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Stratified shear flow instabilities at large Richardson numbers
Alexandros Alexakisa�
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Numerical simulations of stratified shear flow instabilities are performed in two dimensions in the
Boussinesq limit. The density variation length scale is chosen to be four times smaller than the
velocity variation length scale so that Holmboe or Kelvin–Helmholtz unstable modes are present
depending on the choice of the global Richardson number Ri. Three different values of Ri were
examined Ri=0.2, 2, and 20. The flows for the three examined values are all unstable due to
different modes, namely: the Kelvin–Helmholtz mode for Ri=0.2, the first Holmboe mode for
Ri=2, and the second Holmboe mode for Ri=20 that has been discovered recently and this is the
first time that it is examined in the nonlinear stage. It is found that the amplitude of the velocity
perturbation of the second Holmboe mode at the nonlinear stage is smaller but comparable to first
Holmboe mode. The increase in the potential energy, however, due to the second Holmboe modes
is greater than that of the first mode. The Kelvin–Helmholtz mode is larger by two orders of
magnitude in kinetic energy than the Holmboe modes and about ten times larger in potential energy
than the Holmboe modes. The effect of increasing Prandtl number is also investigated, and a weak
dependence on the Prandtl number is observed. The results in this paper suggest that although
mixing is suppressed at large Richardson numbers it is not negligible, and turbulent mixing
processes in strongly stratified environments cannot be excluded. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3147934�

I. INTRODUCTION

The destabilization of stratified layer due to the influence
of a shear is a common phenomenon in nature. It occurs
when the pressure gradients in the flow can overcome gravity
and overturn the fluid. If the Reynolds number is large
enough then this process quickly becomes turbulent, diffu-
sion is enhanced by the generation of small scales and the
kinetic energy of the flow is converted irreversibly to poten-
tial energy. The rate kinetic energy is converted to potential
energy and the total amount of potential energy gained can
be of crucial importance in determining the evolution of
many physically important systems, like the atmosphere,1,2

oceanic,3–6 and astrophysical flows.7–9 In particular in this
work the generation of turbulence and mixing in strongly
stratified environments is examined. Such flows appear in
accretion flows of hydrogen and helium into compact stellar
object �white dwarf� composed of carbon and oxygen.7,8 A
detailed analysis of the nuclear reactions of hydrogen burn-
ing has shown that energy release via catalytic nuclear reac-
tions in which carbon and oxygen play a crucial role can lead
to a nuclear runaway, in which a large fraction of the ac-
creted matter is expelled in the form of a shell; such a run-
way is referred in the astronomical literature as a nova. How-
ever, how the needed carbon and oxygen of the compact star
is mixed to the overlying accreted envelope in an environ-
ment where the acceleration of gravity can six orders of mag-
nitude larger than terrestrial values �Ri�1–100 depending
on the shear generation mechanism7� is still an open ques-
tion. Turbulent mixing in the presence of strong stratification

is also reported in atmospheric and oceanic flows.10–12 It is of
interest therefore to be able to estimate the amount of mass
mixed and how much increase of the potential energy can be
generated by shear flow instabilities as a function of the con-
trol parameters of the system. To that respect simple shear
layer models of velocity shear profiles U�y� and density pro-
files ��y� that depend only on the vertical coordinate of the
system �here taken to be y� have been proven very useful in
understanding the involved processes.

This work investigates a model first introduced by
Hazel.13 The model assumes a velocity profile given by

UH�y� = U0 tanh�y/LU� �1�

and the density profile given by

�H�y� = �0�1 − � tanh�y/L��� , �2�

that are illustrated in Fig. 1. The ratio of the velocity varia-
tion length scale LU to the density variation length scale
R=LU /L� is one of the control parameters of the system.
Another important control parameter in this system is the
Richardson number that expresses the ratio of the stabilizing
effect of gravity to the destabilizing effect of the shear. For a
general velocity and density profile the Richardson number
can be defined locally at a height y as

Riloc�y� = − g
d�

dy
/��dU

dy
�2

,

where g is the acceleration of gravity. It also convenient to
define a global Richardson number Ri in order to give a
general measure of the strength of the stratification. In this
work Ri is going to be defined as the local Richardsona�Electronic mail: aalexakis@gmail.com.
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number at y=0, that for the Hazel model becomes
Ri�Riloc�0�=g�RLU /U0

2.
Instabilities and generation of turbulence at large values

Richardson numbers seem somehow prohibited since the
Miles–Howard theorem14 guarantees that any flow in the in-
viscid nondiffusive limit is linearly asymptotically stable if
the local Richardson number is everywhere smaller than 1/4.
This has restricted a lot of investigations to small values of
global Richardson numbers. However, depending on the de-
tails of the flow and the density stratification, there can be
regions in space where the local Richardson number can be
smaller than 1/4 while the global Richardson number is
larger than 1/4. These flows cannot be excluded from becom-
ing unstable.

For the Hazel model if R is smaller than 	2 the Riloc�y�
has a unique minimum at y=0 thus, linear instability can
exist only if the global Richardson number is smaller than
1/4. The unstable modes in this case are stationary �nondis-
persive� waves concentrated around the y=0 plane where the
flow has the strongest shear. These modes are referred in the
literature as Kelvin–Helmholtz modes �KH-modes� due to
their resemblance with the instability of step function density
and velocity profile investigated by Lord Kelvin15 and
Helmholtz.16 The linear stability of these modes has been
investigated analytically by Miles17 and numerically by
Hazel.13 The nonlinear development of Kelvin–Helmholtz
unstable modes has been investigated extensively in the lit-
erature both experimentally18,19 and numerically.20–26 Their
nonlinear evolution leads to the formation of discrete billows
around the height of the strongest shear that curl the density
gradients. Secondary three dimensional instabilities at the
nonlinear stage lead to the formation of a turbulent layer and
fast mixing.27

For R in the range 	2�R�2 the local Richardson num-
ber Riloc�y� has two minima symmetrically placed around the
origin with values smaller than the global Richardson num-
ber. However in this range of R instability has been found
only for values of the global Richardson number smaller than
1/4 with similar nonlinear evolution as with the R�	2 case.

For R larger than 2, Riloc�y� decays exponentially to 0
for large values of y. Thus, the Miles–Howard theorem can-
not guarantee linear stability of the flow even for arbitrarily

large values of the global Richardson number. The parameter
range R�2 therefore appears to be a good candidate for
instabilities in the strongly stratified limit. A numerical inves-
tigation of the inviscid linear instability problem in this pa-
rameter range was first performed by Hazel13 �and later on
by Smyth and Peltier28�. These early investigations have
shown that beside the Kelvin–Helmholtz instability that is
confined to values of the global Richardson number smaller
than 1/4, new unstable modes are present. These new modes
appear as pairs of counterpropagating dispersive waves that
are concentrated above and bellow the density “interface.”
The unstable modes were found to be confined in a strip �in
the Ri-wavenumber plane� that extends to arbitrarily large
values of Ri. These results reproduce qualitatively the results
of a piece wise linear velocity and discontinuous density
profile introduced earlier by Holmboe29 and are referred in
literature as Holmboe modes. Numerical investigations of
the Holmboe instability have been performed in two30 and
three dimensions.31–36 It is worth noting that in Ref. 33 it was
found that the Holmboe mode for R=3 resulted in larger
irreversible increase of potential energy than the Kelvin–
Helmholtz mode with R=1 although the latter one had larger
growth rate. Experimentally Holmboe modes have been in-
vestigated by various groups.37–44 In the nonlinear stage the
unstable waves form of cusps, whose breaking is responsible
for mixing.

The persistence of the Holmboe instability at arbitrary
large values of Ri makes them better candidates for the gen-
eration of turbulence at strongly stratified environments.
However, the growth rate of the unstable modes appears to
decrease exponentially with the Richardson number,29 and
the presence of even small viscosity restricts the region of
instability to relatively small values of Ri.

Recently it was shown by the author45,46 that the un-
stable modes found by Hazel13 are not the only ones present
in the Hazel model. When R�2 there is an infinite series of
unstable regions in the Richardson-wavenumber parameter
space in the form of strips. Each new instability strip appears
at larger value of Ri and corresponds to a different internal
gravity wave that becomes unstable when its phase speed
becomes equal to the maximum velocity of the flow.46 These
modes are going to be referred to as higher Holmboe modes,
and are going to be numbered with the order of appearance
as Ri is increased �first Holmboe mode, second Holmboe
mode, etc.� with the mode found by Hazel13 and Smyth and
Peltier28 being the first Holmboe mode. It was further found
in Ref. 45 that for a fixed Ri the highest Holmboe mode, has
the largest growth rate. Therefore these newly discovered
modes may provide a new mechanism for generation of tur-
bulence and mixing in strongly stratified flows.

The nonlinear evolution of the higher Holmboe modes,
has not been investigated in the nonlinear regime neither
numerically nor experimentally since typical investigations
so far have focused on small values of the global Richardson
number. The results of the linear theory for the higher Holm-
boe modes are promising for the generation of turbulence in
strongly stratified environments, however, turbulence and
mixing can only be addressed in the nonlinear stage of the
evolution.
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FIG. 1. A sketch of the model under study.
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This work examines the development of shear flow in-
stabilities that span three orders of magnitude of the global
Richardson number. The examined values Ri=0.2, Ri=2.0,
and Ri=20, correspond to the three different unstable modes:
the Kelvin–Helmholtz mode for Ri=0.2, the first Holmboe
mode for Ri=2.0 and the second Holmboe mode for
Ri=20. Since this is the first numerical study of the second
Holmboe mode the investigation is restricted only to two
dimensions, in order to get a basic understanding of the non-
linear development without the additional complications of
secondary three dimensional instabilities. However, since
properties of turbulence and mixing can be very different in
three and two dimensions care is needed in the interpretation
of the results, and their implications to the physical systems.
For this reason the results in this paper will be restricted only
to basic mechanisms involved and the relative increase of
kinetic and potential energy of the examined modes without
examining in detail mixing properties that would depend on
the dimensionality of the system.

In Sec. II we introduce in detail the model that is going
to be investigated, examine the linear theory of the viscous
problem, give the details of the numerical code, and justify
the choice of parameters. Section III presents the results of
the numerical simulations. The last section discusses the re-
sults of this work and their implications and conclusions are
drawn.

II. METHODOLOGY

A. The mathematical model

In this study a two dimensional incompressible flow of
an inhomogeneous in density fluid will be considered. The
fluid is confined in a rectangular box of size LY, LX with
periodic boundary conditions in the x-direction and free-slip
�uy =0, �yux=0�, no-flux ��y�=0� conditions in the top and
bottom boundary. The Boussinesq equations for the evolu-
tion of the velocity and density field then read

�tu + u · �u =
1

�0
� P − jg

�

�0
+ ��2u + iF , �3�

�t� + u · �� = ��2� + S , �4�

where u is the incompressible velocity field, and � is the field
of the density variation. The mean value of the density field
is given by �0. � and � are the viscosity and the diffusivity of
the fluid. g is the acceleration of gravity assumed here to act
in the negative y-direction. F�y� is a forcing function and
S�y� is density source/sink term with zero average so that
the space averaged density 
��=�0 is conserved. F and S
are chosen so that F=−��y

2UH and S=−��y
2�H where UH�y�

and �H�y� are given in Eqs. �1� and �2� with y=0 correspond-
ing to the midplane of our box. With this choice u= iUH�y�
and �=�H�y� are exact solutions of the Boussinesq equations
�3� and �4�. �To be more exact we need to add an exponen-
tially small term in Eqs. �1� and �2� �proportional to
−2U0y /Ly sech2�LY /2LU�, and −2�0y /LY sech2�RLY /2LU��
in order for the laminar solutions UH�y� and �H�y� to satisfy
the boundary conditions. This term was included in the nu-
merical simulations for consistency although at the examined

box sizes presented here it did not seem to play an important
role, however, at smaller box sizes it helped to avoid the
formation of boundary layers at y= �LY /2. A sketch of the
model that is investigated is shown in Fig. 1.

To nondimensionalize the system we are going to use the
velocity amplitude U0, the velocity length scale LU, and the
density �0. Thus, in the results presented in Sec. III all length
scales are in units of LU, time scales in units of LU /U0, and
energy density in units of �0U0

2. This leads to four nondimen-
sional control parameters that control the Hazel model,
namely: the Richardson number Ri defined as Ri�Riloc�0�
=g�LU

2 /U0
2L�, the Reynolds number Re�U0LU /�, the

Prandtl �or Schmidt� number Pr�� /� and the ratio of the
velocity length scale to the density length scale R=LU /L�.
In addition to the just mentioned parameters of the Hazel
model there are two more parameters in the examined system
due to the finite size of the computational box �Y �LY /LU

and �X�LX /LU.

B. The linear instability problem

Before investigating the nonlinear problem we need to
examine the linear stability problem for the diffusive and
dissipative system in parameter range that is going to be
examined with the numerical simulations. The linear stability
theory considers the evolution of infinitesimal perturbations
to the background density and velocity profiles. The velocity
perturbation is going to be written in terms of a stream func-
tion � as u− iUH�y�= i�y�− j�x� and the density perturbation
as �−�H=	. A normal mode expansion will be assumed

� = � �̃ke
ik�x−ct�, 	 = � 	̃ke

ik�x−ct�,

with k being the wave number in the x-direction and c the
complex phase speed. If the imaginary part of c is greater
than zero then the normal mode will grow exponentially with
growth rate 
=kI�c� �where I�� stands for imaginary part�.
Linearizing Eqs. �3� and �4� with respect to � and 	 lead to
the eigenvalue problem

��UH − c�D2 − UH� −
�

ik
�D2�2��̃k + � g

�0
�	̃k = 0,

�5�

��UH − c� −
�

ik
D2�	̃k + �H� �̃k = 0

for the eigenvalue c. Here, prime indicates differentiation
with respect to the y-coordinate and D2 stands for the opera-
tor D2=�y

2−k2. If we assume zero viscosity and diffusivity
Eq. �5� simplifies to the Taylor–Goldstein equation �see, for
example, Ref. 47�.

In this work, however, the effect of viscosity and diffu-
sivity cannot be neglected and the full eigenvalue problem
�5� needs to be examined. The eigenvalue problem was
solved numerically by expanding the two perturbative fields
�k, 	k in a finite sum of sines �stream function� and cosines
�density�. With this choice the two fields always satisfy the
boundary conditions. The eigenvalue problem �5� then be-
comes a matrix eigenvalue problem of the form Ax=cBx
which is then solved using the linear algebra package LAPAC.

054108-3 Stratified shear flow instabilities Phys. Fluids 21, 054108 �2009�
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For Re=500 and R=4 that will be the choice in the numeri-
cal simulations presented here, 128 modes were sufficient for
the code to converge to the third digit of the growth rate for
all the modes except the ones close to the stability bound-
aries. For the modes with the real part of c close to �1 �that
correspond to the small wave number boundary of Holmboe
instability� the eigenvalue code had problem converging with
such accuracy. The results in this paper are restricted modes
with �c��0.98 and as a result the stability boundaries pre-
sented here extend to slightly smaller wavenumbers.

Figure 2 displays the stability diagram in the
Richardson-wavenumber plane for Re=500, R=4, Pr=1, and
�Y =8�. Shaded regions show the locations of positive
growth rate �light regions correspond to high growth rate�.
Different regions of instability can be seen. The shaded re-
gion for large Richardson numbers �12�Ri�30� corre-
sponds to the second Holmboe mode, while the shaded re-
gion for smaller values of Ri�8 corresponds to the first
Holmboe mode. The Kelvin–Helmholtz modes are restricted
to small values of Ri�0.25 and cannot be seen clearly in this
diagram. The Kelvin–Helmholtz instability region appears as
a thin shaded region close to Ri=0 in the range 0�k�1.
The dashed lines indicate the stability boundaries of the in-
viscid, nondiffusive system. It can be clearly seen that even a
small viscosity �Re=500� has significantly reduced the un-
stable regions.

Figure 3 shows the growth rates at the same parameter
regime as a function of the wave number for the three exam-
ined values of the Richardson number Ri. As can be seen the
Kelvin–Helmholtz mode has the largest growth rate �solid
line� 
�0.127 for k�0.36, the first Holmboe mode �dashed
line� has maximum growth rate 
�0.0516 for k�0.96, and
finally the second Holmboe mode has maximum growth rate

�0.0159 for k�0.92. It is worth noting when comparing
the Kelvin–Helmholtz modes with the second Holmboe
mode that although the Richardson number has changed by a
factor of 100 the growth rate has been decreased by a factor
less than 10.

Different values of Re have also been examined. Here, it
is just noted that unstable second Holmboe modes were

found for Reynolds numbers Re160. The maximum
growth rate for the second Holmboe mode at Ri�22, k�1
becomes roughly Reynolds number independent when
Re500 �a difference less than 5% was noted for the growth
rate for Re=500 and Re=1000�.

C. The numerical method

To solve Eqs. �3� and �4� a psedospectral code was used.
The velocity field was written in terms a stream function � as
u= i�y�− j�x�. The stream function and the density field
were expanded in sines and cosine modes �respectively� in
the y-direction and in Fourier modes in the x-direction.

� = �
k

�̃keikxx sin�kyy��, � = �
k

�̃keikxx cos�kyy�� ,

where y�=y−�Y /2 and kx=2�n /�X, ky =�m /�Y with n, m
integers. The spatial derivatives were calculated in sine-
Fourier space while products of fields were calculated in real
space. Dialiasing was achieved using the 2/3 rule. The fields
were advanced in time using a third order Runge–Kutta
method.

The adopted resolution for each performed run was de-
cided based on the spectral properties of the two fields. A run
was considered well resolved if the gradients of the two ad-
vected quantities density � and vorticity w=��u were suf-
ficiently resolved so that the peak of the spectrum of �� and
�w larger �roughly by a factor of 10� than its value at the
largest wave number.

Special care needs to be taken to determine the time step
that satisfies the Courant–Friedrichs–Lewy �CFL� criterion.48

The time step �t used in the code should be smaller than the
grid size �x divided by the maximum speed in the problem.
There are two relevant speeds in the examined problem one
given by the flow velocity and one given by the gravity wave
speed. For sufficiently sharp density interfaces the gravity
phase speed scales like c�	g /k. Typically in simulations of
the Kelvin–Helmholtz or the first Holmboe mode the crite-
rion �t��x /U0 is sufficient to satisfy CFL since U0 is the
largest speed in the system. �Note that the phase speed of the
unstable Holmboe modes has to be with in the range of U for
the instability to exist.� An exception to this rule is the case

FIG. 2. The stability diagram in the Richardson-wavenumber plane. Shaded
regions show the locations of positive growth rate �light regions correspond
to high growth rate�, white regions are stable. The dashed lines indicate the
stability boundaries of the inviscid, nondiffusive system. The dotted hori-
zontal lines indicate the three examined Richardson numbers.

FIG. 3. The growth rate for the three examined values of the Richardson
number: Ri=0.2 Kelvin–Helmholtz. Solid line Ri=2.0 first Holmboe mode
dashed line, Ri=20, second Holmboe mode.
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for which boxes much larger �Lx�LU� than the typical un-
stable wavelength are considered. For such long boxes, grav-
ity waves of much larger wavelengths, and thus much larger
phase speeds are allowed in the computational box. In this
case it is the phase speed of the longest �and thus fastest�
gravity wave that determines the allowed time step.

When investigating the second Holmboe mode one
needs to be more careful because the unstable gravity wave
mode is not the fastest mode in the system but rather the first
Holmboe mode which is stable and has phase speed much
larger than U0. As a result a much smaller time step was
used for the simulations of the second Holmboe mode. In
practice the time step used was based on the formula

�t=a�x /max�U0 ,	gLX /2�� for a=0.1.

D. Parameter choice

In principle it is desirable to study this system in the
limit Re,�X ,�Y →� in order to make contact with flows that
appear in nature. In addition large numbers of Ri�1 should
be considered for the astrophysical flows that were men-
tioned in Sec. I. The Prandtl number also is expected to be
large to justify the presence of the sharp interface. Further-
more, in nature, the instabilities develop both in space and
time. Spatial evolution can then influence the behavior of the
modes as has been shown in Refs. 49 and 50. Ideally then,
the spatial evolution of a localized perturbation in a long
computational domain should also be considered. However,
computational constraints put strong restrictions on the
parameter space that can be examined.

In the present investigation, R was fixed to the value
R=4 that is sufficiently larger than the critical value R=2 but
not too large so that the density interface is too sharp to
resolve. The three examined values of the Richardson num-
ber Ri=0.2, 2, and 20 were based on the results of the linear
theory. Both for the first and the second Holmboe mode the
values of Ri=2 and Ri=20 are very close to the value for
which the growth rate obtains its maximum value in the Ri-k
plane for each mode �as can be seen in Fig. 2�. For the
Kelvin–Helmholtz mode we could have chosen a value of Ri
that is arbitrarily small, since the maximum growth rate is
obtained for Ri=0. The choice of Ri=0.2 was made so that
the three values differ by an order of magnitude each.

The choice for �x was based on resolution and time step
restrictions. As mentioned in the previous section increasing
�x not only increases the number of modes that are needed
for a fixed resolution but also decreases the time step. Two
choices were made for this parameter. First single mode per-
turbations were examined and �x was fixed to the value
�x=2� for the Holmboe modes so that the evolution of the
most unstable wavenumber k�1 is captured. Similarly for
the Kelvin–Helmholtz instability the choice of �x=8� was
made. For a second set of runs that more than single wave-
lengths was perturbed the choice �x=8� was made for all
three values of the examined Richardson numbers so that
also subharmonic coupling can also be captured. The evolu-
tion of a localized disturbance in time and space �see Refs.
49 and 50� would require much larger values of �x and is not
considered here. �y has to be sufficiently large so that the

boundaries play minimal role in the development of the in-
stability. In the simulations the value �Y =8� was chosen. It
proved to be sufficient for all modes.

The Reynolds number was based on resolution require-
ments. In the examined cases a uniform grid with 512 grid
points in the y-direction proved to be sufficient to resolve
flows with Re=500. Larger runs of 1028 grid points in the
y-direction with the same Reynolds number were also per-
formed but for shorter times that were in very good agree-
ment with the 512 runs.

The choice of the Prandtl �Schmidt� number Pr=1 was
also based on resolution requirements. In most cases that
Holmboe instability appears are with Pr much larger than
one. However such a choice would require an even finer grid
to resolve the resulting thin filaments of density gradients. In
Ref. 34 different grid sizes were considered for the evolution
of the velocity and the density field so that large Prandtl can
be considered efficiently. Such an option will be considered
in future investigations. To test the dependence of the results
on the Prandtl number a parameter study is performed vary-
ing the Prandtl number from 1 to 10.

At this point, the choice of including the density source
and forcing functions S ,F should also be justified. For suffi-
ciently large Re,Re Pr the evolution of the background fields
due to viscosity and diffusion happens in a much longer time
scale than the time scale given by the growth rate of the
instabilities. In such case the evolution of the unstable modes
is not expected to be affected significantly by the slow
evolution of the background fields and the inclusion of
S ,F would not be necessary. However since the second
Holmboe mode has a relatively small growth rate very large
Reynolds numbers need to be considered for such an as-
sumption to hold. In this work the inclusion of the forcing
functions makes the background fields exact solutions of the
Boussinesq equations �3� and �4� and allows the investiga-
tion of the instability problem free from long time scale
approximations.

III. RESULTS

A. Single mode perturbations

First the evolution of a single unstable mode is exam-
ined. The size of the domain �X is chosen so that it is close to
the wavelength of the fastest growing mode. For the Kelvin–
Helmholtz mode �Ri=0.2� a box of size �X=8� was chosen
and for the two Holmboe modes a box size of �x=2�.

The initial conditions for the runs consisted of the back-
ground fields given in Eqs. �1� and �2� plus a small pertur-
bation in the velocity. A perturbation in the density field was
not added because the energy of such perturbation will de-
pend on the value of the gravitational acceleration g that is
essentially varied with the Richardson number in the three
examined cases. The form of the perturbation in terms of the
stream function is

�pert = fs�y�sin�kx + �r� + fas�y�cos�kx + �r� , �6�

where �r is a random phase, k is the smallest wavenumber in
the examined box, and fs�y�, fas�y� are a symmetric and an
antisymmetric functions concentrated around the mid plane

054108-5 Stratified shear flow instabilities Phys. Fluids 21, 054108 �2009�

Downloaded 22 Jan 2013 to 129.199.120.226. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



that satisfy the boundary conditions. The form of the pertur-
bation was chosen so that there is no a priori exclusion of
symmetric or antisymmetric solutions.

After short transient time the most unstable eigenmode
becomes dominant and an exponential increase in the space
averaged kinetic energy of the perturbation

Ek�t� =
1

�X�Y
� 1

2
�0�u − iUH�2dxdy �7�

and the space averaged potential energy of the perturbation

Ep�t� =
1

�X�Y
� �� − �H�g�ydxdy �8�

is observed. Figure 4 shows the time evolution of the kinetic
energy Ek �top panel� and the potential energy Ep �bottom
panel� of the perturbation for the three examined values of Ri
in a log-linear plot. Note that since the definition of the po-
tential energy is linear with respect to � the increase in the
potential energy of the perturbation Ep is equal to the in-
crease in the potential energy of the whole system. The evo-
lution of the energy of the Kelvin–Helmholtz mode for
Ri=0.2 is plotted with a dashed line and is marked as KH.
The oscillating line marked as H1, corresponds to the energy
of the first Holmboe mode with Ri=2.0. The fast oscillating
line �that appears as a thick line� marked as H2, corresponds
to the second Holmboe mode for Ri=20. The time axis has
been rescaled using the growth rate 
 of each mode,
�obtained from the linear theory� in order to fit the three lines
in one plot for comparison. As a result in the linear stage the
three modes appear to grow with the same rate. The straight
lines �at 1�
t�3� show the prediction of the linear theory
e2
t. All three modes were started with the same perturbation
energy, however, the Kelvin–Helmholtz mode had a shorter
transient time and started growing sooner than the Holmboe
modes and for this reason it appears as if the KH mode starts
with more energy.

In the linear stage of evolution the energy of Kelvin–
Helmholtz grows like a pure exponential �e2
t. Unlike the

Kelvin–Helmholtz case that a single stationary mode is
present Holmboe modes appear in pairs of opposite traveling
waves. The observed energy evolution of the Holmboe
modes shown in Fig. 4 is the energy of the sum of the two
waves �left and right traveling waves� each one of which
grows like �e�
� i��t. As a result the total energy scales
like �e2
t�1+� cos�2�t�� where � is a constant smaller than
one that is proportional to the overlapping of the eigenfunc-
tions of the two waves. This leads to the observed oscilla-
tions of the kinetic and potential energy in Fig. 4. The fre-
quencies of oscillations for the first and the second Holmboe
mode are similar. In Fig. 4 since the time axis has been
rescaled with the growth rate the oscillations of the second
Holmboe mode appear as of higher frequency. It is also
worth noting that the amplitude of the oscillations of the
second Holmboe mode are smaller than those for the first
Holmboe mode implying that in the former case there is less
overlapping of the two waves.

For 
t larger than 4, the waves have reached an ampli-
tude for which the nonlinearities become important and the
exponential growth stops. The amplitude of the energy, how-
ever, that this transition occurs is very different for the three
modes. In the nonlinear stage the amplitude of the kinetic
energy of the KH mode is roughly two orders of magnitude
bigger than that of the two Holmboe modes. The exponential
growth of the first Holmboe and the second Holmboe mode
stops at the same amplitude �Ek�10−3� but the evolution of
the kinetic energy the second Holmboe mode is followed by
a decrease in amplitude and then a subsequent rise at later
times. This process appears to operate in much longer time
scale than the wave crossing frequency and is possibly re-
lated to the weak coupling of two counterpropagating waves.
The kinetic energy of the second Holmboe mode, however,
always appears to be smaller that the kinetic energy of the
first Holmboe mode roughly by a factor of 3.

The behavior of the potential energy in the nonlinear
stage has a different behavior. The potential energy increase
in the second Holmboe mode appears to exceed the potential
energy of the first Holmboe mode. Although it is still smaller
than the potential energy of the Kelvin–Helmholtz mode the
difference is much smaller than that of the kinetic energy. It
is worth noting that apart from the fast oscillations, on longer
time scales, the potential energy is increasing monotonically
this suggests that the potential energy that has been gained
has been irreversibly mixed and thus cannot be returned to
the flow.

The structures that develop at the nonlinear stage of evo-
lution of the Kelvin–Helmholtz and the first Holmboe mode
have been studied before in literature. Here the results of
these runs are also presented for comparison with the second
Holmboe mode that is examined here for the first time. Fig-
ure 5 shows the resulting structures of the Kelvin–Helmholtz
instability at the nonlinear stage. The top panel shows a gray-
scale image of the vorticity and the bottom panel shows a
gray-scale image of the density stratification. The Kelvin–
Helmholtz mode has lead to the well observed pattern where
the vorticity and the density layer have rolled up. It is noted
here that the snapshot that was taken at 
t�6 has already

FIG. 4. Top panel: Time evolution of the kinetic energy of the perturbation
of the Kelvin–Helmholtz mode dashed line �KH�, the first Holmboe mode
oscillating line �H1�, and the H2 mode fast oscillating line �appears like
thick line� �H2�.
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past the stage that secondary three dimensional instabilities
are expected to appear if the study was in three dimensions.

Contrary to the Kelvin–Helmholtz instability the first
Holmboe instability leads to a pair of gravity waves coupled
with two vortices above and below the density interface that
travel in opposite directions. The gravity waves form cusps
and eject material and thus mix the heavy fluid below the
interface with the lighter fluid on top. A snapshot of the
vorticity �top panel� and density �lower panel� fields are
shown in Fig. 6. The solid black lines shown in the gray-
scale image of the density are the contour lines that indicate
the levels that the variation of density ��−�0� has 95% of its
maximum �bottom line� and minimum �top line� value.

Finally gray-scale images of the vorticity �top panel� and
density �bottom panel� of the second Holmboe mode are
shown in Fig. 7. The second Holmboe mode also consists of
two counter propagating gravity waves. The gravity waves
form cusps and mixing is the result of the breaking of these
cusps just like the mechanism for mixing of the first Holm-
boe mode. However when comparing the structures of the
first and the second Holmboe mode there are some differ-
ences that should be noted. First it can be seen that the vor-
ticity field has a more complex structure for the second

Holmboe mode that involves the coupling of two pairs of
counter-rotating vortices close to the density interface. The
density structures are more similar for the two modes, how-
ever, the second Holmboe mode the cusps that form in the
gravity waves are much weaker and appear at higher levels
of density. The density contour lines that are drawn in the
lower panel of Figs. 6 and 7 indicate the levels that the
variation of density ��−�0� has 99% of its maximum �bottom
line� and minimum �top line� value �unlike the contour lines
in Fig. 4 for the first Holmboe mode where levels of 95%
was shown�. This implies that for the second Holmboe mode
the mixing events that are related with breaking of the cusps
happen at larger heights where the density gradients are
weaker and thus the mixing rate is slower.

B. Multimode perturbation

The situation of a single mode perturbation is somehow
idealistic, in more realistic situations more than one wave-
length will become unstable and their coupling at the nonlin-
ear stage could affect the resulting mixing rates. Furthermore
in the previously discussed set of runs different box sizes �X

were used. For a more fair comparison we need same box
sizes and a more general perturbation than the excitation of
just a single wavelength. For this reason a second set of runs
was examined for the same Richardson numbers as in the
previous subsection. Here the box width �X was set toj �X

=8� for all runs. The initial perturbation in the stream func-
tion that was introduced consisted of a sum of perturbations
of the form of Eq. �6� for ten wave numbers k=2�n /�X �for
n=1, . . . ,10�. The density field was left again unperturbed.

The evolution of the kinetic �top panel� and potential
energy �lower panel� of the perturbation is shown in Fig. 8.
Unlike Fig. 4 a linear scaling for the y-axis is used so that the
nonlinear stage is more clearly displayed. However because
the energy of the Kelvin–Helmholtz mode is much larger
than the Holmboe modes it has been rescaled by dividing the
kinetic energy by a factor of 100 and the potential energy by
a factor of 10. As in Fig. 4 the time scale has been rescaled
with the growth rate of each mode.

FIG. 5. Gray-scale image of the vorticity �top panel� and the density �lower
panel� field at the nonlinear stage for the Kelvin–Helmholtz instability.

FIG. 6. Gray-scale image of the vorticity �top panel� and the density �lower
panel� field at the nonlinear stage for the first Holmboe mode instability.

FIG. 7. Gray-scale image of the vorticity �top panel� and the density �lower
panel� field at the nonlinear stage for the second Holmboe instability.
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The kinetic and potential energy of the Kelvin–
Helmholtz perturbation has little difference from the previ-
ously examined case and obtains similar values of kinetic
and potential energy in the nonlinear stage as with the run
examined in the previous section. This is because both runs
were performed in a similar size box with only the initial
perturbation being changed. Only small changes were ob-
served in the resulting structures of the vorticity and density
field from the single mode run and are not shown here.

The evolution of the kinetic energy of the first Holmboe
mode is shown in the top panel of Fig. 8 with the solid line
marked as H1. The evolution of the two energies has similar
behavior with the single mode investigations at early times.
At times larger than 6�
t there is an increase in the ampli-
tude of kinetic and potential energy as well as an increase in
the amplitude of the oscillations. This behavior is due to the
coupling of the different unstable Holmboe waves. As shown
in the gray-scale images of the vorticity �top panel� and den-
sity �bottom panel� of the first Holmboe mode in Fig. 9 two

of the initially four vortices that had developed in the linear
stage have merged leading to three vortexes below the inter-
face and four above the interface.

The evolution of the second Holmboe mode has also
some differences than the single mode perturbation that were
previously examined. First, for this run it the mode with
k=3 /4 that dominates the nonlinear behavior and not the
k=1 as in the single mode case examined in Sec. III A. The
growth rates for the two wave numbers are very similar
�
=0.0156 for k=1 and 
=0.0150 for k=3 /4� and although
both wave numbers were present at early times 
t�4� the
wave number k=3 /4 dominated. It is also worth noting that
the decrease in the kinetic energy after the first peak that was
observed in the single mode run is not observed here. The
potential and kinetic energies, however, have only slightly
larger values than the ones observed in the single mode in-
vestigations. When compared with the first Holmboe mode
the potential energy of the second Holmboe mode is larger
�Fig. 10�.

Finally it should be observed that there is not a clear
saturated stage of the potential energy observed in the simu-
lations. This implies that the increase of vertical mixing of
mass by fluid motion has not yet been fully suppressed by
the nonlinearities.

C. Prandtl number dependence

In situations that appear in nature sharp density gradients
occur when the diffusion length scale is much smaller than
the viscous length scale. So the validity of the assumption
made in the so far presented work of unity Prandtl number is
in question. In principle, high Reynolds number flows are
turbulent and the molecular viscosity and diffusivity should
be replaced by a turbulent viscosity and diffusivity, at this
limit then the flow statistical properties will become indepen-
dent of the Prandtl number. However, if such an assumption
is true cannot be tested by the present �two dimensional�
simulations. To address the issue of large Prandtl number a
series of numerical simulations for the second Holmboe

FIG. 8. The evolution of the kinetic energy �top panel� and potential energy
of the perturbation for the multimode runs. The kinetic energy of the
Kelvin–Helmholtz mode here shown with a dashed line and marked by KH
has been decreased by a factor of 100 the potential energy has been de-
creased by a factor of 10. The oscillating solid line marked by H1 corre-
sponds to the first Holmboe mode. The solid line marked by H2 corresponds
to the second Holmboe mode.

FIG. 9. Gray-scale image of the vorticity �top panel� and the density �lower
panel� field at the nonlinear stage for the first Holmboe instability.

FIG. 10. Gray-scale image of the vorticity �top panel� and the density �lower
panel� field at the nonlinear stage for the second Holmboe instability with
�X=8�.
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mode were carried out varying the Prandtl number. Four
simulations are going to be presented in this section with
Prandtl numbers Pr=1,2 ,5 ,10. To deal with the increasing
demand for resolution as the Prandtl number is increased box
sizes of half the height �Y than in Secs. III A and III B were
performed and only single mode Holmboe waves were con-
sidered. Only minor differences were observed due to the
box size decrease when the Pr=1 simulations were compared
to the results in Sec. III B. All the other parameters in the
system were kept fixed.

The simulation procedure follows exactly the same
methodology as discussed in Sec. III B. The evolution of the
kinetic energy of the perturbation as a function of time for
four runs with different Pr �but fixed Re=500, R=4, Ri=20�
is shown in Fig. 11. Although there is an initial decrease in
the saturation amplitude at the nonlinear stage as the Prandtl
number is increased the three runs with the largest Prandtl
number �Pr=2,5 ,10� have very similar behavior and the
three curves in Fig. 11 overlap.

The time evolution of the potential energy is shown in
Fig. 12. For the potential energy a slower convergence with
the Prandtl number is observed. This is however expected,
since for large Pr flows diffusion mixing is suppressed, and
thus also the irreversible transfer of kinetic energy to poten-
tial energy. However, in three dimensional flows and at suf-
ficiently large Reynolds number a weaker dependence on the
Prandtl number is expected. This, however, can only be ad-
dressed by three dimensional simulations.

IV. CONCLUSIONS

In this work the linear and nonlinear evolution of strati-
fied shear flow instabilities for three different values of the
Richardson number that span two orders of magnitude was
investigated. The three examined values of the Richardson
number correspond to three different unstable modes namely
the Kelvin–Helmholtz mode for Ri=0.2 the first Holmboe
mode for Ri=2.0 and the second Holmboe mode for
Ri=20. All flows had identical velocity and density profiles
so essentially the only parameter changed was the amplitude
of gravitational acceleration.

The linear investigation of the problem has shown that

the inclusion of the viscosity and diffusivity has strongly
suppressed the region of instability for the two Holmboe
modes that extend to arbitrary large values of the Richardson
number for the inviscid problem. For the examined value of
the Reynolds number Re=500 the first Holmboe mode ap-
pears only for Ri�7. In the range 13�Ri�30 only the sec-
ond Holmboe mode is present with growth rate only three
times smaller than the growth rate of the first mode at an
order of magnitude smaller Ri. For strongly stratified envi-
ronments therefore the higher Holmboe modes are the only
modes that are able to destabilize the flow and generate tur-
bulence at finite Re.

The nonlinear development of the three cases lead to the
stretching of the density interface and enhanced mixing,
however, not at the same level. From the two Holmboe
modes the first mode resulted in a larger amplitude of kinetic
energy in the nonlinear stage, however, the resulting poten-
tial of the second mode exceeded that of first mode. The
Kelvin–Helmholtz mode was the most dominant with the
kinetic energy of the perturbation reaching amplitudes hun-
dred times bigger than that and potential energy ten times
bigger than that of the Holmboe modes in much shorter
times. However, if we take into account that the Richardson
number has been increased by a factor of 100 a decrease in
potential energy only by a factor of 10 is surprisingly small.

To summarize, in the examined parameter space and un-
der the assumption of two dimensionality a non negligible
amount of mixing and increase in potential energy is ob-
served for values of the Richardson number much larger than
unity. For larger Reynolds numbers and for three-
dimensional flows the unstable flow is expected to have a
better efficiency at generating small scales fast, and diffusing
the advected scalars. At the same time, however, the turbu-
lent cascade will also increase the dissipation of kinetic en-
ergy and thus decrease the ability of the flow to convert it to
potential energy. So the exact dependence of the potential
energy increase in the system control parameters of a realis-
tic flow cannot be addressed in the present work, and needs
to be addressed in future work. However, the results in this
paper do show that the second Holmboe mode can result in
finite amplitudes of kinetic and potential that can possibly
lead to turbulence, even when the global Richardson number

FIG. 12. Time evolution of the potential energy of the second Holmboe
wave for four different values of the Prandtl number �Pr=1,2 ,5 ,10�.

FIG. 11. Time evolution of the kinetic energy of the second Holmboe wave
for four different values of the Prandtl number �Pr=1,2 ,5 ,10�.
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is as large as 20. Thus it is concluded that in geophysical and
astrophysical flows that are strongly stratified turbulent mix-
ing cannot be a priori excluded, just by virtue of the high
value of the Richardson number.
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