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On Holmboe’s instability for smooth shear and density profiles
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The linear stability of a stratified shear flow for smooth density profiles is studied. This work focuses
on the nature of the stability boundaries of flows in which both Kelvin–Helmholtz and Holmboe
instabilities are present. For a fixed Richardson number the unstable modes are confined to finite
bands between a smallest and a largest marginally unstable wavenumber. The results in this paper
indicate that the stability boundary for small wavenumbers is comprised of neutral modes with
phase velocity equal to the maximum/minimum wind velocity whereas the other stability boundary,
for large wavenumbers, is comprised of singular neutral modes with phase velocity in the range of
the velocity shear. We show how these stability boundaries can be evaluated without solving for the
growth rate over the entire parameter space as was previously done. The results indicate further that
there is a new instability domain that has not been previously noted in the literature. The unstable
modes, in this new instability domain, appear for larger values of the Richardson number and are
related to the higher harmonics of the internal gravity wave spectrum. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2001567�
I. INTRODUCTION

Stratified shear flow instabilities occur in a variety of
physical contexts such as astrophysics,1 the Earth’s atmo-
sphere and oceanography.2–5 The linear instability problem
of stratified shear flows has been addressed in a large body of
literature. Since the original work of Helmholtz6 and Lord
Kelvin7 many models of flows and density stratifications
have been investigated both analytically and numerically. Pa-
rametrized by the global Richardson number, these investi-
gations have resulted in a large variety of stability/instability
domains in the Richardson number–wavenumber space.8–11

However, a full understanding of this large variety of stabil-
ity domains does not exist.

A step toward understanding a particular aspect of shear
flow instability was achieved by Holmboe.12 Using a
piecewise-linear form of the velocity and density profile
Holmboe managed to distinguish between two classes of un-
stable modes that are present in stratified shear flows. In the
first class the unstable modes have zero phase velocity in a
reference frame of zero-mean velocity and exist for a finite
range of strength of the stratification �Richardson number�.
This instability is referred to in the literature as Kelvin–
Helmholtz instability since the behavior of the unstable
modes resembles the one predicted by Kelvin–Helmholtz.
The unstable modes of the second class have nonzero phase
velocity and typically smaller growth rate than the Kelvin–
Helmholtz modes. However, they are present for arbitrarily
large values of strength of the stratification, making them
better candidates to explain certain physical phenomena.
This second kind of instability is referred to as Holmboe
instability.

Several authors have expanded Holmboe’s work13–15 by
considering different stratification and velocity profiles that
do not include the simplifying symmetries Holmboe used in

his model. Discussions on the mechanisms involved in the
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instability can be found in Refs. 13 and 16. Hazel17 and more
recently Smyth and Peltier18 have shown that Holmboe’s re-
sults hold for smooth density and velocity profiles as long as
the length scale of the density variation is sufficiently smaller
than the length scale of the velocity variation. Further, effects
of viscosity and diffusivity,19 nonlinear evolution20–22 and

mixing properties23 of the Holmboe instability have also

been investigated. Experimentally, Holmboe’s instability has
been investigated by various groups. Browand and Winant24

first performed shear flow experiments in stratified environ-

ments under the conditions that Holmboe’s instabilities are
present. Their investigation has been extended further by
more recent experiments.15,25–29 The unstable Holmboe
modes have been observed and Holmboe’s predictions veri-

fied.
In this work we examine the stability of smoothly strati-

fied shear flows as was done in Refs. 17 and 18, but here we

focus on finding the kind of marginally unstable modes that

comprise the stability boundaries. We show how these modes

can be determined without solving the full eigenvalue prob-
lem for the complex eigenvalue c. Furthermore, our results

indicate that new instability regions exist which have not

been discovered before in the literature.
This paper is structured as follows. In Sec. II we formu-

late the linear stability problem and discuss the possible mar-

ginally unstable modes that can comprise the stability bound-

aries. In Sec. III we describe the numerical methods used.

Section IV presents our results. Specifically, we show the

location of the marginally unstable modes and numerically

verify that they indeed constitute the stability boundaries.

Conclusions are drawn in Sec. V where we also give a physi-
cal description of our results.

© 2005 American Institute of Physics3-1
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II. FORMULATION

We begin with the Taylor–Goldstein equation, which de-
scribes linear normal modes of a parallel shear flow in a
stratified, inviscid, nondiffusive, Boussinesq fluid:

�� − �k2 +
U�

U − c
−

J�y�
�U − c�2�� = 0, �1�

where ��y� is the complex amplitude of the stream function
for a normal mode with real wavenumber k and complex
phase velocity c. Im�c��0 implies instability with growth
rate given by �=k Im�c�. U�y� is the unperturbed velocity in
the x direction and J�y�=−g�−1d� /dy is the squared Brunt–
Väisäla frequency. Prime indicates differentiation with re-
spect to y. We note that when c is real and in the range of U
there is a height yc, at which U�yc�=c. At the height yc,
called the critical height, Eq. �1� has a regular singular point.
Many of the features of the unstable modes are related to the
presence of this singular point. Equation �1� together with
the boundary conditions �→0 for y→ ±�, forms an eigen-
value problem for the complex eigenvalue c.

The Taylor–Goldstein equation �1�, has been studied for
many different density and velocity profiles and is known to
have four different classes of modes as solutions:30 �i� For
some conditions unstable modes exist with the real part of
the phase velocity within the range of U. The phase speed of
these modes satisfies Howard’s semicircle theorem 	c
−1/2�sup�U�+inf�U��	�1/2	sup�U�−inf�U�	. Furthermore,
if these modes exist the Miles–Howard theorem31 guarantees
that somewhere in the flow the local Richardson number
defined by

Ri�y� =
J�y�

�U��y��2 �2�

must be smaller than 1/4. As discussed in the Introduction,
for some velocity and density profiles, the class of the un-
stable modes can be further divided into two subclasses of
unstable modes, those whose phase velocity is zero with re-
spect the mean flow �Kelvin–Helmholtz modes� and those
whose phase velocity is nonzero, the Holmboe modes. �ii�
The complex conjugates of the unstable modes constitute the
second class of modes. That is, for each �cu ,�u� that is a
solution of �1� that describes an unstable mode there is a
solution �cd ,�d� that describes a damped mode with cd=cu

*

and �d=�u
*. �iii� The third class of modes consists of nons-

ingular traveling modes with phase velocity outside the
range of U. These are internal gravity wave modes modified
by the shear. �iv� Finally, due to the singularity at the critical
height yc a continuum of singular neutral modes exist with a
singular behavior of the first derivative of the steam function
at the critical height. The phase velocity of these modes lies
within the range of U. For these modes an asymptotic analy-
sis close to the critical height shows that the stream function
can be written as the sum of two linearly independent solu-
tions:

� 
 A±�	y − yc	sa + ¯ � + B±�	y − yc	sb + ¯ � , �3�

where sa=1/2−�1/4−Ri�yc�, sb=1/2+�1/4−Ri�yc� and

the index � corresponds to the solution above or below the
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critical height. The solutions in Eq. �3� are known as the
Frobenius solutions. If these modes are marginally unstable
the Frobenius solutions need to be considered as the limit
Im�c�→0+ and yield the connection formulas:

A− = eisa�A+ and B− = eisb�B+. �4�

For each wavenumber and fixed density and velocity profiles
more than one of the above-mentioned modes can exist.
Consequently, it is interesting to try and find boundaries, if
they exist, that separate these four classes of modes. This is
what we try to achieve in what follows for a specific example
of shear and stratification.

The example we investigate follows Hazel’s17 work
where the velocity profile is given by

U�y� = tanh�y� . �5�

Note that the problem has been is nondimensionalized using
the half-thickness and the half-velocity change of the shear
layer. For the stratification as, in Ref. 17, we pick the squared
Brunt–Väisäla frequency’s functional form �in nondimen-
sional units� to be given by

J�y� = J0 sech2�Ry� , �6�

where R−1 gives the nondimensional length scale of the
density stratification. The symmetry J�y�=J�−y� and
U�y�=−U�−y� implies that if �c ,��y�� is the eigenvalue and
eigenfunction of an unstable mode, then �−c* ,��−y�� is also
a solution of Eq. �1� that describes an unstable mode travel-
ing in the opposite direction. This allows us with no loss of
generality to focus only on the modes that have Re�c��0.

The following observations illuminate the origin and
possible location of the stability boundaries. First, as noted
by Hazel,17 for the density and velocity profile given in Eqs.
�6� and �5�, respectively, the functional form of the local
Richardson number crucially depends on the value of the
parameter R �see Fig. 1�. For R	�2, the local Richardson
number has a unique minimum at y=0 given by Ri�0�=J0.
This implies that we can only have instability if J0�1/4
�Ref. 31� and any stability boundary must lie within this
region or on its boundary. For �2�R�2 two minima exist
symmetrically around zero and therefore we can have insta-
bility for values of J0 larger than 1/4. For R=2, Ri�y� ob-
tains its minimum value for y= ±� with Ri�±��=1/4J0 and

FIG. 1. The local Richardson number Ri�y� normalized by J0 for different
values of the parameter R.
therefore instability can occur only if J0�1. Finally for
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larger values of R, Ri�y� decays exponentially to zero as y
becomes large and an instability might be present at arbi-
trarily large values of J0.

In order to make the second observation we need to
transform Eq. �1� into an alternative form. Denoting E=−k2

and V�y ,c�=U� / �U−c�−J / �U−c�2 we can rewrite the
Taylor–Goldstein equation as

�� = �V�y,c� − E�� . �7�

Now, if we invert the problem and ask the question, for a
given real phase velocity c what is the value of k2=−E that
satisfies the above equation and boundary conditions, we end
up with a Schrödinger problem for a particle in a potential
well given by V�y ,c�. Figure 2 shows the resulting singular
potential for c=0, R=1 and J0=2. The solution of this par-
ticular problem for R=1 gives the stability boundary for the
unstable modes given by the relation J0=k�1−k� as shown in
Ref. 32. Figure 3 shows the resulting potential for c=1 and
three values of R=1,2 ,4. If R�2 no solution exists that
satisfies the boundary conditions since this problem corre-
sponds to finding bounded states in an unbounded potential
well �V�y ,1�→−� for y→ +��. However, if R
2 we have
to solve for the eigenstates/energy levels of a particle in a
finite potential well. For this case a discrete number of
bounded energy states with “energy levels” En exist. Each
state corresponds to a mode with c=1 and wavenumber kn

=�−En. Since the phase speed of free gravity waves is a
decreasing function of wavenumber, we expect that wave-
numbers smaller than �−En will have 	c	�1 and could pos-
sibly be unstable. Of course, whether these solutions indeed
represent marginally unstable modes still needs to be dem-

FIG. 2. The potential V�y ,c� in Eq. �7� for c=0.

FIG. 3. The potential V�y ,c� in �7� for c=1 for three different values of R.

Only when R
2 bounded states are allowed.
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onstrated. Note that marginally unstable modes with phase
velocity equal to the maximum velocity of the shear flow
have been reported before in the literature in interfacial grav-
ity wave generation problems.33–35

Besides the modes with c=1, other neutral modes that
may be marginally unstable should have c in the range of U
and therefore must be singular. These modes can be written
in terms of the asymptotic expansion in Eq. �3�. For example,
let ��y�=A+fa�y�+B+fb�y� be the exponentially decaying so-
lution of of the Taylor–Goldstein equation 1 for y�yc

�where fa and fb are the two Frobenius solutions in �3��.
A+ and B+, with no loss of generality, are assumed
real. The connection formulas for marginally unstable
modes �3� imply that below the critical layer
�y�yc� the solution will be ��y�= �A+ cos�sa��fa�y�
+B+ cos �sb��fb�y��+ i�A+ sin �sa��fa�y�+B+ sin �sb��fb�y��.
However, only one linear combination of fa and fb will give
an exponentially decaying solution for y→−�. Therefore, if
A+ and B+ are such that the real part of ��y� is decreasing
exponentially to zero for y→−� the imaginary part of ��y�
will increase exponentially. Since both the real and the
imaginary parts of � need to satisfy the boundary conditions
at infinity it seems unlikely that such a solution exists unless
one of the two coefficients A+ or B+ is zero. Therefore, a
possible marginally unstable mode would be a singular mode
that is proportional to only one of the two independent
Frobenius solutions in Eq. �3� �i.e., A±=0 or B±=0�. How-
ever, the existence of such a solution is not guaranteed, so in
addition, a suitable value of k2 and c�1 needs to be found
�if it exists� so that both boundary conditions are satisfied.
We note that the case in which the c=0 modes form a sta-
bility boundary corresponds to a special case of this class of
marginally unstable modes.

III. NUMERICAL METHODS

The strategy that we adopt in order to find the unstable
regions is the following. First we find the location of the
neutral modes described in the previous section and then
investigate if these modes are indeed marginally unstable by
solving for the growth rate �or for Im�c�� in the neighbor-
hood of these modes. Four different numerical codes were
used. Each code integrates the Taylor–Goldstein equation �1�
using a fourth-order Runge–Kutta method �tested for differ-
ent resolutions to verify convergence� and a shooting method
is used to determine the eigenvalue in the four different ei-
genvalue problems that we describe in more detail below.36

In the first eigenvalue problem we take c=0. For a given
value of J0 we integrate the Taylor–Goldstein equation from
zero to infinity with initial conditions given by one of the
two Frobenius solutions �3�, and look for the eigenvalue k2

such that the boundary condition at infinity is satisfied. Note
that for symmetry reasons, when c=0, only the positive
y-axis needs to be considered. The solution of this problem
provides us with the stability boundary for the Kelvin–
Helmholtz modes, as shown in Ref. 17. We will refer to this
problem as eigenvalue problem one. The values of J0 that
satisfy the condition c=0 for a wavenumber k will be de-

noted by the curve J0=JKH�k�.
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For the second eigenvalue problem we take c=1 and
solve the Schrödinger problem for the potential V�y ,1� by
integrating Eq. �7� from −“�” to +“�” and look for the
eigenvalue En for which the boundary condition at +“�” is
satisfied �where by “�” we mean sufficiently large value of
y�. The modes evaluated from this process are nonsingular
neutral modes, and form a curve in the �J0−k� plane that we
denote by J0=J1�k�.

In the third problem we are looking for the values of
c �c�0 and Im�c�=0� and k such that one of the two inde-
pendent Frobenius solutions of Eq. �3� satisfies both bound-
ary conditions at infinity. In more detail the third code begins
with an initial “guess” of both c and k and integrates from
the critical height both forward and backward up to some
sufficiently large positive/negative value of y. The initial
conditions for � and �� at y=yc±dy �where dy is a small
deviation from the critical height� are obtained from Eq. �3�
with either A±=0 or B±=0 �both cases were tested� and terms
up to second order in the expansion are used. As argued in
the previous section, only the solution that it is proportional
to one of the two linearly independent solutions of �3� can
satisfy the connection formulas across the critical layer �for
marginally unstable singular modes� and both boundary con-
ditions at infinity. Any other linear combination of the Frobe-
nius solutions �3� will lead to a singular neutral mode that
does not belong to an instability boundary. Since we begin
with either A±=0 or B±=0 we are only left with two condi-
tions to satisfy at ±“�” and two parameters to change �c and
k�. With a bisection method36 the code converged to a single
pair of values of c and k. For one of the two initial conditions
�say A±=0� the code converged to the c=1 solution, and for
the second initial condition �say B±=0� the code converged
to a value of c and k with −1�c�1. The solutions with c
�1 comprise a class of singular neutral modes forming a
curve in the �J0−k� plane that we will denote by J0=J1S�k�.

However, the existence of the above-mentioned neutral
modes does not guarantee that they form a stability bound-
ary. Hence, a code that solves the full eigenvalue problem for
the complex eigenvalue c was used to verify that the above-
mentioned neutral solutions constitute the stability bound-
aries. This fourth code integrates the Taylor–Goldstein equa-
tion from ±“�” to zero for some given values of J0 and k
and a Newton–Raphson method is used to find the value of c
for which the two solutions match at zero. No approximation
is used to cross the critical height and for this reason this
code converged only for unstable modes �Im�c��0� and
neutral nonsingular gravity waves �	c	�1�. Note that this
code encounters problems with convergence when the exam-
ined parameters are very close to a neutral singular mode
stability boundary because of the almost singular behavior in
the neighborhood of the critical height that needs to be re-
solved.

IV. RESULTS

A. Small values of J0

We begin with relatively small values of J0 �order unity
or less� which is the case that has been previously examined

by Refs. 17 and 18. However, in Refs. 17 and 18 the authors
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determined the instability boundaries in the �J0−k� plane by
solving the full eigenvalue problem in the examined param-
eter space, finding in that way the regions with nonzero
growth rates. This is a very difficult task since in order to
determine the instability region, the entire �J0−k� plane
needs to be mapped for every value of R. Here we use a
different approach. We find the location of the neutral modes
corresponding to the different eigenvalue problems described
in the last section and show that these form instability
boundaries by solving the complex value of the phase veloc-
ity only for a few values of the global Richardson number.

In Fig. 4 we show the results for the case R=4. As was
found in previous work17,18 the �J0−k� plane can be divided

FIG. 4. �a� The stability boundaries for R=4. In region �I� stable gravity
waves exist with 	c	�1. In region �II� unstable waves with the real part of
the phase velocity in the range 0� 	Re�c�	�1 exist. In region �III� unstable
KH modes with Re�c�=0 exist. In region �IV� only neutral singular modes
exist. The stability boundary J1�k� is composed of the modes with c=1. The
stability boundary JKH�k� is composed of the modes with c=0. The stability
boundary J1S�k� is composed of the singular neutral modes with c�0. The
horizontal lines correspond to the values of J0 examined in �b� and �c�. �b�
The real �solid line� and imaginary �dashed line� phase velocity for J0

=0.4. Unstable modes exist for wavenumbers in the range k1�k�k1S. �c�
The real �solid line� and imaginary �dashed line� phase velocity for J0

=0.2. Unstable modes exist for wavenumbers in the range k1�k�k1S. In
both cases Im�c� is approaching zero in the boundaries of the range �k1 ,k1S�.
All panels share a common x-axis.
in four regions �see panel �a��. In the first region �I� free
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gravity waves exist with real phase velocity of absolute value
greater than one. In the second region �II� unstable Holmboe
waves exist with the real part of the phase velocity smaller
than one but different from zero. In the third region �III�
unstable Kelvin–Helmholtz modes are present with the real
part of the phase velocity equal to zero. Finally in the fourth
region �IV� only singular neutral modes exist. The three lines
that separate these regions were constructed by finding the
neutral modes with the properties described in the previous
section. In more detail the curve J1�k� that separates region
�I� from region �II� is composed of modes that have phase
velocity equal to one �c=1�. The curve JKH�k� that separates
region �II� from region �III� is composed of singular modes
with c=0. Finally the curve J1S�k� that separates region �II�
from region �IV� is composed of singular modes with c�0.

Further illumination of how the properties of a mode
change as we increase the wavenumber is gained by looking
at panels �b� and �c� of Fig. 4 that show the dispersion rela-
tion �phase velocity as a function of the wavenumber� for
two values of J0 �panel �b� J0=0.4 and panel �c� J0=0.2�. A
logarithmic scale is used to focus on the details of small
wavenumbers and small phase velocities. For the J0=0.4
case, for small wavenumbers the phase velocity is real and
decreases with k until the phase velocity becomes equal to
one �c=1 mode� for some wavenumber k1
0.05 such that
J1�k1�=0.4. For wavenumbers larger than k1 the phase veloc-
ity becomes complex indicating that the mode with c=1 be-
longs to the stability boundary. As we further increase the
wavenumber there is a critical value k1S for which the imagi-
nary part of the phase velocity becomes zero again, with the
real part of the phase velocity remaining finite and smaller
than one. This mode with wavenumber k1S can only be a
singular neutral mode and can be represented by the expan-
sion given in Eq. �3� with the connection formulas given in
Eq. �4�. Indeed the difference between the wavenumber
where the imaginary part of c becomes zero �found by the
fourth eigenvalue problem� and the wavenumber k1S �found
by solving the third eigenvalue problem�, is found �for this
case and all the cases examined� to be of the order of the
numerical error. The small difference is attributed to the dif-
ficulty in resolving the almost singular region around yc with
the fourth code when Im�c� is very small.

For smaller values of the global Richardson number
�Ri�0�=J0�0.25� we have the extra feature that as we ap-
proach the stability boundary composed of modes with c
=0 the real part of the phase velocity decreases to zero. It
remains zero in region �III� and then starts to increase again
in region �II� until region �IV� is met. We note that in region
�IV� a continuum of singular stable modes exist and for this
reason we do not plot the phase velocity after this point.

The next question we examine is how the stability
boundaries change as we vary the value of the parameter R.
In Fig. 5 we plot the stability boundaries for four different
values of R �panel �a� R=4, panel �b� R=2.5, panel �c� R
=2.2 and panel �d� R=2�. For large values of the parameter
R �R�2� the �J0−k� plane is divided in four regions deter-
mined by the boundaries J1 ,J1S ,JKH as discussed in more
detail in Fig. 4. The wavenumbers k of the Holmboe unstable

modes are confined in a finite strip. As we decrease the value
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of R the width of the strip with Holmboe unstable wavenum-
bers becomes smaller �see panels �b� and �c��. When R=2
�panel �d�� the two boundaries J1S and J1S collapse together.
In this case J1 ,J1S does not provide a stability boundary but
continues to separate the region that nonsingular gravity
wave modes exist �on the left of J1� from the region that only
singular neutral modes exist with 0�c�1 �on the right of
J1�. The only unstable modes for this case are the Kelvin–
Helmholtz modes confined in the finite region in the left
bottom corner.

We note here that Ref. 18 did not find Holmboe instabil-
ity for values of of R smaller than 2.4. This is probably
because the width of instability strip becomes very small for
values of R smaller than 2.4. Furthermore, close to the sta-
bility boundaries the growth rate is very small and as a result
it is even harder to find a positive growth rate using the
method used in Ref. 18 when the two stability boundaries are
too close. To verify that this strip is unstable we plot in Fig.
6 a close up of the instability region and the dispersion rela-

FIG. 5. The dependence of the instability boundaries on the parameter R.
The four panels show the stability boundaries for four values of R. �a� R
=4, �b� R=2.5, �c� R=2.2, �d� R=2. Note that for the last case, R=2, in �d�
the stability boundary J1�k� composed of modes with the property c=1 and
the boundary with singular modes J1S�k� have collapsed together and the
resulting boundary now defines the region that nonsingular neutral gravity
waves exist. All panels share a common x-axis.
tion for J0=0.4 for the case of R=2.2.

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



084103-6 Alexandros Alexakis Phys. Fluids 17, 084103 �2005�
B. Higher harmonics

As we have shown, finding the modes that satisfy c=1
can be reduced to finding the eigenstates of a particle in a
finite potential well. It is well known from quantum mechan-
ics that if a potential well is deep enough a finite number
N
1 of bound states will exist with N different energy lev-
els En and wavefunctions �n �n=1,2 , . . . ,N�. If the modes
with c=1 form one of the stability boundaries for the Holm-
boe instability, it is natural to ask what happens for the case
that J0 is large enough �i.e., the potential well in the
Schrödinger problem �7� is deep enough� so that more than
one mode satisfies the condition c=1 �i.e., more than one
bounded eigenstate is allowed�. We note that a discontinuous
density profile will lead to a delta-function behavior of J�y�
that allows only one eigenstate and for this reason higher
harmonic waves are not present in step-function density pro-
files like the ones examined in Ref. 12.

To investigate the possible existence of higher harmonic
unstable modes we solve for the modes with c=1 for values
of J0 up to 102. We find that the higher harmonics of the
gravity waves with c=1 indeed exist and correspond to new
stability boundaries that we denote as Jn�k�. The second har-
monic �n=2� with c=1 appears for J0
28 and the third
harmonic �n=3� for J0
80. We also find that for each c=1
mode a marginally singular neutral mode with 0�c�1 also
exists. These modes form new curves in the �J0−k� plane
given by JnS�k�. These curves Jn�k� and JnS, define new
stripes of unstable regions.

In Fig. 7 we plot the stability domain for values of J0 up
100 for R=4. The stable regions are marked with S and the
regions that the nth harmonic becomes unstable are marked
with Un. The solid lines show Jn�k� and correspond to modes
with c=1 and the dashed lines show JnS�k� and correspond to
marginally unstable singular modes. As before we verify that

FIG. 6. The stability boundaries �a� and the dispersion relation �J0=0.4� �b�
for the case that R=2.2. In �b� solid line gives the real part of c and the
dashed line gives the imaginary part of c. Unstable Holmboe modes exist for
this case also but are confined in a very narrow region.
unstable modes exist in the regions between Jn�k� and JnS�k�
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by solving for the complex phase velocity of the modes in
these regions. In Figs. 8 and 9 �panel �a�� we show a closeup
of the stability boundaries J2�k� ,J2S�k� and J3�k� ,J3S�k�, re-
spectively, and the dispersion relation in panel �b�. Figures 8
and 9 demonstrate how the second and the third gravity wave
harmonic become unstable.

We note finally that for a fixed value of J0 the highest
harmonic has the largest growth rate. In Fig. 10 we show the
growth rate �=k Im�c� as a function of the wavenumber for
R=4 and two different values of J0. The growth rate is sig-
nificantly larger for the highest harmonic. This makes the
higher unstable harmonics possible to be detected experi-
mentally, since it is the most unstable modes that are usually
observed.

FIG. 7. Instability diagram for larger values of J0 and R=4. Solid lines show
Jn�k�, dashed lines show JnS�k�. The stable regions are marked with S. Re-
gions marked with Un are regions that the nth harmonic becomes unstable.

FIG. 8. �a� The stability boundaries for the second harmonic for R=4. Solid
line gives J2�k�, dashed line gives J2S�k�. �b� The real part of the phase
velocity �solid line� and the imaginary part of the phase velocity �dashed

line� for J0=35.

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



084103-7 On Holmboe’s instability for smooth shear Phys. Fluids 17, 084103 �2005�
V. CONCLUSIONS AND PHYSICAL DESCRIPTION

In this paper we investigated Holmboe’s instability in
stratified shear flows for smooth density and velocity pro-
files. Using a specific model of the density and velocity
profiles,17,18 we were able to determine the instability regions
for large values of the global Richardson number including
regions not previously noted in the literature.

Focusing on the nature of the stability boundaries that
enclose the Holmboe unstable modes, we have shown that
for moderate values of J0 and when the density stratification
length scale is sufficiently smaller than the shear length scale
�i.e., R�2� the �J0−k� plane is divided into four regions: �I�
a region where neutral gravity waves exist �i.e., modes with

FIG. 9. �a� The stability boundaries for the third harmonic for R=4. Solid
line shows J3�k� and dashed line shows J3S�k�. �b� The real part of the phase
velocity �solid line� and the imaginary part of the phase velocity �dashed
line� for J0=85.

FIG. 10. The growth rate for the different unstable harmonics. �a� J0=45,
R=4. �b� J0=15, R=4. For the smallest harmonics for which the Im�c� was
very small the code was able to find the growth rate only around the peak
and not close to the stability boundaries. For the J0=45 case in �a� the
growth rate of the first harmonic �n=1� was too small for the code to be able
to resolve the critical height and the dark line just indicates the location of

the instability region based on the stability boundaries shown in Fig. 7.
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real phase velocity outside the range of the velocity shear�;
�II� a region where unstable traveling waves exist �i.e.,
Holmboe modes�; �III� a region where unstable modes with
the real part of the phase velocity being zero exist �i.e.,
Kelvin Helmholtz modes�; �IV� and finally a region where
only singular neutral modes exist. We determined the modes
that comprise the boundaries and separate these four classes
of modes. For small J0 �J0�1/4� Kelvin–Helmholtz modes
exist. They are restricted in a bounded domain enclosed by
the boundary J0=JKH�k� determined by the modes with zero
phase velocity. For larger J0, a strip of Holmboe unstable
modes exist. This instability strip is determined by the two
boundaries J0=J1�k� and J0=J1S�k�. In more detail, we have
demonstrated that for a given value of the global Richardson
number J0 the unstable modes have wavenumbers k that lie
in the range k1�k�k1S where k1 is the wavenumber of the
mode that has phase velocity equal to one and satisfies J0

=J1�k1� and k1S is the wavenumber of a singular marginally
unstable neutral mode. k1S satisfies J0=J1S�k1S�. We have
shown how the value of k1 and k1S can be determined to
desired accuracy �and therefore how to construct the bound-
aries J1�k� and J1S�k�� by solving a Schrödinger eigenvalue
problem for a particle in a potential well.

For large values of the global Richardson number more
than one strip of instability may appear. Each new instability
strip is confined between the pair of curves J0=Jn�k� and
J0=JnS�k�. As before Jn�k� can be determined for a given
value of J0 by finding the wavenumber kn of the nth har-
monic of the gravity wave spectrum with c=1 and JnS�k� is
determined by finding the wavenumber knS of the singular
marginally unstable mode that is met first as we increase the
wavenumber from kn.

The results of this paper show a deep connection be-
tween the free gravity wave spectrum and the Holmboe un-
stable waves. The overall picture looks as follows. For large
stratification and small wavenumbers the free gravity wave
spectrum is only slightly modified by the shear and is com-
posed of a discrete finite number N �N
1� of stable modes
��n ,cn� with n=1,2 , . . . ,N. As the wave number is increased
the phase speed decreases roughly as the square root of the
wavenumber. As the phase speed approaches the maximum
shear velocity �sup�U��, the functional form of the stratifica-
tion plays a crucial role. If the stratification length scale is
larger than a critical value �more precisely if limy→� Ri�y�
→�� the phase speed approaches sup�U� asymptotically as
k→�, always remaining outside the range of U. In this case
the only unstable wavenumbers are the Kelvin–Helmholtz
modes that have zero phase velocity and appear only for a
finite range of the global Richardson number. If the stratifi-
cation length scale is smaller than this critical value �more
precisely if limy→� Ri�y�→0�, the phase speed of the waves
reaches the value of the maximum wind speed for a finite
value of the wavenumber k=kn. As we increase the wave-
number further, the modes become unstable with the real part
of the phase velocity smaller than one. The instability per-
sists up to another critical value of the wavenumber k=knS.
The mode with this wavenumber exhibits a singular behavior
at the critical height. For wavenumbers smaller than knS a

continuum of singular neutral modes exist.
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The findings in this work suggest several possibilities for
further investigation. An important aspect that needs to be
investigated is the effect of viscosity and diffusivity. As the
work in Ref. 19 has shown, the presence of finite viscosity
and diffusivity decreases the growth rate and this effect is
expected to be stronger for the higher harmonics. This may
limit attempts to detect the higher harmonic modes via nu-
merical and experimental studies. Therefore, an investigation
of the viscosity effects is further needed to find the critical
Reynolds number for which the higher modes become un-
stable and this should be the next step in the study of the
higher harmonics instability. Nonetheless, we note that in
most astrophysical and geophysical flows, where Holmboe’s
instability is of great importance, the Reynolds and Peclét
numbers are large enough that the inviscid flow examined
here is a good approximation, and depending on the stratifi-
cation the higher harmonic modes might dominate.

Finally, besides viscosity and dissipation, three-
dimensional effects, nonlinear evolution and saturation, as
well as physical interpretation of these results through sim-
plified layer models are all important issues that we plan to
investigate in our future work.
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