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Nonlinear dynamos at infinite magnetic Prandtl number
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The dynamo instability is investigated in the limit of infinite magnetic Prandtl number. In this limit the fluid is
assumed to be very viscous so that the inertial terms can be neglected and the flow is enslaved to the forcing. The
forcing consist of an external forcing function that drives the dynamo flow and the resulting Lorentz force caused
by the back reaction of the magnetic field. The flows under investigation are the Archontis flow and the ABC flow
forced at two different scales. The investigation covers roughly 3 orders of magnitude of the magnetic Reynolds
number above onset. All flows show a weak increase of the averaged magnetic energy as the magnetic Reynolds
number is increased. Most of the magnetic energy is concentrated in flat elongated structures that produce a
Lorentz force with small solenoidal projection so that the resulting magnetic field configuration is almost force
free. Although the examined system has zero kinetic Reynolds number at sufficiently large magnetic Reynolds
number the structures are unstable to small scale fluctuations that result in a chaotic temporal behavior.
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Dynamo instability is considered to be the main mech-
anism for the generation and sustainment of magnetic field
throughout the universe [1]. In this scenario an initially small
magnetic field is amplified by currents induced solely by the
motion of a conducting fluid. This process saturates when the
magnetic field becomes strong enough for the Lorentz force to
act back on the flow and reduce its ability to further amplify
the magnetic energy. The exact effect the Lorentz force has on
the flow and which property of the flow is altered to prevent
further magnetic field amplification is the subject of many
current investigations.

One can in principle envision many scenarios for satura-
tion especially in the presence of turbulence. For example,
saturation can occur because the magnetic field suppresses the
fluid flow thus reducing the magnetic Reynolds number of
the flow to its critical value. This behavior is expected close
to the dynamo onset for laminar flows. In another scenario,
dynamo can saturate by suppressing the chaotic stretching
of the magnetic field lines [2,3], or the dynamo can saturate
because the folding of the field lines is modified to be less
constructive. Finally, saturation of the dynamo can be due
to correlations between the velocity and the magnetic field
without suppressing the ability of the flow to amplify an
uncorrelated passive vector field and thus in principle still be
a dynamo flow (see for example [4–6] and discussion in [7]).

In principle there is no unique answer to this question and
the list above does not exhaust all possibilities. The exact
mechanism can be a combination of different processes whose
choice can depend on the type of forcing and the examined
parameter range. Identifying the mechanisms in simple flows
can help in unveiling the dependence of the amplitude of
magnetic field saturation on the magnetic Reynolds number
Rm and the fluid Reynolds number Re. This dependence
is important for astrophysics, bearing in mind that both
numbers are very large, with 1 � Rm � Re for the Sun and
1 � Re � Rm for the galaxy.

In this large parameter space, it is interesting to examine
special limits of the governing equations, in order to obtain
a basic understanding of nonlinear dynamo behavior. This
is attempted in this work. Here saturated dynamos are

investigated in the simplified limit of large viscosity. In this
system the inertial terms can be neglected and the resulting
flow is a Stokes flow driven by the external force and the
Lorentz force. This limit is typically used as a model for the
small scale galactic dynamo for which the magnetic Prandtl
number (which is equal to the ratio of the viscosity to the
magnetic diffusivity) is very large. In previous investigations
[8–11] the forcing was assumed random and changing in
time in order to model turbulent fluctuations at the viscous
cutoff scale. The turbulent fluctuations at this scale result in
the fastest growing dynamo modes at the kinematic stage
of the dynamo. Here the opposite limit is examined and a
time independent forcing is used. A steady forcing might not
be suitable in describing the turbulent velocity fluctuations;
however it allows us to investigate the reaction of the magnetic
field to large scale flows with long time correlations that could
be more relevant in the saturated stage. Another interesting
property of this limit is that the system is stripped of
all hydrodynamic instabilities. Thus, when comparing with
the results of turbulent magnetohydrodynamic (MHD) flows
one can distinguish which effect is due to turbulence and
hydrodynamic instabilities and which solely due to the effect
of the Lorentz force.

This paper is structured as follows: The next section
describes the dynamical equations in the limit considered.
Section II explains the numerical method and its limitations.
Section III describes the results for each of the examined
flows. Section IV gives some common scaling laws observed
for all flows, and conclusions are drawn in the last section.

I. EQUATIONS AND SETUP

We consider flows in a triple periodic domain of size
L = 2π driven by a simple time independent body force. The
nondimensional MHD equations for a unit density fluid are
then given by

Re(∂tu + u · ∇u) = b · ∇b − ∇P + ∇2u + F, (1)

∂tb + u · ∇b = b · ∇u + 1

Rm

∇2b. (2)
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F is the external body force that in the absence of magnetic
fields sustains a velocity field u, of unity root mean squared
value U = 〈u2〉1/2|b=0 = 1.0 (where 〈·〉 stands for spatial
average). The Reynolds number is defined as Re = UL/(2πν)
where ν is the kinematic viscosity and we are going to
consider the limit Re � 1. The magnetic field is expressed
by b = √

Reb̃/U , where b̃ is the dimensional magnetic field
measured in units of velocity. The factor of

√
Re has been

introduced to set the Lorentz force (which leads to saturation)
to the same order of magnitude as the forcing term. The
magnetic Reynolds number is defined as Rm = UL/(2πη),
where η is the magnetic diffusivity. P is the pressure that
ensures the incompressibility condition ∇ · u = 0.

We are interested in the limit Re � 1 while Rm is still finite;
thus the magnetic Prandtl number Pm, defined as the ratio of the
two Reynolds numbers Pm ≡ Rm/Re = ν/η, tends to infinity.
In this limit then, the left hand side of Eq. (1) can be dropped
and the velocity field is enslaved to the forcing and the Lorentz
force and is given by

u = −∇−2[b · ∇b − ∇P + F], (3)

where ∇−2 stands for the inverse Laplacian. Equation (3)
represents the Stokes flow of a viscous fluid under the influence
of the body force F and the solenoidal projection of the Lorentz
force Fj×b = b · ∇b − ∇P . The approximations made here
are valid in the small Reynolds number limit provided that the
velocity gradients do not become too sharp or the velocity time
scale too short. In the examined calculations the velocity field
appears to have a smooth behavior both in time and space as Rm

is increased, so this condition is not violated. Equations (2) and
(3) form a closed set of equations that are under investigation
in this work. They are going to be referred to as the infinite
magnetic Prandtl number equations. For a fixed functional
form of the forcing, Rm is the only control parameter in the
system. Due to the linear relation between the velocity and the
forcing, Rm can also be interpreted as the magnetic Grashof
number, a nondimensional measure of the forcing amplitude.

The evolution equation for the magnetic energy is given by

1

2
∂t 〈b2〉 = 〈b · (∇u) · b〉 − 1

Rm

〈(∇b)2〉. (4)

Multiplying Eq. (3) by ∇2u space averaging and subtracting
from Eq. (4) we obtain

1

2
∂t 〈b2〉 = 〈u · F〉 − 〈(∇u)2〉 − 1

Rm

〈(∇b)2〉. (5)

Equation (5) is the energy balance equation that expresses that
the rate of change of magnetic energy is equal to the rate at
which energy is injected into the system by 〈u · F〉 minus the
energy lost by the viscous damping εu ≡ 〈(∇u)2〉 and Ohmic
dissipation εb ≡ 〈(∇b)2〉/Rm. It is worth pointing out that even
in the limit Rm → ∞ energy is dissipated at all scales due to
the viscous term. It is also noted here that the kinetic energy of
the flow does not enter the energy balance equation since u is
an enslaved vector field. If we did add it, it would be of order Re
smaller than the magnetic energy. In the remaining text we will
refer to the kinetic and magnetic energy as Eu ≡ 1

2 〈u2〉 and
Eb ≡ 1

2 〈b2〉 respectively, although for a true “dimensional”

comparison between the two a factor of Re should be included
(i.e., Etot = Eu + Eb/Re).

The infinite magnetic Prandtl equations conserve one
ideal invariant (for Rm = ∞): the magnetic helicity [12].
Multiplying Eq. (2) by the vector potential a (such that
b = ∇ × a) and space averaging we obtain

1

2
∂t 〈a · b〉 = − 1

Rm

〈b · ∇ × b〉; (6)

the magnetic helicity Hm ≡ 1
2 〈a · b〉 is thus conserved for

infinite Rm. For large but finite Rm this invariance is expected
to be violated at scales � ∼ 1/

√
Rm. Since there is no

large scale source term for magnetic helicity, it can be
generated or destroyed only at these small scales. In dynamo
investigations the initial magnetic field is very small and thus
also the initial magnetic helicity is negligible. However, a flow
with positive (negative) hydrodynamic helicity will generate
negative (positive) magnetic helicity in the larger scales where
it will “pile up” and positive (negative) helicity in the small
scales where it will be dissipated. Thus although the flow itself
does not generate helicity it drives preferentially one sign of
helicity to the small scales where it is dissipated. So if the
saturated state is magnetically helical with one sign of helicity
it implies that the opposite sign of helicity has been dissipated
at the small scales.

II. NUMERICAL METHOD

The infinite magnetic Prandtl number Eqs. (2) and (3) were
solved in a triple periodic domain of size L = 2π using a
standard pseudospectral method and a third order in time
Runge-Kutta. The code was based on a full MHD code [13,14].
The truncated fields were de-aliased every time a quadratic
nonlinear term was calculated based on the 2/3 rule.

The resolution used varied from 643 up to 2563 grid
points. With a resolution of 2563 one can typically achieve
magnetic Reynolds numbers of the order of a few hundreds
for the kinematic problem depending on the flow. However,
in the nonlinear regime, the velocity amplitude is significantly
reduced (in some cases by 2 orders of magnitude) and the
magnetic energy is dissipated also by the viscous term making
the flow less efficient at generating small scales. Thus, although
at the examined resolution only magnetic Reynolds numbers
of a few hundred can be reached for the kinematic problem,
for the nonlinear problem magnetic Reynolds numbers of a
few thousand can easily be achieved if the initial conditions
were also at the nonlinear stage. The following procedure
was used for the numerical runs that were performed: Starting
from a well resolved kinematic dynamo simulation (very small
initial magnetic field) the system was evolved until nonlinear
saturation was reached. The output of this run was then used as
initial conditions for the next run at a higher magnetic Reynolds
number. In many cases a random perturbation was also added
in the initial conditions. A run was considered well resolved if
the maximum of the current density spectrum was sufficiently
larger than the value of the current density spectrum at the
smallest resolved scale (typically by an order of magnitude).

The strongest limitation in these runs turned out to be
the time of integration. Although large magnetic Reynolds
numbers can be be examined in this limit, with growth rates
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of the order of the inverse turnover time, the magnetic field
with large Prandtl number has much longer memory time than
a typical turbulent flow. Thus to achieve saturation each run
has to be integrated for time scales of the order of the diffusion
time.

III. THE EXAMINED FLOWS

Three different forcing functions F were used to generate
the dynamo flows. The first two are members of the ABC
family:

ux = A sin(kf z) + B cos(kf y),

uy = C sin(kf x) + A cos(kf z), (7)

uz = B sin(kf y) + C cos(kf x).

The ABC flows have been extensively investigated in the
literature [15–17], especially for their relevance in dynamo
theory [18–21]. They are fully helical satisfying (∇ × u = −
kf u). Here the case for A = B = C = 1/

√
3 is investigated

for kf = 1 and for the case kf = 2.
The third flow under investigation is a variation of the ABC

family where only the cosine terms are kept:

ux = A cos(kf y),

uy = B cos(kf z), (8)

uz = C cos(kf x).

This flow was first investigated in [22,23] and was shown
to result in dynamo with large saturation amplitudes of the
magnetic field [24–28]. This flow will be referred as the
Archontis flow. Unlike the ABC flows, it has zero global
helicity. The performed runs in this work have A = B = C =√

2/3 and kf = 1.

IV. RESULTS

A. Archontis flow

We begin with the nonhelical Archontis flow. Figure 1
shows the saturation values of the magnetic energy Eb =
1
2‖b‖2 (squares) and of the kinetic energy Eu = 1

2‖u‖2

FIG. 1. Time averaged magnetic (squares) and kinetic (diamonds)
energy as a function of Rm for the Archontis flow. The kinetic energy
has been multiplied by a factor of 4 for reasons of clarity.

(diamonds) as a function of the magnetic Reynolds number
Rm. For small values of Rm there is no dynamo and thus
‖b‖2 = 0 and ‖u‖2 = 1. The onset of the dynamo instability
is at Rmc � 42.5. For small deviations from this critical value
the magnetic energy grows as Eb ∼ (Rm − Rmc) as a normal
mode expansion would predict [29,30], and the kinetic energy
sharply decreases. The dynamo is stationary at this stage.
As Rm is further increased the system goes through a series
of bifurcations that we do not fully explore here. There is
another critical value R′

mc � 80 after which the evolution
of the magnetic energy appears to be chaotic. We avoid
using the term turbulence since the flow is in the small Re
regime; however many common features with turbulence like
power-law scalings are present in this regime. It is noted that
this chaotic state does not result from a random forcing or
hydrodynamic turbulence but it is solely generated by magnetic
instabilities. The dynamo remains in this chaotic state for
larger Rm for all the examined runs. Magnetic field energy
continues to grow as Rm is further increased. This increase
however appears to be logarithmic Eb ∼ ln(Rm) or possibly a
weak power law En ∼ Rδ

m with δ < 0.15. On the other hand,
the kinetic energy is decreased approaching zero as Rm is
increased. Note that at the largest examined value of Rm the
magnetic energy is almost 2 orders of magnitude larger than
the kinetic energy, and thus equipartition or sub-equipartition
saturation mechanisms (see for example [31]) can be excluded
in this limit.

Figure 2 shows the Ohmic (squares) and the viscous
(diamonds) dissipation rate as a function of Rm. As the
dynamo threshold is crossed the viscous dissipation rate is
decreased and the Ohmic dissipation rate is increased. The
total dissipation rate is smaller than the laminar no-dynamo
dissipation rate (i.e., the system is less dissipative when the
dynamo is turned on). The increase of the Ohmic dissipation
rate continues until the critical value R′

mc, where the chaotic
behavior starts. After this value both the viscous and the
Ohmic dissipation rate are decreasing and become almost
equal. This decrease continues up until the highest examined
magnetic Reynolds number. Here, the results of the numerical
simulations leave open the possibility that at infinite Rm a
zero-injection, zero-dissipation state could be reached.

FIG. 2. Time averaged Ohmic (squares) and viscous (diamonds)
dissipation rates as a function of Rm for the Archontis flow.
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FIG. 3. Magnetic energy spectrum for three values of Rm: Rm =
2000 (dotted), Rm = 5000 (dashed), Rm = 10000 (solid) for the
Archontis flow. The lower solid line shows the kinetic energy
spectrum for Rm = 10000.

Finally, in Fig. 3 the energy spectra for the three largest
examined values of Rm are shown. As expected the cutoff
wave number due to magnetic diffusivity is increased as Rm

is increased. What is also observed is that the bulk of the
magnetic energy also moves from the large to the small scales
as the magnetic Reynolds number is increased, with the slope
of the spectrum changing from a negative value to almost flat.
It should also be noted that the large scale magnetic energy is
decreasing as Rm is increased while the total magnetic energy
is increased.

Figure 4 shows magnetic energy density isosurfaces for
the Archontis flow with Rm = 104. Most of the energy is
concentrated in elongated almost two-dimensional structures.
These structures have been reported before in kinematic
dynamo simulations [24] and are referred to as “magnetic
ribbons.” Although these structures occupy a small fraction of

FIG. 4. Magnetic energy density isosurfaces for the Archontis
flow; Rm = 104. The surfaces correspond to 50% of the maximum
magnetic energy density or 10 times the average magnetic energy.

FIG. 5. Time averaged magnetic (squares) and kinetic (diamonds)
energy as a function of Rm for the ABC, kf = 1 flow. The kinetic
energy has been multiplied by a factor of 4 for reasons of clarity.

the total volume they are responsible for almost bringing to a
halt the flow in the entire domain.

B. ABC flow, k f = 1

Next we examine the helical ABC flow forced at wave
number kf = 1. This is perhaps the most examined flow in
periodic boxes for dynamo action. The onset of instability
and the kinematic regime of the dynamo have been examined
in Refs. [18–20]. It has been shown that the first onset of
the dynamo is at Rmc1 � 15.5. This mode however stops
being a dynamo when Rm becomes larger than Rmc2 � 31. A
second unstable mode appears at Rmc3 = 43 and the dynamo
instability is present for all larger values of Rm.

Figure 5 shows the saturation levels of the magnetic
(squares) and kinetic (diamonds) energy as a function of the
magnetic Reynolds number. The dynamo instability begins at
Rmc1 as has been previously found and it exhibits a supercritical
bifurcation. At the no-dynamo window between Rmc2 and Rmc3

the instability is subcritical at both ends of the window. This is
revealed by the finite amplitude of saturation of the magnetic
energy right at the onset of the instability. The extent of the
subcriticality appears however to be very small: Nonlinear
solutions with finite magnetic energy were found inside the
no-dynamo window but very close to the boundaries of the
window.

For larger values of Rm the magnetic energy continues to
grow and this flow also exhibits chaotic behavior. As in the
Archontis flow the magnetic energy shows a logarithmic (or
a weak power law) increase with Rm. Unlike the Archontis
flow however the kinetic energy saturates to a finite value
Eu � 0.125.

The Ohmic (squares) and viscous (diamonds) energy
dissipation for the ABC dynamo is shown in Fig. 6 as a function
of Rm. After the initial increase of the Ohmic dissipation
at larger values of Rm, the two dissipations become almost
independent of Rm with the viscous dissipation being twice as
large as the Ohmic dissipation. As in the previously examined
flow, in the presence of dynamo the system is less dissipative.

The magnetic energy spectra shown in Fig. 7 appear to have
a positive slope at small wave numbers. This is in contrast with
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FIG. 6. Time averaged Ohmic (squares) and viscous (diamonds)
dissipation rates as a function of Rm for the ABC, kf = 1 flow.

the MHD simulations with order 1 Prandtl number for which at
the saturated state most of the magnetic energy is concentrated
close to the forcing scale [32,33]. The positive slope extends
to larger wave numbers as the magnetic Reynolds number is
increased.

The magnetic energy is concentrated in elongated structures
as shown in Fig. 8. A gray-scale image of magnetic energy
through the midplane of the box shown in Fig. 9 indicates more
clearly that these structures are also flat and part of sheetlike
structures that intensify in regions of strong shear; much like
the the “ribbons” observed in the Archontis flow.

C. ABC flow, k f = 2

Finally we examined the case for which the ABC flow
is forced at wave number kf = 2. The difference with the
kf = 1 case is that more magnetic modes are present in the
system that move the onset of the instability to smaller values
and allow magnetic helicity to concentrate in the large scales.
Thus unlike the two previously examined cases that resulted in
a weak amplitude of magnetic helicity, in this case magnetic
helicity plays an important role.

FIG. 7. Magnetic energy spectrum for three values of Rm: Rm =
2000 (dotted), Rm = 5000 (dashed), and Rm = 10000 (solid) for the
ABC, kf = 1 flow. The lower solid line shows the kinetic energy
spectrum for Rm = 10000.

FIG. 8. Magnetic energy density isosurfaces for the ABC flow;
kf = 1, Rm = 104. The surfaces correspond to 50% of the maximum
magnetic energy density or 10 times the average magnetic energy.

Figure 10 shows the magnetic (squares) and kinetic (dia-
monds) energy at saturation for this flow. The onset of the
instability appears at Rm � 6 and there is no no-dynamo
window, unlike the kf = 1 case. For large values of Rm the
magnetic energy can be seen to increase at least as fast as the
logarithm of the magnetic Reynolds number. This increase is
more pronounced than the previously examined flows. The
kinetic energy saturates at a finite value roughly equal to
one-fifth of the value in the absence of dynamo.

FIG. 9. Gray-scale image of magnetic energy through the mid-
plane z = π of Fig. 8 (ABC flow, kf = 1, Rm = 104). Bright regions
indicate large magnetic energy.
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FIG. 10. Time averaged magnetic (squares) and kinetic (dia-
monds) energy as a function of Rm for the ABC, kf = 2 flow. The
kinetic energy has been multiplied by a factor of 10 for reasons of
clarity.

The two dissipation rates Ohmic (squares) and viscous
(diamonds) shown in Fig. 11 appear to be proportional for
sufficiently large Rm with the Ohmic dissipation rate being
roughly 4 times smaller than the viscous dissipation.

The most pronounced difference from the previous cases
can be seen in the magnetic energy spectra (Fig. 12). Unlike
the previously examined cases the bulk of the magnetic energy
is concentrated at the large scales as a result of the inverse
cascade of the magnetic helicity [34–39]. In the small scales
the energy spectrum appears to follow a power-law behavior
Eb(k) ∼ kα with an exponent close to α = −1.

The magnetic and kinetic helicity as a function of Rm is
shown in Fig. 13. The last three points in this figure were
obtained from the numerical simulations after roughly one
diffusion time where the magnetic helicity was still slightly
increasing with time. To obtain a well converged averaged
value many diffusion times would be required, which is not
feasible with the present computational power.Thus for these
points the saturated value of the magnetic helicity is expected
to be slightly higher than what is shown in Fig. 13. From

FIG. 11. Time averaged Ohmic (squares) and viscous (diamonds)
dissipation rates as a function of Rm for the ABC, kf = 2 flow.

FIG. 12. Magnetic energy spectrum for three values of Rm: Rm =
2000 (dotted), Rm = 5000 (dashed), and Rm = 10000 (solid) for the
ABC, kf = 2 flow. The lower solid line shows the kinetic energy
spectrum for Rm = 10000.

the figure however one can see that the saturated value of
the magnetic helicity is slowly increasing with Rm while
hydrodynamic helicity is approaching an asymptotic value. As
discussed in the introduction this positive value of magnetic
helicity implies that negative helicity has cascaded to the small
scales where it was dissipated while positive helicity was
concentrated at the large scales. At the nonlinear stage the
flow is altered so that although still helical (see Fig. 13) it is
less efficient at generating large scale helicity. The spectrum of
the magnetic helicity is shown in Fig. 14. Unlike the kinematic
stage in which negative helicity is concentrated in the small
scales and positive in the large, at saturation helicity has the
same sign in both large and small scales. This implies that
at the nonlinear stage some of the large scale helicity has
been cascaded to the small scales. The transfer of the large
scale helicity to the small scales has been observed in MHD
simulations where a scale to scale transfer of the magnetic
helicity was investigated [39]. It is also noted that the helicity
spectrum is very steep. If the magnetic field was fully helical
at small scales then it would be expected that the helicity
spectrum would scale like Hm ∼ Eb/k ∼ k−2, but in Fig. 14

FIG. 13. Time averaged magnetic (squares) and kinetic (dia-
monds) helicity as a function of Rm for the ABC, kf = 2 flow.
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FIG. 14. Magnetic helicity spectrum for three values of Rm: Rm =
2000 (dotted), Rm = 5000 (dashed), and Rm = 10000 (solid) for the
ABC, kf = 2 flow.

the slope is much steeper (Hm ∼ k−4) implying that both signs
of helicity are present in the small scales with the positive sign
only slightly dominating.

The magnetic structures that appear for this flow can be
seen in Fig. 15 where magnetic energy density isosurfaces
are shown. Again here energy is concentrated in long and flat
structures (ribbons). Although small scale structures are also
present here they appear to be more “organized” to form large
scale patterns. Note the twisting of the “ribbons” that indicates
the presence of helicity.

V. SCALINGS AT SATURATION

The three examined flows have some common features
that are worth further exploring. One of the fundamental
relations from the kinematic theory that has been shown to

FIG. 15. Magnetic energy density isosurfaces for the ABC, kf =
2 flow; Rm = 104. The surfaces correspond to 50% of the maximum
magnetic energy density or 10 times the average magnetic energy.

FIG. 16. Magnetic energy dissipation wave number k
D

as a
function of Rm.

hold for a variety of flows is that during the kinematic stage
the stretching term that scales like ∼UB/�

U
(where U,B,�

U

are typical velocity, magnetic field, and velocity length scale
respectively) is balanced by the magnetic diffusion term that
scales like ∼ηB/�2

D
(where �

D
is the diffusion length scale).

This relation leads to the prediction that �
D

∼ �
U
/
√

Rm. This
relation continues to hold at the saturated stage. Figure 16
shows the dissipation wave number k

D
∼ 1/�

D
(defined as

k2
D

= 〈(∇b)2〉/〈b2〉) as a function of Rm. For sufficiently
large Rm for all flows the dissipation wave number follows
a scaling close to k

D
∼ R

1/2
m . (A best fit gives a value of the

exponent closer to k
D

∼ R0.4
m ). The velocity length scale on

the other hand appears to depend weakly on the magnetic
Reynolds number. In Fig. 17 we plot the ratio of the velocity
wave number k2

U
= 〈(∇u)2〉/〈u2〉) ∼ �−2

U
to the forcing wave

number kf . k
U

for the two ABC flows appears to be almost
independent of Rm and close to kf . For the Archontis flow the
velocity wave number is weakly increasing with Rm. Thus at
the nonlinear stage both length scales �

D
and �

U
follow a similar

scaling with Rm as they do in the the linear stage. Furthermore
this scaling also explains why the Ohmic dissipation that scales

FIG. 17. The kinetic energy dissipation wave number k
U

as a
function of Rm.
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FIG. 18. The effective magnetic Reynolds number Rmeff (based
on the velocity amplitude and length scale at the nonlinear stage) as
a function of Rm for the three different flows.

like εb ∼ B2/Rm�2
D

is of the same order with the viscous
dissipation that scales like εu ∼ U 2/�2

U
.

Besides the two length scales it is also interesting to
investigate the effect of saturation on the magnetic Reynolds
number. An effective magnetic Reynolds number at saturation
can be defined as Rmeff = Unl/k

U
η, where Unl = (2Eu)1/2

is the velocity amplitude at the nonlinear stage and k
U

the
velocity wave number as defined in the previous paragraph.
If the dynamo saturates by decreasing the effective Reynolds
number at the nonlinear stage then it would be expected that
as Rm is increased, Rmeff would approach the onset value Rmc.

In Fig. 18 we plot the effective Reynolds number as a
function of Rm. For the ABC flows the relation between the
two Reynolds numbers is very close to linear. For the Archontis
flow the Rmeff is increasing with Rm but weaker than linear and
closer to the scaling Rmeff ∼ R

3/4
m . This weaker slope is due to

the decrease of the the kinetic energy at the nonlinear stage.
It appears thus that for the Archontis flow the magnetic field
configuration cancels the external body force almost perfectly
up to small fluctuations while for the two ABC flows this is not
achievable and strong fluctuations exist. Figure 18 then implies
that all relations described in this work for Rm hold also for
Rmeff for the ABC flows, and for the Archontis flow provided
the rescaling Rmeff ∼ R

3/4
m is taken into account. Finally since

Rmeff is increasing with Rm saturation is not solely due to the
decrease of the amplitude of the velocity.

Although the magnetic field does not modify significantly
the amplitude of the flow to saturate the dynamo it does modify
its structure. A measure of the strength of this modification
is given by the amplitude of the solenoidal projection of
the Lorentz force Fj×b = b · ∇b − ∇P . Figure 19 shows the
amplitude ‖Fj×b‖ = 〈F 2

j×b〉1/2 as a function of Rm. What is
observed is that for moderate values of Rm(50 < Rm < 1000)
the amplitude of the Lorentz force is close to the forcing
amplitude (‖F‖ = 1). As Rm is further increased the amplitude
of Fj×b seems to increase to larger values for the two ABC
flows, while a weaker increase is observed for the Archontis
flow. This suggests that at least for moderate Rm, Fj×b is
in balance the body force F . At larger Rm the effect of the
Lorentz force is probably less organized due to the presence

FIG. 19. The amplitude of the Lorentz force for the three different
flows as a function of Rm.

of fluctuations, and larger amplitudes of ‖Fj×b‖ are needed to
achieve a balance with F .

One then needs to explain how a balance between
a force generated by a small scale magnetic field (�D)
and a large scale force (�U ) is achieved. In Fig. 20 we
show the relative amplitude of ‖Fj×b‖ normalized by the
amplitude of the current density ‖j‖ = 〈(∇ × b)2〉1/2 and
magnetic field amplitude ‖b‖ = 〈b2〉1/2 as a function of the
magnetic Reynolds number. If the two fields b and j = ∇ × b
were randomly organized, the quantity ‖Fj×b‖/(‖j‖‖b‖)
should be of order 1. If however the two fields were aligned
or were organized so that their cross product is a potential
field the relative amplitude of ‖Fj×b‖ can be a lot smaller.
In Fig. 20 the relative amplitude of the Lorentz force appears
to decrease as a power law for all flows with exponent close
to ‖Fj×b‖ ∼ R

−1/2
m ‖j‖‖b‖. (A best fit gives a value of the

exponent closer to −0.4.) This can be understood in the
following way. Saturation is expected to be achieved when
the Lorentz force is of the same order with the external forcing
F ∼ Fj×b = O(1). The amplitude of the Lorentz force is also
expected to scale as Fj×b ∼ f ‖j‖‖b‖ where f is a prefactor
that depends on the alignment and structure of the two fields.
Since the current density amplitude is controlled by the balance
of stretching and diffusion as seen in Fig. 16, we expect

FIG. 20. The amplitude of the Lorentz force normalized by
‖j‖‖b‖ for the three different flows as a function of Rm.
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the scaling ‖j‖ ∼ ‖b‖R1/2
m /L. Equating the two relations we

obtain that for an order 1 magnetic field the prefactor f must
scale like R

−1/2
m . This implies that the magnetic field must

come close to a force-free configuration as Rm is increased.
There are many ways to construct a force-free magnetic

field. Perhaps the simplest way is by making the two fields
b and j aligned and thus have zero cross product. However,
the alignment of b and j measured in the simulations is not
sufficient to explain the decrease of the relative amplitude of
‖Fj×b‖. The cross product of the two fields is not small but it
is close to a potential flow and thus has a small solenoidal
projection. This is achieved by forming the flat structures
observed in Figs. 4, 9, and 15. In these structures both b
and j lie on a flat surface (say b ∼ x̂b and j ∼ ŷj ) while
they vary fast in the perpendicular direction (say ẑ). Thus
their cross product j × b is along the fast varying direction
perpendicular to surface (ẑ) and can be balanced by a pressure
field P (z). In this way although Fj×b is formed by small
scale fields it varies on a much longer length scale that is
proportional to the curvature of the structures which is of the
order of the forcing scale and not their thickness which is much
smaller.

The observed deviations from this balance as Rm is
increased only reflect that Fj×b ∼ F is not satisfied due to the
presence of fluctuations that require ‖Fj×b‖ > ‖F‖ and thus
stronger magnetic field to achieve saturation. The behavior of
these fluctuations due to magnetic instabilities thus seems to
play an important role in the saturation at high Rm and needs
to be studied further.

VI. SUMMARY AND DISCUSSION

The nonlinear behavior of the dynamo instability was
investigated in the infinite Prandtl number limit for three
different stationary flows. In this limit large values of Rm can
be examined at moderate resolutions and this allowed us to
investigate how the nonlinear behavior of the dynamo scales
with Rm. What was shown for all flows is that the magnetic
energy is increasing with Rm at least logarithmically. This
increase was most pronounced for the ABC flow forced at
kf = 2 for which an inverse cascade of magnetic helicity was
present. The Ohmic and viscous dissipation rates on the other
hand varied in behavior. For the two ABC flows they were
approaching an asymptotic value as Rm was increased while
for the Archontis flow were slowly decreasing Rm. For all flows
however the Ohmic and viscous dissipation rates although
operating at different scales were of the same order as a result
of the balance between stretching and diffusion.

The saturation of the dynamo comes from a balance
between the Lorentz force and the external body force as their
similar amplitudes suggest. At saturation the magnetic field
forms elongated flat structures whose thickness scales like
R

−1/2
m . The typical length scale along the other directions was

of the order of the forcing length scale. These structures were
almost force free with the solenoidal projection of the Lorentz
force scaling like Fj×b ∼ ‖j‖‖b‖/√Rm. This decrease of
Fj×b is the result of the organization of the magnetic field
in these flat structures. The cross product of the magnetic field
with the current in these flat structures results in a field that
is both pointing and varying in the direction perpendicular to
the surface, and thus is close to a potential field. In this way
the magnetic field is successful in balancing the external force
that differs both in amplitude (compared to B2/l

D
) and length

scale.
Another common feature that all flows had was that the gen-

erated structures were unstable to small scale fluctuations that
resulted in a chaotic behavior. Note that these fluctuations are
due to magnetic instabilities and their origin is probably related
to reconnection events. However, these chaotic fluctuations
have not resulted in universal spectra. The observed slopes of
the spectra varied from positive (ABC kf = 1 flow) to almost
flat spectrum (Archontis flow) to negative slope (ABC kf = 2
flow). Thus if these instabilities lead to universal behavior it
must happen for even larger magnetic Reynolds numbers.

Finally, a comment needs to be made regarding the
applicability of these results to realistic flows. Although the
dynamo has been investigated in a somewhat idealistic limit
some insight can be gained. In a realistic flow there exists
both large scale structured flows forced by a thermal or other
instability and turbulent small scale fluctuations as a result
of a turbulent cascade. Although the turbulent fluctuations
result in the fastest growing modes in a large Prandtl number
dynamo flow at saturation the magnetic field configuration
must be such that the Lorentz force prevents further magnetic
field amplification due to both the turbulent fluctuations and
the large forcing scales. The results in this work help in
understanding the latter behavior. In particular this work
gives a clear example of how small scale fields can organize
themselves to come in balance with a large scale forcing.
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