With these results in mind, we will study the energy and helicity transfer in Hall
MHDs in 2563 simulations.
Another quantity that will be of interest in the next section is the magnetic

helicity. Figure 3 shows the time history of the absolute value of magnetic helicity
for the three runs. Note that while in the MHD run (ε = 0) the magnetic helicity
growsmonotonically with time, in theHall-MHD runs the time evolution is strongly
modified. For ε = 0.05 the magnetic helicity grows slower than in the MHD case,
and for ε = 0.1 it changes sign at t ≈ 24. As was observed by Mininni et al. (2003a),
the Hall effect inhibits the generation of net magnetic helicity at large scales by the
helical dynamo process. This inhibition grows monotonically with the amplitude of
Hall term, and for values of ε large enough the magnetic helicity fluctuates around
zero. The reason for this behavior will be discussed in the next section.



Energy transfer in Hall-MHD turbulence 387

Figure 3. Absolute value of the magnetic helicity as a function of time. Curves are as in
Fig. 1. For ε = 0.1 the magnetic helicity changes sign from negative to positive at t ≈ 24.

5. Transfers
In this section we discuss the energy transfer terms defined in Sec. 2 as obtained
from the three DNSs discussed in the previous section.

5.1. The run with ε = 0.1
We start discussing in detail the transfer in the Hall-MHD run with ε = 0.1. At late
times in this simulation, when the system is close to equipartition (UA ≈ U ), the
Hall wavenumber is kHall ≈ 10. Since we consider transfer functions at different
times, for the sake of comparison and unless explicitly said, all transfers in this
section will be normalized using the root mean square velocity and magnetic field
according to their expressions (2.10)–(2.15). Note that since εJ has units of velocity
(and U− εJ is the electron velocity), the transfer function THallBB is normalized using
〈B2|U|〉. This election also allows for a direct comparison of this term against TMHDBB
(see (2.14)).
Figure 4 shows the transfer of kinetic energy from the shell Q = 20 to kinetic

energy in shells K for three different times. As previously mentioned, positive
transfer denotes energy given by the shell Q, while negative transfer corresponds
to energy received by this shell. In this case, kinetic energy in the shell Q = 20
is mostly received from the shell K = 18 (negative peak), and given to K = 22
(positive peak). This function represents the local and direct transfer of kinetic
energy to small scales. There are no noticeable differences in this transfer between
the Hall-MHD runs (ε = 0.05 and 0.1) and the MHD run (ε = 0).
The curve for early times (kinematic regime) corresponds to the initial exponen-

tial growth of magnetic energy, and is a time average properly normalized. As time
evolves and the magnetic energy grows, the amount of kinetic energy transferred
to small scales diminishes, since a larger amount of kinetic energy at large scales
is turned into magnetic energy. This effect was previously observed in MHD runs
(Mininni et al. 2005a).
The inset in Fig. 4 shows the TUU(K,Q) transfer at late times for Q = 5, 10, 15,

and 20. Although as wemove to larger wavenumbersQ the amplitude of the transfer
is slightly damped because of dissipation, the overall shape of the transfer function
is not modified. As a result, and since in this run kHall ≈ 10, we will continue the
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Figure 4. Transfer of kinetic energy from Q = 20 to K, TUU(K, Q = 20), in the kinematic
regime (solid curve), at t = 26 (dotted curve), and at t = 45 (dashed curve) in the run with
ε = 0.1. The inset shows TUU(K, Q) in the same run at t = 45 for Q = 5, 10, 15, and 20.

Figure 5. TMHD
BB (K, Q = 20) in the kinematic regime (solid curve), at t = 26 (dotted curve),

and at t = 45 (dashed curve) in the run with ε = 0.1. The inset shows TMHD
BB (K, Q) in the

same run at t = 45 for Q = 5, 10, 15, and 20.

analysis for Q = 20 and show results for different values of Q for comparison when
required.
Figure 5 shows TMHD

BB (K,Q = 20), the transfer of magnetic energy at the shell
Q = 20 to magnetic energy in shells K due to the advection by the bulk velocity
field. As in the case of TUU , the transfer is local and the shell Q = 20 receives
most of the energy from K = 18 (negative peak) and gives energy to the shell
K = 22 (positive peak). Again, no significant differences are observed between the
three runs with different values of ε, except that this transfer, in amplitude, gets
substantially stronger as ε (and B) increases.
The total shell-to-shell transfer of magnetic energy is given by TMHD

BB plus THall
BB .

Figure 6 shows the THall
BB (K,Q) transfer at Q = 20. As in the previous cases,

positive transfer denotes energy is given from the shell Q = 20 to shells K, while
negative transfer indicates the shell Q receives energy from K. The THall

BB transfer
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Figure 6. THall
BB (K,Q = 20) in the kinematic regime (solid curve), at t = 26 (dotted curve),

and at t = 45 (dashed curve) in the run with ε = 0.1.

is small during the kinematic regime, but grows as the small scales reach nonlinear
saturation. Although this transfer is noisier than the previous terms studied, two
regions can be identified at late times. Around Q = K = 20, the transfer is local
and direct: positive and negative peaks can be observed at K ≈ 25 and K ≈ 15,
indicating energy is received and given, respectively, by the shell Q from and to
these wavenumbers. On the other hand, at large scales (up toK ≈ 10) a region with
positive transfer can also be identified. This region indicates a non-local and inverse
transfer of energy: the shells with K between 1 and 10 receive magnetic energy
from the shell Q = 20. This combination of a local direct transfer of energy and
a non-local inverse transfer is characteristic of the Hall term, and is in qualitative
agreement with the turbulent dissipation derived in Sec. 3 where it was shown that
it can take negative values.
The remaining transfer term isTBU(K,Q), which when positive represents trans-

fer of kinetic energy from the shell Q to magnetic energy in the shell K. Although
the expression of this transfer function is equal for MHDs and Hall MHDs, the
transfer is modified by the Hall currents. The reason for this can be explained in
two ways. On the one hand, the expression of the α-effect in Sec. 3 is modified by the
Hall term, and this term represents transfer of energy from the turbulent velocity
field to the mean magnetic field. On the other hand, waves are expected to give
non-local coupling between the velocity and magnetic fields (see, e.g. Iroshnikov
1963; Kraichnan 1965) in MHDs. In Hall MHDs, the non-dispersive Alfvén waves
of MHDs are replaced by dispersive circularly polarized waves and, as a result, the
coupling between the two fields should also be modified.
Figure 7 shows TBU(K = 20, Q), the energy transferred to the magnetic field at

K = 20 from the velocity field at shells Q. In the kinematic regime this transfer
is non-local and similar to the MHD transfer (Alexakis et al. 2005b; Mininni et al.
2005a): the magnetic field at K = 20 receives energy from the large-scale flow
at Q = 3 and from all turbulent scales up to Q ≈ 20. However, at late times the
transfer is stronglymodified. Themagnetic field atK = 20 still receives energy from
a broad range of wavenumbers Q smaller than K (as was found in Alexakis et al.
2005b), but it also receives energy from larger wavenumbers (Q ≈ 22) and gives
energy to the velocity field at slightly smaller wavenumbers (Q ≈ 18). Note that
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Figure 7. TBU(K = 20, Q) in the kinematic regime (solid curve), at t = 26 (dotted curve),
and at t = 45 (dashed curve) in the run with ε = 0.1. The inset shows a blow up of the last
transfer.

Figure 8. TBU(K, Q = 20) at three different times: the kinematic regime (solid curve),
t = 26 (dotted curve), and t = 45 (dashed curve) for the run with ε = 0.1.

this indicates that in Hall MHDs a magnetic field at a given scale can give rise to
velocity fluctuations at larger scales, a process studied by Mahajan et al. (2005b)
and referred to there as the reverse dynamo.
Figure 8 shows TBU(K,Q = 20), the energy received by the magnetic field at all

wavenumbers K from the velocity field in the shell Q = 20. During the kinematic
regime, the velocity field in this shell gives energy to all magnetic shells, although the
transfer peaks at wavenumbers larger thanQ. However, in the saturated regime, the
transfer changes drastically again. The magnetic field at wavenumbers K smaller
than Q ≈ 16, and in shells between 20 and 23 gives energy to the velocity field
(negative transfer), while the magnetic field in shells between K ≈ 16–20 and for
K � 23 receives energy from the velocity field (positive transfer). This is just the
counterpart of TBU(K,Q) for constant K, and again shows that in Hall MHDs a
small-scale magnetic field can create large-scale flows.
Figure 9 shows shaded plots of THall

BB (K,Q) and TBU(K,Q) at different times.
These are the two transfers that are strongly modified by the Hall currents, and the
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Figure 9. THall
BB (K,Q) (left column), and TBU(K, Q) (right column) at three different times:

the kinematic regime (top), t = 26 (middle), and t = 45 (bottom) for the run with ε = 0.1.
In all figures, K is on the x-axis and Q on the y-axis. Shading goes from dark (T < 0) to
light (T > 0).

figures allow for a study of the terms for all values of K and Q. Although noisy, a
characteristic pattern can be recognized inTHall

BB . As time evolves and the magnetic
energy grows, the relative importance of this term grows. For wavenumbersK,Q �
kHall ∼ 10, the function is positive (light) near and below the diagonal K = Q, and
negative (dark) near and above this diagonal. This region close to the diagonal
represents local and direct transfer of energy: a cut at constant Q shows that close
to the diagonal the shell Q receives energy from neighboring shells with K � Q
(negativeTHall

BB ) and gives energy to neighbor shells withK � Q (positiveTHall
BB ). As

we move far from this diagonal, the sign of the regions above and below the diagonal
changes. This indicates a non-local and inverse transfer of magnetic energy, from



392 P. D. Mininni, A. Alexakis and A. Pouquet

small to large scales, in agreement with the expression for the turbulent magnetic
diffusivity obtained in Sec. 3.
The TBU(K,Q) also shows an interesting behavior as a function of time. During

the kinematic regime,TBU is positive in a triangle defined byK � Q. This indicates
that the velocity field in a given shell amplifies the magnetic field in that shell and all
of the shells with larger wavenumber (smaller scales). A strong band around Q = 3
is also observed, indicating that the velocity field in the energy injection band gives
a lot of energy to the magnetic field. These results are similar to the kinematic MHD
dynamo (see Mininni et al. 2005a). However, at late times an inverse process can be
identified close to the diagonal K = Q. Above it, TBU is positive, while below it, it
is negative. This represents transfer of magnetic energy from a shell K to kinetic
energy in slightly smaller wavenumbers Q.
Since THall

BB and TBU give both direct and inverse transfers of energy (locally
or non-locally), it is of interest to quantify which direction wins when all of the
contributions to the transfer are added. To this end, we computed the contribution
of each transfer term to the energy flux. The total energy flux at a wavenumber k
is given by

Π(k) =
k∑

K=0

∑
Q

T(K,Q), (5.1)

where T = TUU + TBB + TUB + TBU is the total energy transfer. We can split
this flux into the energy flux due solely to the transfer of kinetic energy

ΠUU(k) =
k∑

K=0

∑
Q

TUU(K,Q), (5.2)

the flux due to the transfer of magnetic energy ΠBB = ΠMHD
BB + ΠHall

BB , where

ΠMHD
BB (k) =

k∑
K=0

∑
Q

TMHD
BB (K,Q), (5.3)

ΠHall
BB (k) =

k∑
K=0

∑
Q

THall
BB (K,Q), (5.4)

and the hybrid flux due to interactions between the velocity and magnetic fields

ΠBU(k) =
k∑

K=0

∑
Q

[TBU(K,Q) + TUB(K,Q)]. (5.5)

To compute the fluxes, the transfer functions are not normalized.
Figure 10 shows the partial energy fluxes at t = 45. Since all transfer functions

were computed up to K,Q = 40, the partial fluxes go to zero artificially at this
wavenumber, although in the simulation the total energy flux goes to zero only at
the maximum resolved wavenumber kmax.
The total flux is positive at wavenumbers larger than k0 (the energy injection

band), indicating a direct cascade of the total energy. At wavenumbers smaller
than k0 the total flux is negative, evidence of large-scale dynamo action. A sub-
stantial portion of the total flux is due to the transfer of energy from the kinetic
to the magnetic reservoirs (ΠBU), and this contribution to the flux is positive at
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Figure 10. Energy fluxes in the run with ε = 0.1 at t = 45: ΠHall
BB (k) (solid curve), ΠMHD

BB (k)
(dash-dotted curve), ΠUU(k) (dashed curve), and ΠBU(k) (dotted curve). The thick curve is
the total flux in the simulation.

all wavenumbers (larger than the forced ones) indicating a net direct transfer of
the energy. We note that this flux is due to the non-local TUB and TBU transfer
terms. The flux due to the transfer of kinetic energy ΠUU is also positive at all wave-
numbers. However, the flux due to the transfer of magnetic energy ΠHall

BB is only
positive at wavenumbers larger than kHall. For wavenumbers smaller than k ≈ 10 ∼
kHall, ΠHall

BB changes sign, giving as a result a net inverse transfer of magnetic energy,
from small to large scales. This indicates that a magnetically dominated Hall-MHD
system could display backscatter of the magnetic energy. Magnetic fluctuations at
small scales could give rise to large-scale magnetic fields, as is also implied by the
expression of β found in Sec. 3.
Note that although in MHDs the inverse cascade of magnetic helicity can give a

similar result, the backscatter predicted in Hall MHDs by the turbulent diffusivity
is novel, since it can take place even in the absence of helicity in the fields. To
illustrate this we show results of non-helical magnetically dominated simulations
in Sec. 6. It is worth noting that at wavenumbers smaller than kHall, the Hall term
increases the flux of magnetic energy to smaller scales, thus also in agreement with
results showing the Hall currents increase the amount of small-scale perturbations
(Birn et al. 2001; Laveder et al. 2002a,b; Morales et al. 2005).

5.2. Dependence with ε

Now we discuss in detail the dependence of the results as ε (or the Hall scale) is
varied. To this end, we consider the runs with ε = 0.1, 0.05, and 0 (MHD). As
previously mentioned, the transfer terms TUU(K,Q) and TBB(K,Q) do not show
a dependence with the amplitude of the Hall effect. These terms give direct and
local transfer of energy to small scales, as in MHDs (Alexakis et al. 2005b). As a
result, we will discuss the change in the remaining transfer terms as ε is varied.
Since the Hall effect is more relevant when the magnetic field is stronger, we

will consider the transfer terms at t = 45, when a large-scale magnetic field is
present and the small scales have reached saturation. Since we will examine runs
with different values of ε at the same time, in this section the transfers are not
normalized using the energies.
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Figure 11. TBU(K = 20, Q) at t = 45 for ε = 0 (solid curve), 0.05 (dotted curve), and 0.1
(dashed curve).

The transfer of magnetic energy due to the Hall term THall
BB (K,Q = 20) is of

course zero in the MHD case (ε = 0). As ε is increased, except for an increase in its
amplitude (not shown), no significant differences are observed and its behavior is
similar to that examined in Sec. 5.
Figure 11 shows the behavior of TBU(K = 20, Q) (the transfer of kinetic energy

in the shells Q to magnetic energy in the shell K = 20) as ε is varied. The strong
peak at Q = 3 is associated with the injection band. This transfer is non-local in
the three runs, as is evidenced by the positive plateau from Q ≈ 3 to Q ≈ 16. As a
result, the velocity field in all of these shells gives energy to the magnetic field at
K = 20. As ε is increased, a local transfer grows in the neighborhood ofQ = 20. The
velocity field at wavenumbersK slightly larger give energy to the magnetic field at
K = 20, while the magnetic field gives energy to the velocity field at wavenumbers
slightly smaller (Q ≈ 18).
We can compute the energy flux as ε increases. Since the transfer of kinetic

energy is not changed, we will focus on two contributions to the total flux: the
flux of magnetic energy ΠBB(k), and the hybrid flux ΠBU(k) due to the terms
turning kinetic into magnetic energy and vice versa. The magnetic energy flux
ΠBB = ΠMHD

BB +ΠHall
BB is shown in Fig. 12. At scales larger than kHall, negative flux of

magnetic energy is observed, giving backscatter of magnetic energy to large scales.
As ε is increased, the amplitude of the backscatter grows, and the wavenumber
where the flux changes sign moves to larger k.
Figure 13 shows the flux ΠBU(k). At wavenumbers smaller than the forcing

wavenumber (k = 3), the flux is negative. This is a signature of large-scale dynamo
action: the magnetic field at large scales is fed by the small-scale velocity field.
Remarkably, as ε is increased, the amplitude of the negative flux at large scales
increases. This is in good agreement with dynamo simulations where the large-
scale magnetic field was observed to grow faster in the presence of Hall currents
(Mininni et al. 2003a, 2005b).

5.3. Transfer of magnetic helicity

We discuss briefly the transfer of magnetic helicity in the saturated case t = 45.
To study the transfer associated with the inverse cascade of magnetic helicity at
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Figure 12. ΠBB(k) at t = 45 for ε = 0 (solid curve), 0.05 (dotted curve), and 0.1
(dashed curve).

Figure 13. ΠBU(k) at t = 45 for ε = 0 (solid curve), 0.05 (dotted curve), and 0.1
(dashed curve).

scales larger than the forcing scale, a large separation between this scale and the
largest scale in the box is needed. At a fixed spatial resolution, this reduces the
Reynolds numbers, and as a result also reduces the separation between the Ohmic
scale and the Hall scale. This study is beyond the aim of this work. However, we
want to point out a remarkable feature observed in the transfer of magnetic helicity
at scales smaller than the forcing scale.
Figure 14 shows the transferTH(K,Q = 20) normalized by themagnetic helicity

in the shell Q = 20 at t = 45. The transfer is mostly local in the three simulations,
peaking at wavenumbers K slightly smaller and larger than Q. However, as ε is
increased the transfer rate of magnetic helicity is strongly quenched. This slow
down in the transfer in Hall MHDs explains the behavior observed in Fig. 3. In
MHD and Hall-MHD dynamos, the external mechanical forcing generates equal
amounts of magnetic helicity of opposite sign at scales smaller and larger than
the forcing band (Seehafer 1996; Brandenburg 2001; Mininni et al. 2003a). Since
the transfer of magnetic helicity between different shells in the Hall-MHD runs
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Figure 14. TH (K, Q = 20) normalized by the magnetic helicity at the shell Q = 20, at
t = 45 for ε = 0 (solid curve), 0.05 (dotted curve), and 0.1 (dashed curve).

is almost stopped, it takes more time for the magnetic helicity at scales smaller
than the forcing scale to reach the dissipative scale where it can be destroyed. As a
result, both signs of magnetic helicity pile up close to the forcing band, decreasing
the growth rate of net magnetic helicity at scales larger than the forcing scale, and
also allowing for the possibility for a sign change of the net magnetic helicity.

6. Backscatter of magnetic energy in Hall MHDs
The mechanically forced runs discussed in the previous section show negative flux
of magnetic energy at large scales due to the Hall effect, in agreement with negative
values of the turbulent diffusivity. This indicates that in a magnetically dominated
simulation, backscatter of magnetic energy could be observed if the Hall term is
strong enough. Note that here we are using the word backscatter to refer to this
transfer of magnetic energy from the small to the large scales. This is done in
opposition to the usual terminology of inverse cascades, since we have been unable
to identify any ideal invariant of the Hall-MHD equations cascading inversely with
constant flux to the large scales.
To study this scenario, we performed three simulations with ε = 0, 0.2, and 0.5.

The kinematic viscosity and magnetic diffusivity were ν = η = 3.5 × 10−2, and
the spatial resolution was N3 = 1283. The initial condition was U = B = 0. The
system was forced with a non-helical and random electromotive force given by a
superposition of harmonic modes at wavenumbers k = 9 and 10. The phases of the
force were changed with a correlation time of τ = 1.25 × 10−2, and the time step
was set to∆t = 1.5×10−3. Note that in the absence of magnetic helicity, no inverse
cascade is expected in the MHD case (see, however, Lanotte et al. (1999) for cases
where a large-scale shear is present).
The system was run until reaching a turbulent steady state. All of the quadratic

invariants (with the exception of the total energy) were verified to be small: the
magnetic helicity fluctuates in the three runs around zero, both the global quantity
as well as its spectral density at each individual Fourier shell. Figure 15 shows
the kinetic and magnetic energy spectrum at early times (t = 3). The shell of
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Figure 15. (a) Kinetic energy spectrum EU (k) and (b) magnetic energy spectrum EB (k) at
t = 3, for runs with ε = 0 (solid curve), 0.05 (dotted curve), and 0.1 (dashed curve).

wavenumbers associated with the external magnetic force is easily recognized in
the peak in Fig. 15(b).
As time evolves, an increase in the magnetic energy at wavenumbers smaller than

the forcing wavenumber is observed. Figure 16 shows the kinetic and magnetic
energy spectrum at t = 75, when the system has reached a steady state. The three
runs are dominated by the magnetic energy (note that the peak in the magnetic
energy spectrum around the forcing band gives the largest contribution to the
energy). The spectrum of kinetic energy is similar for the three runs, and large-
scale perturbations are observed because of the injection of kinetic energy by the
Lorentz force. However, the magnetic energy spectrum is strongly modified as ε is
increased. While the spectra of the three simulations peak in the energy injection
band, the magnetic energy at K = 1 in the run with ε = 0.5 is three orders of
magnitude larger than in the MHD run. The magnetic energy in all wavenumbers
smaller than the forcing wavenumbers increases as ε is increased.
The backscatter of magnetic energy is in good agreement with the negative

flux ΠBB observed in the previous section, and the negative turbulent transport
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Figure 16. (a) Kinetic energy spectrum and (b) magnetic energy spectrum at t = 75 for
runs with ε = 0 (solid curve), 0.05 (dotted curve), and 0.1 (dashed curve).

coefficients derived for the magnetically dominated case. Note that an increase in
the level of the small-scale magnetic fluctuations (for wavenumbers smaller than
the energy injection wavenumbers) is also observed in Fig. 16(b).

7. Discussion
In this work we presented energy transfer in Hall-MHD turbulence as obtained
from numerical simulations. The properties of the spectral transfer is one of the
building blocks of turbulence theories, and to the best of our knowledge no attempt
to study transfer and cascades of ideal invariants in this system of equations had
been attempted before.
Before proceeding with the discussion of our results, we have to warn the reader

about a clear limitation of the numerical results presented. As previously men-
tioned, an astrophysics-like scale separation between the box size, the energy in-
jection scale, the Hall scale, and the Ohmic dissipation scale is well beyond today’s
computing resources. We tested the dependence of our results as εwas varied, but no
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attempt was made to change the Reynolds numbers in our simulations. This being
said, we believe that even under this limitation, an understanding of the transfer
of energy between different scales is of utmost importance for the development of
a theory of turbulence for Hall MHDs or other extensions of MHDs to take into
account kinetic plasma effects.
Direct evidence of non-locality of the energy transfer was observed. While the

total energy displays a direct cascade to small scales, in the individual transfer
terms, both directions (toward small and large scales) were identified. Coupling
between the magnetic and velocity fields is strongly modified by the Hall effect,
and a local backscatter of energy from the magnetic field to the velocity field at
slightly larger scales was observed. This behavior can be expected since the Hall
term changes the nature of the non-dispersive MHD Alfvén waves, into dispersive
and circularly polarized waves. As a result, the nonlinear coupling between the two
fields is also changed.
Also a non-local backscatter of magnetic energy was observed at scales larger

than the Hall scale. This backscatter was verified in non-helical magnetically forced
simulations, where the amplitude of the magnetic field at scales larger than the
forcing scale was observed to grow in the Hall-MHD simulations, but not in the
MHD run. In some sense, the magnetic field in Hall MHDs being frozen in the ideal
case to the electron velocity field, couples non-locally both small scales (the current)
and large scales (the bulk velocity field).
All of these processes can be partially explained considering transport turbulent

coefficients estimated from MFT. Unlike MHDs, the turbulent diffusivity in Hall
MHDs is not positive definite. In particular, its expression shows that ion-cyclotron
waves are more likely to produce large values of negative (backscatter) or positive
(reconnection) turbulent diffusivity than the whistler mode.
The transfer of magnetic helicity at small scales was also observed to be quenched

by the Hall effect. While the mechanisms generating magnetic helicity in the Hall
MHD dynamo are the same as in MHDs (Mininni et al. 2003a), the transport of
helicity is expected to be changed by the Hall currents (Ji 1999). As a result of
the slow down in the transfer rate of magnetic helicity by the Hall effect, the late
time evolution of the system is not characterized by a maximally helical large-scale
magnetic field as in the MHD case (Pouquet et al. 1976; Meneguzzi et al. 1981;
Brandenburg 2001).
The Hall term gives a direct transfer of magnetic energy at scales smaller than

the Hall scale, and an inverse transfer at scales larger than the Hall scale. This
finding sheds light into the conflicting results reported in the literature, where
the Hall effect was observed to increase the amount of small scales and magnetic
dissipation in some cases, and to help large-scale reorganization processes in other
cases, as mentioned in the introduction.
As a result of this dual direction of the Hall transfer, a change in the power

law followed by the total energy spectrum can be expected close to the Hall
wavenumber. Steepening of the energy spectrum for wavenumbers smaller than kHall
was observed in 2.5-dimensional simulations with strong magnetic fields imposed,
when the cross-correlation between the velocity and magnetic fields was significant
(Ghosh et al. 1996). In three-dimensional dynamo simulations where the cross-
correlation is in general small, no change was observed (Mininni et al. 2005b),
although a faster growth of the large-scale magnetic field was found. Given the
non-local nature of the transfer in Hall MHDs, and the scale separation needed
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to observe a clear change in the energy spectrum, probably a huge increase in the
spatial resolution is needed to confirm it.
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Mininni, P. D., Gómez, D. O. and Mahajan, S. M. 2003b Astrophys. J. 584, 1120.



Energy transfer in Hall-MHD turbulence 401
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Steenbeck, M., Krause, F. and Rädler, K.-H. 1966 Z. Naturforsch. 21a, 369.
Turner, L. 1986 IEEE Trans. Plasma Sci. 14, 849.
Verma, M. 2004 Phys. Rep. 401, 229.
Waleffe, F. 1991 Phys. Fluids A 4, 350.
Wang, X., Bhattacharjee, A. and Ma, Z. W. 2001 Phys. Rev. Lett. 87, 265003.
Yeung, P. K., Brasseur, J. and Wang, Q. 1995 J. Fluid Mech. 283, 43.
Zeldovich, Y. B., Ruzmaikin, A. A. and Sokoloff, D. D. 1983 Magnetic Fields in

Astrophysics. New York: Gordon and Breach.
Zhou, Y. 1993 Phys. Fluids A 5, 2511.


