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How locally injected turbulence, spreads in space is investigated with direct numerical
simulations. We consider a turbulent flow in a long channel generated by a forcing that is
localised in space. The forcing is such that it does not inject any mean momentum in the
flow. We show that at long times a statistically stationary state is reached where the turbulent
energy density in space fluctuates around a mean profile that peaks at the forcing location
and decreases fast away from it. Wemeasure this profile as a function of the distance from the
forcing region for different values of the Reynolds number. It is shown, that as the Reynolds
number is increased, it converges to a Reynolds-independent profile implying that turbulence
spreads due to self-advection and not molecular diffusion. In this limit therefore, turbulence
plays the simultaneous role of cascading the energy to smaller scales and transporting it to
larger distances. The two effects are shown to be of the same order of magnitude. Thus a
new turbulent state is reached where turbulent transport and turbulent cascade are equally
important and control its properties.

1. Introduction
A drop of dye in a fluid will spread so that at long times it is uniformly distributed in the
entire space. This is not necessarily true for a turbulent puff introduced locally in an otherwise
still fluid. Turbulent energy will also spread either by viscous diffusion or by self-advection
but at the same time will dissipate. At long times, if constantly injected, will the spreading
of turbulence be able overcome the dissipation so that turbulence spreads throughout the
domain or dissipation will limit its presence only near its source? The answer to this question
is not a priori obvious and is fundamental for understanding inhomogeneous turbulent flows.
Inhomogeneous flows have been the subject of various recent studies (Valente &Vassilicos

2011; Gomes-Fernandes et al. 2015; Alves-Portela et al. 2020; Araki & Bos 2022; Berti et al.
2023) that have all emphasised the effect of inhomogeneity in the cascade process which can
make it deviate from the classical homogeneous case. In particular it has been shown that
inhomogeneity can alter the scale by scale balance of the cascade (Apostolidis et al. 2022,
2023) and change its scaling properties. Furthermore, inhomogeneity is an indispensable
ingredient of many classical canonical flows such as the spreading of a turbulent jet (List
1982; Carazzo et al. 2006; Ball et al. 2012; Cafiero & Vassilicos 2019) and the spreading
of turbulence from the boundaries in wall bounded flows (Jiménez 2012; Gomes-Fernandes
et al. 2015; Cimarelli et al. 2016; Mollicone et al. 2018). In these cases however along with
the injection of energy there is also a mean injection of momentum. Momentum, unlike
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Figure 1: The computational domain considered. The length L wwas chosen to be eight
times the height L = 8H and x = 0 is taken to be at the middle of the channel. The colors
indicate visualisations of the enstrophy (∇ × u)2 with red indicating high values while blue
are small values.

energy, is not dissipated by viscosity and it can only be transferred in space (by viscosity or
advection) or out of the domain through the boundaries by viscous forces. Thus, much like
the example of the drop of dye, the injected momentum will spread through out the space
carrying along energy. The same holds if the injected energy has a mean angular-momentum
that is also conserved by viscous forces. Therefore, in the case that there is mean momentum
injection the answer to the question posed in the first paragraph is that momentum and energy
will occupy the entire domain. The present work investigates the spreading of turbulence in
the absence of mean momentum and angular momentum injection which is fundamentally
different from the cases mentioned before.
To do that we consider turbulence generated in a long triple-periodic channel. The flow

is forced homogeneously in the two short directions of the channel and locally in the long
direction. The forcing is such that no mean momentum is injected. We study the behavior of
the flow inside and outside the forcing region at long times, measuring the energy distribution
and energy fluxes in real and spectral space. In the next section 2 we present the mathematical
set up of the system under study and define all relative quantities under investigation. In
section 3 we present the results from numerical simulations. Conclusions are drawn in the
final section 4 where directions for future research are also discussed.

2. Formulation
2.1. Mathematical setup

A triple periodic domain of size 2πL × 2πH × 2πH is considered as shown in figure 1 with
L � H being along the x-direction and x = 0 is taken to be the mid-plane of the channel.
The flow inside the domain satisfies the Navier-Stokes equation

∂tu + u · ∇u = −∇P + ν∇2u + f (2.1)

where u is the divergence free velocity field (∇ · u = 0), P is the pressure, ν is the viscosity
and f is the forcing. The functional form of the forcing is given by

f(t, x) =


0
∂z[ψ(t, x/`) − ψ(t,−x/`)]
∂y[ψ(t,−x/`) − ψ(t, x/`)]

 exp
[

L2

`2

(
cos

( x
L

)
− 1

)]
(2.2)

where ψ(t, x/`) is a random function including only Fourier modes with wave-vectors k
satisfying 0 < |k` | 6 2 and kx , 0. The phases of these modes are delta correlated in time so
that the mean energy injection rate is fixed to I0. The forcing is anti-symmetric with respect
to reflections in the x = 0 plane. As a result there is zero momentum injection for every
realisation. Furthermore the forcing satisfies ∇ · f = 0. For |x | � L the exponential factor to
the right of 2.2 scales like exp(−x2/`2) so that the forcing is limited only around the range
|x | ∼ ` and zero outside. In the numerical simulations that follow we have picked ` = H and
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L = 8H that was proven (a posteriori) to be long enough so that the effect of the periodicity
along the x direction does not play a role.

2.2. Energy balance relations and fluxes in space
The primary quantity of interest in this work is the time and volume averaged energy density
of the system that is given by

E0 =
1
2

〈〈
|u|2

〉
V

〉
T

(2.3)

where the angular brackets 〈·〉T stand for time average and 〈·〉V for volume average defined
as

〈 f 〉T = lim
T→∞

1
T

∫ T

0
f dt and 〈 f 〉V =

1
V

∫
V

f dx dy dz, (2.4)

with V = (2π)3H2L being the system volume. The averaged rate I0 that energy is injected is
balanced by the averaged rate D0 that energy is dissipated, leading to

I0 ≡
〈
〈u · f〉

T

〉
V
= 2ν

〈
〈S|2〉T

〉
V
≡ D0 (2.5)

where S stands for the strain tensor

Si, j =
1
2

[
∂iu j + ∂jui

]
. (2.6)

However, neither the time averaged energy, nor its injection nor its dissipation are uniform
along the x direction. It is thus appropriate to consider themean energy density in a subdomain
of the periodic box

E(X) =
1
2

〈〈
|u|2

〉
T

〉
X

(2.7)

where 〈·〉X stands for the average confined in the sub-box from x = −X to x = X:

〈 f 〉X =
1

(2πH)2

∫ 2πH

0

∫ 2πH

0

∫ X

−X

〈 f (x, t)〉T dx dy dz. (2.8)

For X = πL the entire box is considered so clearly E(πL) = 2πL E0. We also define the local
energy density averaged over the planes x = ±X

E(t, X) =
1

2(2πH)2

∫ 2πH

0

∫ 2πH

0
|u(t, X, y, z)|2 + |u(t,−X, y, z)|2dydz. (2.9)

The two energy densities are related by 〈E(X)〉T = ∂XE(X).
A generalisation of eq. 2.5 for E(X) can then be obtained by taking the inner product of

the Navier-Stokes equation with u time averaging and integrating over y, z and from x = −X
to x = X to obtain:

I(X) = D(X) + F (X) (2.10)
where I(X) and D(X) are the energy injection rate the energy dissipation rate within the
considered volume defined respectively as:

I(X) ≡ 〈〈f(t, x) · u(t, x)〉X〉T , and D(X) ≡ 2ν
〈〈
|S(t, x)|2dx

〉
X

〉
T
. (2.11)

The third term F (x) is a flux that expresses the rate energy is transferred outside the
considered volume (Landau & Lifshitz 2013). It can be decomposed in three terms

F = FU + FP + Fν (2.12)
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where FU is the energy flux due advection, FP the flux due to pressure and Fν the flux due
to viscosity. They are defined explicitly as

FU (x) =
1

2(2πH)2

〈∫
x=X

ux |u|2dy dz −
∫
x=−X

ux |u|2dy dz
〉
T

, (2.13)

FP(x) =
1

(2πH)2

〈∫
x=X

uxPdy dz −
∫
x=−X

uxPdy dz
〉
T

(2.14)

Fν(x) =
ν

(2πH)2

〈∫
x=−X

ui∂iux + ui∂xuidydz −
∫
x=X

ui∂iux + ui∂xuidydz
〉
T

(2.15)

where the integrals are taken at the two planes x = ±X and summation over the index i is
assumed in the last one.

2.3. Energy spectra and fluxes in scale space
The fluxes above describe how energy is transported in physical space. At the same time,
energy is also transferred in scale space from large to small scales. To quantify the energy
distribution and fluxes in scale space we use the Fourier transformed fields ũk(t) defined by

ũk(t) =
〈
u(t, x) e−ik·x

〉
V

and u(t, x) =
∑

k
ũk(t)eik·x, (2.16)

where the inverse wavenumber k−1 gives a natural definition of a scale. The energy spectrum,
giving the distribution of energy among scales is defined as

Ẽ(k) =
1
2

∑
k< |q |<k+1

〈
|ũq |

2〉
T

(2.17)

The energy flux gives the rate that energy flows across k is defined as

Π(k) = −
〈〈

u<k · u · ∇u
〉
V

〉
T

(2.18)

where u<
k
stands for the velocity field filtered so that only wavenumbers with norm |k| < k

are kept (Alexakis & Biferale 2018; Frisch 1995).

2.4. Reynolds numbers
The Reynolds number in this system provides a measure of the strength of turbulence is
typically defined as Re = U`/ν where U is the typical velocity of the system. In this work
we are interested in the long box limit L � H and some care needs to be taken in order to
be able to compare with homogeneous turbulence results. If we define U based on the mean
energy density E0 (given in eq. 2.3) then if turbulence remains localized, E0 will approach
zero in the limit L � H. Thus defining U as the root mean square (rms) value over the entire
domain U = (2E0)

1/2 will greatly underestimate the value of U close to the forcing region.
The same holds for the mean dissipation rate density D0. To compensate for that we will
define the typical velocity U and the typical dissipation rate ε as

U =

√
2E0L

H
, ε = D0

L
H

(2.19)

The factor L/H introduced makes U and ε remain finite in the L/H →∞ limit for localised
turbulence. These definitions can be interpreted as the rms velocity and dissipation around
the forcing region. With these definitions of U and ε the following three Reynolds numbers
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Nx × Ny × Nz Reε ReU Reλ

64 × 64 × 512 2.0 1.7 2.2
64 × 64 × 512 4.0 4.5 5.8
64 × 64 × 512 10.0 15.1 16.8
64 × 64 × 512 20.0 34.7 31.3
64 × 64 × 512 40.0 78.1 54.1

128 × 128 × 1024 110 217 92.1
256 × 256 × 2048 230 502 161
512 × 512 × 4096 500 1165 270

1024 × 1024 × 8192 1250 2990 447

Table 1: Resolution and values of the Reynolds numbers ReU, Reε , Reλ achieved in the
numerical simulations.

typically met in the literature are defined:

ReU ≡
UH
ν
, Reε ≡

ε1/3H4/3

ν
, Reλ ≡

√
5U2

(νε)1/2
. (2.20)

The first one is the classical definition of the Reynolds number based of the (re-scaled) rms
velocity. The second is a Reynolds number based on the energy injection/dissipation and is the
one we control in these simulations (since it is the energy injection rate we impose). Finally
the third one is the Taylor-Reynolds number based on the Taylor micro scale λ = U

√
5ν/ε .

The three definitions are related by

5Re4
U = Re2

λRe3
ε . (2.21)

and for large ReU it is expected that ReU ∝ Reε ∝ Re2
λ.

2.5. Numerical Setup
The Navier-Stokes equations are solved using the pseudo-spectral code ghost (Mininni
et al. 2011), that uses a 2/3 de-aliasing rule and a second order Runge-Kuta method for
the time advancement. A uniform grid was used such that the grid spacing ∆x = 2πL/Nx ,
∆y = 2πH/Ny and ∆z = 2πH/Nz are equal where Nx, Ny, Nz is the number of grid points
in each direction, with Nx = 8Ny = 8Nz .
The simulations were started from the u = 0 initial conditions and continued until a steady

state is reached for which a clear mean energy profile can be calculated. The only exception
to this rule is the highest resolution run Nx = 8192 for which the results of the Nx = 4096
run were extrapolated to a larger grid and used as initial conditions. This run was performed
for eight turn-over times that was enough to converge sign-definite quantities (like energy)
but not sign-indefinite quantities (like fluxes). A list with the properties of all runs performed
are given in table 1.

3. Results
We begin with the top panel of figure 2 that shows the energy density E(t, X) for Reε =
500 for different times. The black dashed line shows the forcing profile that is limited to
|X |/(2πH) . 1/2. Energy spreads away from the forcing region but at late times it fluctuates
around a mean profile shown by the red line. Thus already at this stage it can be testified
that energy does not spread in the entire box and it remains close to the forcing region. This
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Figure 2: Top panel: The energy density E(t, X) for different times. Bottom panel: The time
averaged energy density 〈E(X)〉T at steady state for different values of Reε in the entire
domain. the dashed line indicates the forcing amplitude as a function of X . The inset shows
the same data in log-log scale. The same color index is used to mark Reε in all subsequent
figures.

mean profile is shown in the bottom panel of the same figure for different values of Reε . The
different colors indicate the different values of the Reynolds number achieved as marked in
the legend. The same colors are used for all subsequent figures. The peak of the local energy
density lies close to the forcing region and decays fast away from it. The energy far away
from the forcing at |X |/(2πH) ' 4 remains very small such that E(8πH)/E(0) . 10−6. In
the remaining of this section we will try unravel the processes of this localisation and the
implications for the system behavior.
Before continuingwith spatial properties of our flowwe perform some standard benchmark

analysis often used in homogeneous turbulence. Figure 3 shows the scaling of globalmeasures
as a function of the Reynolds number. The left panel shows the relation between the different
Reynolds numbers where the scaling ReU ∝ Reε ∝ Re2

λ that holds for large Re is verified.
In right panel of figure 3 we show the non-dimensional dissipation rate (or drag coefficient)
Cε defined here as:

Cε =
εH
U3 , (3.1)

that expresses the rate energy is dissipated non-dimensionalized by the amplitude of the
fluctuations. It is a corner-stone conjecture of homogeneous and isotropic turbulence theory
that Cε obtains a finite and Re-independent value at large Re. The present data indicate that
at large Reλ, Cε appears to converge to a Reλ-independent value but quite slowly. Only the
largest values of Reλ & 270 indicate the possibility that such a plateau is reached with a
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Figure 3: Left: Relation between the different Reynolds numbers ReU, Reε , Reλ. Right:
The normalized dissipation rate Cf as a function of Reλ.
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Figure 4: Left: The energy spectra Ẽ(k) for the different Reλ examined. Right: The energy
fluxes Π(k) for the same runs.

value of Cε ' 0.06 that is rather small. In homogeneous and isotropic simulations such a
plateau is reached after Reλ ∼ 100 and at a value much larger Cε ' 0.5 (Kaneda et al. 2003).
This reflects that localized turbulence is affected by the the additional freedom to expand in
a larger region suppressing possibly its efficiency to cascade energy to the smaller scales.
Figure 4 examines spectral properties of the flow. In the left panel we plot the energy

spectra for the different values of Re. The spectra show similar behavior with homogeneous
turbulence flows. As the Reynolds number is increased more scales are excited and a power-
law spectrum starts to form with exponent close to the Kolmogorov prediction Ẽ(k) ∝ k−5/3.
In the right panel of figure 4 the energy fluxes in Fourier space are plotted. The energy fluxes
increase with Re until for the largest Res attained a constant flux range has began to form.
It is worth noting that this constant flux region is obtained at much larger Re than what is
observed in homogeneous turbulence simulations reflecting once again a delay in obtaining
a Re-independent scaling due to the effect of spreading.
Returning to the spatial properties of the flow and the energy density profile we note that as

the Reynolds number is increased the energy increases and also spreads at larger distances. At
very large values of Reλ the energy profile appears to converge to a Re independent profile.
This implies that at large Re the energy profile is determined by the self-spreading of eddies
due to turbulent advection and not by viscous processes. The fast drop of E(X) can be either
an exponential E(x) ∝ exp(−αx) of or fast power law E(x) ∝ |X |−6 (see inset). The present
data can not exclude either option. We point out that since the energy density drops very fast
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Figure 5: The different energy fluxes in real space as indicated in the legend for three
different values of Reε = 4, 40, 500.
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Figure 6: The dissipation rate D(X) (left panel), the energy flux F (X) (center panel) for
different values of Re. The right panel compares the largest Reε = 500 for which the fluxes
were measured. The dashed line indicates I(X).

also the local Reynolds number (defined using a local rms velocity) is also decreasing. So it
is hard to obtain a large Re behavior in the outer region |X | � H.
The fact that the energy density reaches a Re-independent profile is not a trivial result. It

reflects a balance between the rate energy is transported to larger values of |x | and the rate
energy cascades to the small scales. If the cascade process was weaker than the real-space
transport then at the Re → ∞ limit energy would reach the entire domain. On the contrary
if the real-space transport was weaker no energy would be found outside the forcing region
in the same limit. In other words turbulent diffusion and turbulent dissipation must be of the
same order.
To quantify this assertion we look at the fluxes at real space. In figure 5 we plot Fi for

three different values of Re varying from the laminar to the turbulence case. The black
line shows the total flux, the blue line the flux due to velocity fluctuations, the green line
the flux due to pressure and the red line the flux due to viscosity. The magenta line shows
the difference between I(x) and D(x). A comparison between the back and magenta lines
verifies the relation 2.12. The small differences that are observed are due to insufficient
time averaging that is more pronounced in the large resolution runs. A few observations
need to follow. For small Re the energy flux is dominated by viscosity with pressure also
playing a significant part. The flux due to the velocity fluctuations have a negative sign.
As the Reynolds is increased the role of the velocity fluctuations becomes more dominant
transferring outwards energy. The transfer due to viscosity diminishes while the transfer due
to pressure also takes negative values. At the largest Re almost the entire flux is dominated
by the velocity fluctuations with the pressure flux being weaker and positive in the forcing
region and negative away from it.
Finally to compare the two dominant processes away from the forcing region the turbulent

dissipation and the turbulent diffusion we plot in figure 6 the dissipation rate D(X) in the
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left panel and the total flux F (X) on the center panels for all Re. The right panel compares
the two, for the largest value of Re for which the fluxes were calculated Reε = 500. The
black dashed lines indicates I(X) that is the same for all Re. As the Reynolds is increased
the dissipation is decreased while the flux is increased. For the largest Re at the peak of the
flux around X ' 0.15(2πH) the two processes become of approximately equal marking that
the two processes turbulent dissipation and the turbulent diffusion are of the same order.

4. Conclusions
The present work has demonstrated that locally forced turbulence will not spread throughout
the domain provided that there is no mean injection of linear or angular momentum. It
will remain localised forming an energy density profile that is Re independent in the large
Re limit. Away from the forcing region the two dominant effects are turbulent dissipation
and turbulent diffusion that were found to be of the same order. The exact functional form
of the energy profile could not be determined from the present simulations. Theoretical
investigations and modeling could give further insight to this problem.
To expand the understanding of the two involved processes, turbulent diffusion and

turbulent dissipation, a simultaneous scale-space and real-space analysis would be required
either by introducing local smoothing (Germano 1992; Aluie & Eyink 2009; Eyink & Aluie
2009; Alexakis & Chibbaro 2020) or two point analysis and the KármánâĂŞHowarthâĂŘ-
MoninâĂŞHill (KHMH) equation (Hill 2001, 2002). The latter has been used recently to
study boundary driven flows (Apostolidis et al. 2022, 2023) and wakes Chen & Vassilicos
(2022); Chen et al. (2021) where the role the inhomogeneous energy injection from the mean
flow was emphasised. In the present flow, there is no mean flow and the primary terms in
balance are the inter-scale transfer rate and turbulent transport in physical space, both of
which are forcing and viscosity independent. Thus a new state of turbulence is present where
two inertial effects, the energy flux in scale space and in real space, compete. The fact that
these two dominant processes are viscosity-independent makes their modeling particular
difficult as there is no simplifying limit where one term will dominate over the other. Careful
parametrization would be required so that the correct energy profile is captured.
Finally we would like to add that the present study was limited to a triple periodic channel

flow limiting the spreading in only one direction. Its extension to larger domains where
turbulence can spread in two or in all three directions is far from trivial and would need to be
examined separately. Here experimental investigations would become much more beneficial
than numerical simulations.
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