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Marginally unstable Holmboe modes for smooth density and velocity profiles are studied. For a
large family of flows and stratification that exhibit Holmboe instability, it is shown that the modes
with phase velocity equal to the maximum or the minimum velocity of the shear are marginally
unstable. This allows us to determine the critical value of the control parameter R (expressing the
ratio of the velocity variation length scale to the density variation length scale) above which
Holmboe instability is present, R ;=2. Furthermore, systems for which the parameter R is very
close to this critical value R.; are examined. For this case, an analytical expression for the
dispersion relation of the complex phase speed c(k) in the unstable region is derived. The growth
rate and the width of the region of unstable wavenumbers has a very strong (exponential)
dependence on the deviation of R from the critical value. Two specific examples are examined and
a physical interpretation of the results is described. © 2007 American Institute of Physics.

[DOLI: 10.1063/1.2730545]

I. INTRODUCTION

Holmboe instability in stratified shear flows appears in a
variety of physical contexts such as in astrophysics, the
Earth’s atmosphere, and oceamography.l_9 Although the typi-
cal growth rate is smaller than that of Kelvin-Helmholtz in-
stability, it is present for arbitrarily large values of the global
Richardson number making Holmboe instability a good can-
didate for the generation of turbulence and mixing in many
physical scenarios.

What distinguishes Holmboe from the Kelvin-Helmholtz
instability is that unlike the latter instability, the Holmboe
unstable modes have nonzero phase velocity that depends on
the wavenumber (i.e., traveling dispersive modes). It was
first identified by Holmboe'’ in a simplified model of a con-
tinuous piecewise linear velocity profile and a step-function
density profile. Several authors have expanded Holmboe’s
theoretical work'' ™ by considering different stratification
and velocity profiles that do not include the simplifying sym-
metries Holmboe used in his model. Hazel'” and more re-
cently Smyth and Peltier'® and Alexakis'’ have shown that
Holmboe’s results hold for smooth density and velocity pro-
files as long as the length scale of the density variation is
sufficiently smaller than the length scale of the velocity
variation.  Furthermore, effects of viscosity and
diffusivity,lg'19 nonlinear ~ evolution,””*  and mixing
properties24 of the Holmboe instability have also been inves-
tigated. The predictions of Holmboe have also been tested
experimentally. Browand and Winant® first performed shear
flow experiments in a stratified environment under condi-
tions for which Holmboe’s instabilities are present. Their in-
vestigation has been extended further by more recent
experiments. 11.26-32

Although the understanding of Holmboe instability has
progressed a lot since the time of Holmboe, there are still
basic theoretical questions that remain unanswered, even in
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the linear theory. Most of the work for the linear stage of the
instability has been based on the Taylor-Goldstein (TG)
equation (see Ref. 33), which describes linear normal modes
of a parallel shear flow in a stratified, inviscid, nondiffusive,
Boussinesq fluid:

d2¢ 2 U’ J(Z)
|kt 5
dz U-c (U-c)

$=0, (1)

where ¢(z) is the complex amplitude of the stream function
for a normal mode with real wavenumber k. ¢ is the complex
phase velocity. Im{c}>0 implies instability with growth rate
given by {=kIm{c}. U(z) is the unperturbed velocity in the x
direction. J(z)=-gp'/p is the squared Brunt-Viisild fre-
quency where p is the unperturbed density stratification and
g is the acceleration of gravity. The prime on the unperturbed
quantities indicates differentiation with respect to z. Equation
(1) together with the boundary conditions ¢—0 for z
— =+ forms an eigenvalue problem for the complex eigen-
value c.

Here, a few known results for the Taylor-Goldstein equa-
tion are presented, and some results for Holmboe’s instability
are reviewed, in order to help the reader with the mathemati-
cal derivations and the discussion that follow in the next
sections. If ¢ is real and in the range of U, there is a height z,.
at which U(z,)=c. At this height z,, called the critical height,
Eq. (1) has a regular singular point. For some conditions,
unstable modes exist with the real part of the phase velocity
within the range of U. The phase speed of these modes sat-
isfies Howard’s semicircle theorem, |c—1/2(sup{U}
+inf{U})| < 1/2|sup{U}-inf{U}|. If these unstable modes
exist, the Miles-Howard theorem™ guarantees that some-
where in the flow the local Richardson number defined by
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FIG. 1. Stability diagram for the Hazel model for R=3. Panel (a) shows the
Kelvin-Helmholtz unstable region with dark gray, and the Holmboe unstable
region with light gray. In the Kelvin-Helmholtz region, unstable nontravel-
ing modes (Re{c}=0) exist. The boundary of this region is composed of
neutral modes with ¢=0. In the Holmboe unstable region, on the other hand,
unstable dispersive modes exist with 0<|Re{c}| <1. The left stability
boundary of this region is composed of modes with ¢=1, and the right
stability boundary is composed of singular neutral modes with 0 <c¢<1. On
the left of the Holmboe unstable region, stable gravity waves exist with
|c|>1 and on the right of the Holmboe unstable region neutral singular
modes exist with |¢| <1. Panel (b) shows the same instability diagram for
larger values of J,. For sufficiently large J,, more than one Holmboe un-
stable region exists. These new unstable modes are related to the higher
harmonics of the internal gravity wave spectrum.

- e @

must be smaller than 1/4.

Equation (1) has been shown to give rise to Kelvin-
Helmholtz and Holmboe unstable modes for a variety of ve-
locity and density profiles. An example that captures both
kinds of instabilities (introduced originally by Hazel in Ref.
15) assumes a velocity profile given by U(z)=tanh(z) and the
squared Brunt-Viisild frequency being given by J
=J, cosh(Rz)™2, where J, is the global Richardson number
defined here as J,=Ri(0). This example (from now on called
the “Hazel model”) has been used in many studies, and is
going to be used as the basic example in the current work to
illustrate the more general results derived in the following
sections. It is useful for this reason to describe it in some
detail.

The case of R=1 was examined by Miles® analytically
and numerically by Hazel.'S It exhibits only Kelvin-
Helmholtz instability for the wavenumbers that satisfy k(1
—k)>J,. Hazel" also examined numerically the case R=5 in
which it was shown that along with the Kelvin-Helmholtz
unstable region, there is also a stripe (in a Jy,—k diagram) of
unstable Holmboe modes. As an example, the instability re-
gion for R=3 is shown in Fig. 1(a). In this case, the Jy—k
plane is divided into four regions. The Kelvin-Helmholtz un-
stable region consists of unstable modes with Re{c}=0 and is
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restricted in the finite region shown in Fig. 1(a) (marked with
dark gray). The boundary of this region is composed of
modes with ¢=0 (see Refs. 15 and 35). The Holmboe un-
stable region forms a semi-infinite stripe in the diagram and
is present for arbitrary large values of the global Richardson
number J,, (marked with light gray in Fig. 1). The unstable
modes in this region are dispersive with phase velocity sat-
isfying 0<|e| <1. At that time of Hazel’s" investigation,
the kind of modes that determine the boundaries were not
determined. The two regions on the left and on the right of
the Holmboe instability stripe are stable and consist of stable
gravity waves and singular modes that are part of the con-
tinuous spectrum.”’40

Hazel observed that if R>2, there is always a height at
which the local Richardson number  Ri(z)
=J, cosh(z)*/cosh(Rz)? is smaller than 1/4. Based on this
observation, Hazel conjectured that R=2 is the critical value
of R above which the Holmboe instability appears. Later
careful numerical examination by Smyth16 found unstable
Holmboe modes to appear only for values of R larger than
R>2.4. More recently, Alexakis'” showed that the instability
can be found for smaller values of R up to R=2.2, making
the conjecture by Hazel still plausible. It is worth noting that
the width of the Holmboe instability stripe and the growth
rate of the modes decrease as the control parameter R is
approaching the value 2 from above, making the detection of
the Holmboe unstable modes with a numerical code difficult.

More specifically, Alexakis'” showed (numerically) for
the Hazel model that the left instability boundary of the
Holmboe instability region [see Fig. 1(a)] is composed of
marginally unstable modes with phase velocity equal to the
maximum or the minimum of the shear velocity. Such a con-
dition has been known to hold for smooth velocity and dis-
continuous density proﬁles.%f38 Finding these marginally
unstable modes corresponds to solving for the energy states
E=-k? in a Schrodinger problem for a particle in a potential
well,

d*¢
pri [k + V()] =0, (3)
where
_U e
VC(Z) - U-c - (U— C)z (4)

and c is taken to be c=U ,/min, the maximum or minimum
velocity of the shear layer. Note that the modes ¢=U ,.y/min
do not always exist. For the Hazel model, for example, these
modes exist only if R=2 (see Ref. 17). The right boundary
of the Holmboe unstable region, on the other hand [see Fig.
1(a)], is composed of singular modes with phase velocity
within the range of the shear velocity. These modes can be
determined by imposing the condition that the solution close
to the critical height can be expanded in terms of only one of
the two corresponding Frobenius solutions (see Ref. 17).
Furthermore, it was shown that for sufficiently large J,
more than one instability stripe exists. These new instability
stripes are related with the higher internal gravity modes of
the unforced system, and their right instability boundaries are
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determined by the higher eigenstates in the Schrddinger
problem (3). Figure 1(b) shows the instability region for R
=3 and J, up to 80. We note that different unstable Holmboe
modes have been found experimentally in Ref. 32 that were
then interpreted in terms of the multilayer model of Ref. 12.

The physical picture, described in Ref. 17, for the Holm-
boe instability is as follows. For sufficiently small wavenum-
bers, the solutions of the TG equation include a discrete
number of stable gravity waves with phase velocity larger
than the velocity of the shear. As the wavenumber is in-
creased, the phase speed of these modes decreases approach-
ing the maximum value of the velocity of the shear. If the
stratification length scale is small enough, there is a critical
wavenumber k, for which the phase velocity of the waves
becomes equal to the maximum wind velocity. This corre-
sponds to the left instability boundary of the Holmboe un-
stable region. For wavenumbers larger than k,, the phase
velocity of the gravity waves is smaller than the maximum
wind velocity and the modes become unstable. The instabil-
ity persists up to another critical value of the wavenumber
k=k,, for which the growth rate is zero but the real part of
the phase velocity is within the range of U. The mode with
this wavenumber exhibits a singular behavior at the critical
height and determines the right instability boundary of the
Holmboe unstable region. For wavenumbers smaller than k,
a continuum of singular neutral modes exists.

The understanding, however, of the linear part of Holm-
boe instability for smooth shear and density profiles still re-
mains conjectural and most of the results are based on nu-
merical calculations, therefore they do not constitute proofs.
This work attempts to address some of these issues. In the
next section, it is proven for a general class of velocity pro-
files that the modes that have phase velocity equal to the
maximum/minimum velocity of the shear are marginally un-
stable. Section III examines the case for which the parameter
R is slightly larger than its critical value, and the dispersion
relation inside the instability region is derived based on an
asymptotic expansion. In Sec. IV, these results are tested for
specific shear and density profiles. A summary of the results,
their physical interpretation, and the final conclusions are in
Sec. V.

Il. MARGINAL WAVENUMBER

In this section, for a general family of flows the modes
with phase velocity equal to the maximum/minimum veloc-
ity of the flow are examined with the aim of determining
under what conditions these modes constitute a stability
boundary.

Consider an infinite shear layer specified by the mono-
tonic velocity profile U(y) that has the asymptotic values
U(xx)=U.,... Since the system is Galilean invariant with no
loss of generality, we can set U, .=-U_,=U,. More pre-
cisely, we will assume that the asymptotic behavior of U(y)
for y— + is going to be given by

Uly) =U.—-U'e™. )

The layer is stably stratified with J(y) >0 having asymptotic
behavior J(y)=J"e ™ for y— +o. In what follows, we are
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going to concentrate only on the modes with phase velocity
close to ¢=U,; the results can easily be reproduced for the
c¢=U_,, modes by following the same arguments.

At this stage, it is useful to rescale the variables in the
TG equation using the maximum velocity U.. and the length
scale a~!. The new vertical coordinate now becomes y=az.
The wavenumber becomes g=k/« and ¢ is measured in units
of U.,. The resulting nondimensional control parameters for
our system are the ratio of the two velocities, o= U */U.,; the
asymptotic Richardson number, J.=T1(U a)?
=J'/(0U,a)? and the ratio of the two length scales, R
= 8/ a. To avoid introducing more symbols, the same sym-
bol for the functions U,J, ¢,V, is going to be used for both
coordinates z and y. The velocity profile in the z coordinates
U(z)=U,-U"e ™ becomes in the y coordinates U(y)=1
—oe™ and J(z)=J"¢ P becomes J(y)=02J.e® (without
introducing a new symbol for U and J as a strict
mathematical formulation would demand). For example, in
the Hazel model @=2 and U.=1 and the velocity profile
becomes  U(y)=tanh(y/a)/U,=tanh(y/2) and J(y)
=(Jo/ a2U>)cosh™(Ry/ a)=02J,, cosh™2(Ry/2). Note that
J(z) has units of [velocity]*/[length]? and needs to be res-
caled by a?U2, and V, has units of [length]2 and needs to be
rescaled by @?. The TG equation (1) in the new coordinates
system for the large values of y becomes

2 -y —Ry
d_d) & age o*J..e 6=0. (6)

dyz_ _I—O'e‘y—c_(l—o'e_y—c)z

Let us assume that a solution ¢y(y) of the Schrodinger
problem described in Eq. (3) for the wavenumber go=ky/ «
exists. Note that for large y and for c¢=1, the potential V,(y)
has the behavior V,(y)=1-J.e"®27 Clearly, if R>2 the
asymptotic behavior of V, for large y is V.(y)=1 and ¢(y)

behaves as ¢~ @.e™™ with A=\g>+1. If, however, we have
R=2, then V. (y)=1-J,, for y— and \=\g*+1-J.,. For
abbreviation denote for both cases

AN=VNg+1-17, (7)

where J (that will be defined precisely later on) takes the

values J=0 when R>2 and J=J,, when R=2. As discussed
in Ref. 17, no solution exists that satisfies the boundary con-
ditions for the Schrodinger problem described in Eq. (3) if
R <2 since it corresponds in finding bounded eigenstates in
an unbounded potential well.

The aim in this section is to find how ¢ changes from the
value 1 as we increase g from the value g,. We proceed by
carrying out a regular asymptotic expansion by letting ¢
=qp+€q; and c=1-€c;+--- with 0<e<<1 and ¢, in general
complex. However, as we deviate from the c=1 case, the
behavior of the potential V,(y) drastically changes [O(1)
change] in the large y region and only slightly (linearly with
respect to the change in ¢) for y=((1). Figure 2 illustrates
this change for the Hazel model. This implies that two dif-
ferent expansions are needed, one for y being of O(1) and
one for large y.
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FIG. 2. The potential V.(y) for the Hazel model with R=3 and J,=1 for
three values of ¢, c=1 (solid line), c=1+ € (dashed line), and c=1- € (dotted
line), where 0 <e<1. For ¢=1V,(y), asymptotes to the value V.= 1. This
behavior drastically changes when ¢ # 1. For ¢ <1V,(y), there is a singular-
ity at U(y)=c and asymptotes to 0. For ¢ > 1V,_(y), there is no singularity but
asymptotes to O for sufficiently large y. Note that the potential V,(z) has
units [length]™? and has been rescaled by a?=4 to obtain V,(y).

A. Local solution: y=0O(1)

Starting with the local solution and expanding ¢ as ¢

=g+ ed;+--- for y=O(1) results at first order in the
equation
d*¢
dyzl - [61(2) + VoW 11 =[2g190 — ¢1V1(y) 1o, (8)
where V=V, is given in Eq. (4) for c=1 and
a| U J(y)
Vi) = —| —— -
10) &C[U—c (U—c)z} =1
U’ 2J(y)

TWw-1r W=t

The solution of this inhomogeneous equation can be found
using the Wronskian to obtain

!

| pao-emiomsionay
¢1 = d’o(Y)fO ¢é(y/)

where the normalization condition @(0)=¢(0) is chosen.
Clearly this solution satisfies the boundary condition for y
— -, For y— +, by performing the integrations, we
obtain

dy', (9)

2 I, —cl
- q190l1 — € 2e>\y+ O(e_)\y)’ (10)
AN

where I, =[*2¢idy>0 and I,=[*2V, $idy. Here we need to
assume that the integral I, exists and is finite. Note that if
Vi(y) is not singular, |I,| < for R>2, but |I,| <o only if
A>1/2 for R=2. The O(e™) terms can be neglected when
compared with ¢, but not the O(e") terms since for suffi-
ciently large y they can become important.

So the large y behavior of ¢ based on the local solution
is given by

¢

2q1qo0l, — ¢l
q190%1 172 2 g

11
v (11)

bd=q¢.e™+e
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B. Far away solution: y=O(In[1/€])

As discussed at the beginning of this section, the behav-
ior of V.(y) drastically changes when ¢# 1 [O(1) change]
for large values of y. In particular, the TG equation (6) for
large values of y and for c=1-ec; reads

2 JEPR
2o | p—2 < le=0. (2

dy* - - ecley—()'_ (ecie” — 0)?

For y of O(1), this expression reduces to the case c=1 to first
order. This is no longer true when the denominators in the
above equation are close to zero (i.e., ec;e’ ~ o). To capture,
therefore, the large y behavior, we need to make the change
of variables y=y-y,., where y.=—In(ec,/ o) is the location of
the singularity determined by U(y.)=c. (Note that for ¢,
complex, y does not coincide with the real y axis.) The
Taylor-Goldstein equation (1) then reads

8
L) (oo
T ! Jw(‘T) < =0, (13)
5 | e weon 770

where 6=R-2 and only the leading terms have been kept.
Introducing the variable s=e™ leads to

752S§
(1-s)?

d’ d s
—d+s—d-|q - - =0 14
sds2¢+sds¢ [q 1-s ]¢ ’ (14)

where J=J., - (ec;/0)? is the Richardson number at the criti-
cal height. Note that if R=2 (i.e., §=0), then J=J,,=O(1). If,
however, R>2, then J<1 and the term in the brackets pro-

portional to J is small and can be neglected everywhere ex-
cept close to the singularity s=1. To deal with this small
singular term, we can write for s close to 1, s°=1-8(1-s)
+---, and keep the leading term. That way the principal term
inside the brackets is always kept for all values of s and our
solution will be correct to first order for all values of R=2
by solving

Zd_z i lZ S i] =0 (15)
sdsz¢+sds¢_ a4 _l—s_(l—s)2 ¢=0.

To deal with the singularities at s=0 and 1, we can make the

substitution ¢=s9(1—-s)*h(s) with u=1/2-\ 1/4—J. This
leads to the hypergeometric equation
d? d
s(1=85)—5h+[Q2g+1)-Qu+2q+1)s]—h
ds ds
+[1-p-(g+1D]h=0, (16)

the solution of which is the hypergeometric function A(s)
=F(a,b,d;s) with

a=(u+q)+\Ng*+1-17,
b=(u+q) - Ng*+1-17,

and
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d=2g+1).

Note that g+pu—a=—\ and g+u—b=+\. Some basic prop-
erties of the hypergeometric function are given in Appendix
A; here only the resulting asymptotic behavior of ¢ is given,

lim ¢p=s9=e%, (17)
s—0
o T@T-a)
Jim = oY
T(d)[(a - b)

u—b
+ F(a)F(d—b)sq(_ s, (18)

Returning to the y variable and up to a normalization factor
A, the asymptotic behavior of ¢ for y<y, is
F(@)l'(d=-Db)I(=2N)
oM
ro)rd-aren)

d=A|le™ + (- ec))? (19)

C. Matching

Matching the exponentially decreasing terms of the local
and the faraway solution, we obtain A=¢,, and from the
exponentially increasing terms we have

F(a)I'(d-b)I'(-2N)

62611%11 —aly
T(B)T(d-a)l@N)

_ 2\
v @(— €cy)

(20)

The equation above can be solved iteratively by letting ec;
=ecy+ercs+---. To first order, we obtain

2q190l
I,

) (21)

,_
=

which gives the first correction to the phase speed and deter-
mines if the real part of phase speed is increasing or decreas-
ing with the wavenumber. If, for example, I, >0 (which will
be the case in the examples that follow), then ¢ is decreasing
with ¢ and the correction c¢| is positive for positive ¢; and
negative for negative ¢;. The opposite holds if I, <0. From
now on we will assume that /,>0, which is the physically
expected case (Re{c(k)} being a decreasing function of k; for
example, a step function density profile gives ¢~ 1/vk). If,
however, there is a velocity and density profile such that /,
<0, the same results will hold but for the opposite direction
in ¢ (i.e., wavenumbers smaller than g, will be unstable and
wavenumbers larger than g, will be stable). This first-order
correction, however, is real, and contains no information
about the growth rate. At the next order, we have

eyl s L(@T'(d=D)T'(-2\)
T e pul= )™ T(O(d—a)T2N) (22)

This correction is much smaller but contains the first-order
correction of the imaginary part of c¢. The dispersion relation
of ¢ for g close to g, can then be written in terms of g as
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c=1

N2 [ = 2kol, 2
—(g—-9q0)

2q0l,
- (q—q0) +
I

I, I,
I'a@)I'(d-b)I'(-2N)
IF®)r(d-al'2N)

(23)

Special care is needed to interpret the term (—cj)** for c|
given by Eq. (21). When g, <0, ¢| is negative and the term
(—cy)?* is real; this corresponds to the case in which ¢ be-
comes larger than the shear velocity and no critical layer is
formed. The Howard semicircle theorem then guarantees sta-
bility. This proves that wavenumbers slightly smaller than g,
are stable. When ¢, >0, ¢/ is positive and (—c|)** becomes a
complex number that can take different values depending on
whether the minus sign is interpreted as '™ or e™". The
choice depends on the location of the singularity on the com-
plex plane when we integrate the Taylor-Goldstein equation
(1). If Im{c,;}>0, then (—c,)** should be interpreted as
|c;[* e~ ™ because the integration is going over the singu-
larity. If Im{c,}<0, then (—c,)** should be interpreted as
|ci[*he* M because the integration is going under the singu-
larity. Here we arrive at an important point in the derivation:
the sign of the imaginary part of ¢ based on Eq. (23) depends
on the original assumption about the sign of Im{c} when the
TG equation is integrated across the singularity. Thus, in
order for the matching to be successful, we need to verify
that the original assumption about the sign of Im{c,} is con-
sistent with the final result. If we assume that Im{c,}>0,
then from (22) we have that

2N@2 T(a)[(d - b)[ (- 2)N)
I, TBI(d-aT2N)
(24)

0 < Im{c,}=sin(2\7)|c,[*

where Im{(c|)?*} is written as —sin(2\1)|c|** as previously
discussed. The matching is successful only if the sign of the
right-hand side (r.h.s.) of Eq. (24) is positive as originally
assumed and only then is the dispersion relation (23) valid.
(We arrive at the same condition if we initially assume that
Im{c}<0). It is shown in Appendix B that for R>2 (i.e., J
=(), the r.h.s. of (24) is always positive and the matching is
successful. For the special case, however, in which R=2 (i.e.,
J=J.), the matching is not always successful because the
product I'(b)I'(d—a) that appears in Eq. (24) can change sign
depending on the value of J. In particular, it is shown in
Appendix B that if J>2¢/(2g+1)2, the rh.s. of Eq. (24) is
negative and thus we end up with a contradiction. Therefore,
in the R=2 case, we have shown instability only if

J<2q/(2q+ 1) (25)

Note that the maximum of the right-hand side of Eq.
(25) is 1/4, and this condition implies that the Richardson

criterion should hold at the location of the critical height J
=Ri(y,) < 1/4.

The unsuccessful matching when the condition (25) is
not satisfied suggests (but does not prove) that there is no
smooth solution that satisfies the TG equation in this limit.
However, the TG spectrum does not consist only of smooth
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modes. There is an infinity of neutral modes with a discon-
tinuity of the first derivative at the critical height and it can-
not be considered as the limit of smooth unstable solutions
for Im{c}— 0. These modes form the continuous spectrum of
the Taylor-Goldstein equation and have been studied before
in the literature.’>* Tt is possible, therefore, that the reason
there is no successful matching for the modes with ¢ > ¢ is
that in this region only modes of the continuous spectrum
exist. It is also important to emphasize that the lack of insta-
bility at this order does not imply stability. Nonzero growth
rate of smaller order can still exist and therefore the above
result should be interpreted only as a sufficient condition for
instability.

To summarize this section, it has been shown that if R
>2, the modes with phase velocity equal to the maximum
phase velocity of the shear are marginally unstable: wave-
numbers with ¢<<g, are stable and wavenumbers with g
>gq, are unstable. If R=2, these modes are marginally un-
stable only if the condition (25) is further satisfied and stable
(to the examined order) otherwise. The only assumptions that
were needed for the proof is that (i) the asymptotic behavior
of the velocity and density profile has the exponential behav-
ior described at the beginning of Sec. II, (ii) modes with
c(g)=1 exist, and (iii) the integral I, exists and is finite.

lll. MARGINAL R

In the preceding section, marginal instability was shown
when the wavenumber ¢ is varied from the critical value g.
However, the wavenumber is not a control parameter in a
system. It is desirable, therefore, to examine a system for
which one of the control parameters (J, or R) is close to the
critical value for which the instability begins. Since Holmboe
instability is present for arbitrarily large values of J,, the
only other control parameter left is R. It is interesting, there-
fore, to consider a case for which R=2+ 6 with 0< <1 and
the ¢=1 solution (¢y,qy) is known with g, such that J,
>24,/(2gy+1)? so that the R=2 case gives no instability at
the examined order. We make a small variation in g=gq,
+€g, and c=1-e€c, with the exact relation between 6 and €
still undetermined. At this stage, it is assumed that € is suf-
ficiently smaller than 6 so that the procedure in the previous
section is still valid, and then the value of € gradually in-
creases until the approximations in the previous section start
to fail. As the value of € is increased, the most sensitive term
(in €) that will be affected first is the term proportional to
.7=Joc~(ec1/0')5 in Eq. (15), for which € is raised to the small-
est appearing power. Note that if e<<exp[—1/4], then J<1
and the results of the previous section are still valid. If, how-
ever, e~ O(exp[-1/8]), then J~O(1). Following the same
steps as in the previous section, we end up in the dispersion
relation given by Eq. (23), but as in the R=2 case, J cannot
be treated as a small parameter.

The difference from the 6=O(1) case will therefore ap-
pear when we try to determine the sign of the r.h.s. of Eq.
(24). To have successful matching, we need to satisfy the
condition (25). Since J is finite, the condition J< 2q/(2q
+1)? that also appears in the R=2 case could be violated. To
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capture the whole unstable region, we define € such that
J..€°=2q,/ (1+2q,)* or
_ 2q0/-]oo
L (1+240)?

Note that the term inside the brackets is always smaller than
1. For such a choice, the condition (25) for instability reads

1/6
] <. (26)

= ()| 2a0 o
J=1, ( ) —[(1+2q0)2}[1+51n(c,/0')+(’)(5)]

o

2499
<|———=|+0(e 27

[(1*'26]0)2} © 27
or ¢;/o<1. Already at this stage it can be seen that there is
instability only if ¢;=2q;9(l,/1, <o and therefore the insta-
bility is confined in the region of wavenumbers

q0<q<qo+Aq, (28)

where Ag=eoal,/2qyl,. Therefore, the second instability
boundary for the Holmboe instability is given by g+Aq. To
get the full dispersion relation in this asymptotic limit, we
need to expand in terms of & the product I'(d—a)I'(b) that
appears in Eq. (23) since this is the term that can change sign

depending on the value of J. This is done in Appendix B, and
the resulting growth rate inside the instability region to the
first nonzero order becomes

2(q = q0)q0,
(3 20'

{=qoIm{c} = - 6C,qolq0 - g™ 1n< >, (29)
where C;>0 is an O(1) quantity and is given in Eq. (B1).
The maximum of the growth rate is obtained for g—g¢
=ee”"M,0/(2q,l,) with the growth rate being given by

max[ (] = &€ e Laols | (30)

Therefore, the growth rate scales like €* and the width of
the instability region scales like Ag~ €. In terms of &, these
relations are given by /~ 8e™>*”? and Ag~ e~"'%, where 7 is
a positive constant. This very strong dependence with & sug-
gests that both ¢ and Ag decrease very rapidly as 6 becomes
smaller. This can explain the difficulty numerical codes have,
when attempting to calculate growth rate for values of R very
close to R=2.

IV. EXAMPLES

The previous sections presented some general results for
the Holmboe unstable modes. This section examines some
specific examples often used in the literature to model Holm-
boe’s instability.

Consider first the Hazel model that was introduced in
Sec. I. Based on the definitions given in Sec. II, we have that
=2, B=2R, U'=2, and J.=4J,. The resulting nondimen-
sional quantities are J,=Jy,/4, 0=2, g=k/2, and R has the
same meaning. This model satisfies all the conditions that are
stated in Sec. II, therefore for R>2 the modes with c(k)
=+1 are marginally unstable. Furthermore, for the case R
=2 there is instability only if the condition (25) is satisfied,
or in the units of this example if Jy/4 <k/(k+1)2. A simple
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FIG. 3. The c=1 solutions for the Hazel model J,(k) for R=2 (solid line),
the condition from Eq. (25), J,<4k/(k+1)* (dashed line).

numerical integration shows that this is not the case for this
profile (see Fig. 3). Therefore, the R=2 is stable (to the ex-
amined order) and is the critical value beyond which the
Holmboe instability begins. The imaginary part of c(k) for
this profile for the case in which R=2.1 and J,=1.2 is shown
if Fig. 4, where the numerical result is compared with the
asymptotic expansion of Eq. (29). Although 6=0.1 is not
very small, there is satisfactory agreement (a 20% differ-
ence) between the asymptotic and the numerical result. It is
worth mentioning that it is very hard to find a range of values
of & in which both the asymptotic result is valid and Im{c} is
large enough to be captured by a numerical code. Note that
decreasing the value of 6 from 0.1 to 0.05 has resulted in a
drop of Im{c} by three orders of magnitude.

A second family of flows that is considered in this sec-
tion assumes a velocity profile given by U(y)=tanh(y) as in
the Hazel model and the density stratification being deter-
mined by

Jo

—gpllp= ——
spip cosh?®(y)

The advantage of this profile is that there are analytic solu-
tions for the Kelvin-Helmholtz stability boundaries J,,(k) for
the cases in which R=0, 1, and 2. These stability boundaries
are determined by the neutral modes that have phase velocity
equal to the velocity of the flow at the inflection point, i.e.,
¢(k)=0. In addition, there is an analytic solution J,,(k) for the
modes k for which c(k)=1 for the R=2 case. The R=0 case

-4 L L

10 — 5=0.100

1075k ====5=0.075 4
3 ool T §=0.050 |
£

o data forf
§=0.1

1077

1078 ‘

0.00017  0.0010  0.0100  0.1000
k—kq,

FIG. 4. The Im{c} for the Hazel model for R=2+ 6 with §=0.1,0.75,0.05
and Jy=1.2. The diamonds indicate the results from numerical integration
for the 6=0.1 case.
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FIG. 5. The c¢=1 and 0 solutions for the model with density stratification
given by J(y)=J, cosh™k(y) for R=0 (dotted line), R=1 (dotted line), and
R=2 (solid line).

was examined in Ref. 41, in which it was shown that the
Kelvin-Helmholtz unstable modes satisfy J,<k>(1—k?). The
R=1 case (which reduces to the R=1 case of the Hazel
model) was investigated in Ref. 35, in which it was shown
that the Kelvin-Helmholtz unstable modes satisfy Jj<<k(1
—k). The R=2 case has not been investigated before (to the
author’s knowledge). One can show following the same
methods used for the R=0,1 cases>*'** that the c(k)=0
modes satisfy

_k1-H2+RE
0= 4(k+1)2

with @(y)=[1-tanh(y)*]¥?-[tanh(y)]"4~\""4~%0 and provide
the Kelvin-Helmholtz instability boundary. The c(k)=1
modes, on the other hand, that are of interest for the Holm-
boe instability satisfy

_ k(3+2k)
07 (k+1)2

for k<1. The stream function ¢ for these modes is given by
S=[1+tanh(y)]*2-[1-tanh(y)]"¥/#*1~0,  The  Kelvin-
Helmbholtz stability boundaries for the three cases R=0,1,2
along with the c=1 solutions for the R=2 case are shown in
Fig. 5. For this example, =2 and g=k/2 and J,,=2284],.
The Jy(k) relation for the c=1 solutions does not satisfy the
criterion (25), which now reads J,<k/(k+1)?, thus the R
=2 case is stable (to the examined order) and is the critical
value above which the Holmboe instability begins. Because
J.. is four times bigger than in the Hazel model (for the same
Jy), the resulting growth rate is smaller by a factor of 472V¢,
which is close to 107'* for the §=0.1 case. Figure 6 shows
the growth rate based on the asymptotic expansion (29). No
numerical results could be obtained for this case for values of
6=0.1 that would justify a comparison with the asymptotic
expansion. This example, when compared with one of Hazel,
clearly demonstrates the sensitivity of the resulting growth
rate to the large y asymptotic behavior of J(y) and U(y): a
change by a factor of 4 in J,, resulted in a 14 orders of
magnitude difference in the growth rate.
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FIG. 6. The Im{c} for the J(y)=J,cosh™R(y) model for Jy=1.2 and R=2
+ 68 with 6=0.1 (solid line) and 6=0.075 (dashed line).

V. CONCLUSIONS

In this paper, Holmboe’s instability for smooth density
and velocity profiles is examined analytically. It is shown for
a large family of flows that the modes with phase velocity
equal to the maximum or minimum of the unperturbed ve-
locity profile when they exist, and if the parameter R is
above the critical value (R,;=2) they constitute a stability
boundary. This result confirms the results obtained numeri-
cally in Ref. 17, where the fact that the c=U,,min» modes
are marginally unstable was only conjectured based on
physical arguments and numerical results. It is also the first
time shown analytically that the value of R=2 for the Hazel
model is the critical value R_; above which the Holmboe
instability begins.

For the case in which the parameter R is only slightly
larger than its critical value R_;=2, the dispersion relation
c(k) was obtained based on an asymptotic expansion. For
this marginally unstable flow, the growth rate { as well as the
width of the instability stripe Ag have a very strong depen-
dence on the deviation of R from its critical value. In par-
ticular, the growth rate { and the width of the instability Ak
scale as exp[-2Ay/(R-R.y)] and exp[—y/(R—R.)],
respectively (for some positive constant ). For this reason,
the numerical investigations performed in the pastlﬁ’17 were
not able to capture the instability for values of R very close
to Rcrit'

The author believes also that the present results go be-
yond the clarification of a mathematical detail in the litera-
ture. They demonstrate the mechanisms involved in the
Holmboe instability in a quantitative way, for the limit ex-
amined in this paper. In physical terms, one recognizes two
regions that are important. First there is the region y=0O(1)
that determines to first order the real part of the phase veloc-
ity of the gravity waves (i.e., the correction ¢| of order €).
The gravity waves are coupled to the critical layer that ap-
pears at the height at which the velocity of the shear is equal
to the phase velocity of the gravity waves. The location of
the critical layer for an unstable gravity wave mode has to be
at large enough heights so that the shear strain can overcome
stratification. One would then expect that the height of the
critical layer would be such that Ri(y,) <1/4. [Note that for
the cases examined, Ri(y)~J,e~®. This restricts y, to the
range In(4J,)/ 8=y, and can be very large.] The growth rate
of the mode will then strongly depend on the properties of
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the shear at this height (i.e., the correction ¢} of order ).
The coupling between the critical layer and the gravity wave
gives rise to the instability. This necessary coupling between
the gravity wave and the critical layer restricts the unstable
wavenumbers in the following way. If the wavenumber is too
small, the gravity wave travels faster than the shear velocity
and there is no height y. such that U(y,)=c, no critical layer
will be formed, and the gravity wave will be stable. If the
wavenumber is too large, the gravity wave is slow and the
critical layer forms in small heights such that Ri(y)>1/4,
the shear strain will not be able to overcome the stratifica-
tion, and as a result the gravity wave will be stable again.
Therefore, unstable wavenumbers are only the ones whose
phase speed is smaller than U, but large enough so that the
critical layer is formed in the Ri(y) <1/4 region. As the pa-
rameter R approaches from above the critical value R ;=2,
the smallest allowed height of the critical layer becomes
larger and as a result the range of allowed wavenumbers for
Holmboe’s instability becomes smaller and the growth rate is
decreased.

For example, for the density and velocity profiles con-
sidered in this paper, if the phase speed of a mode close to
the critical wavenumber ¢, can be written in terms of a Tay-
lor expansion as c(gy+Ag)=1+a,Ag+ -+ (with a,
:[&qc(q)]q:q0<0), the unstable wavenumbers will be re-
stricted in two ways. First, Ag must be positive (Ag>0) so
that the phase velocity is smaller than 1. Second, the condi-
tion Ri(y,) ~J.e~®<<1/4 needs to be satisfied. The critical
layer will form at a height y,~—In(a;Aq) where the behavior
U(y)=1-¢7 is assumed again. This leads us to the estimate
Ag= a[1[4Jw]‘”§.

Furthermore, as the critical layer moves at larger heights,
its coupling with the gravity wave becomes weaker. How
weak this coupling is will depend on the amplitude of the
gravity wave mode at the critical height. If we estimate the
critical height by Ri(y,) =J..e~® ~ r (for some r in the range
0<r<1/4), and taking into account that ¢~ e~ for large y
leads to an estimate of the growth rate {~ e ™Ne~[r/J,]7V°.
The scaling that we get for Ag and ¢ as a function of J,. and
6 with these simple phenomenological arguments is exactly
the same with the scalings that were obtained in the detailed
calculation. Although these phenomenological estimates
should not be trusted to a large extent, they can provide a
first order of magnitude estimate of the expected unstable
wavenumbers and their growth rates, in situations where the
exact functional form of the density stratification and the
velocity profile are not precisely known, as in experiments,
and in geophysical and astrophysical flows.

Finally, it is the author’s belief that the results given in
this paper can provide a basis for further numerical and ana-
lytical investigations such as an examination of the weakly
nonlinear theory where a small nonlinearity is taken into
account in order to examine the long time evolution of an
unstable mode beyond the linear stage.
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APPENDIX A: THE HYPERGEOMETRIC EQUATION:
BASIC PROPERTIES

The hypergeometric equation is

2
z(1 —z)d—f

dZ2+[d—(a+b+1)z]Z—JZC—abf=O.

(A1)

The solution that remains finite as z— 0 is the hypergeomet-
ric function, f=F(a,b,c;z). For the normalization condition
we are using, we have the following limits:

lim F(a,b,c;z) = 1/T'(d),

z—0

, o L@ld-a-b)
fim Fla.b.¢32) = L T d—b)
(T (a+b-d)

d-a-b
T@l®) (1-2)",

T dT(b - a)
I'(H)T(d - a)

()T (a-b)
" T(@)T(d-b)

lim F(a,b,c;z) =

Z—+>

(=27

(-2

provided that d#0,-1,-2,... and a—> is not an integer.

APPENDIX B: THE SIGN OF THE INSTABILITY
TERM

To determine whether we have successful matching, we
need to find the sign of the imaginary part in the dispersion
relation (23). We examine each term separately. Clearly,
I'(a), T'(2\), and I'(d-b) are all positive factors since the
argument of the I function is positive. The factor I'(=2\) is
changing sign every time 2\ is an integer. However, its prod-
uct with sin(2\7) always remains negative. The factors I'(b)
and I'(d—a), however, can change sign depending on the

value of J. Using the expressions for a,b,d, one can show
that -1 <b<0if J<(2¢)/(2g+1)? or if 2¢=<1, and positive
otherwise. Similarly, we have that —1<d-a<0 if J
>(2¢g)/(2g+1)* and 2¢g<1 and non-negative otherwise.

Combining these two inequalities, we can determine the sign
of the product

I(b)T(d-a)<0 ifandonlyif J<(2¢)/(2q+1)>.

The result in (24) then follows.

To find the dispersion relation for the small 6 and €
given by (26), we need to find an expression for the term
I'(b)['(d—a). Substituting the choice of € given by (26) in the
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expression for b and d-a and using J=J.(ec,/ o)’
=J,(e)01+8In(c,/0)], we have that to first order in & if
qu > 1,

1 1
b= —=6J.,€In(c,/o) / +
2 V4= 1+qy—J.€

and b=0(1) if 2qy<1. Similarly,

1, ! !
d_a:—(sjoof ln(Cl/(T) [ 5+ / 4
2 V4= U N1+qo-J.€

if 2¢g<1 and d-a=0(1) if 2¢g>1. Using the I'-function
property I'(8)=T"(1+ 6)/ 5, we can write the dispersion rela-
tion for qy<gqg<gqo+e€al,/kyl, as

c=1-2(q~-q0)qoli/1

2(q - g0)q0l 1)

+6Ci(q0- @)™ hl(
120'

where

_J.€\¢ ( 2q0l, )”‘sin(Z)\)F(a)F(d —b)['(=2)N)
=

I, I T'(w)I'(2N)

1
X +— (B1)
{ V1/4-J.€ \1+g- Jme‘s}

with w=b if 2gy<1 and w=d—a if 2¢,> 1.
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