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Abstract In the vicinity of the onset of an instability, we investigate the effect of colored
multiplicative noise on the scaling of the moments of the unstable mode amplitude. We in-
troduce a family of zero dimensional models for which we can calculate the exact value of
the critical exponents βm for all the moments. The results are obtained through asymptotic
expansions that use the distance to onset as a small parameter. The examined family dis-
plays a variety of behaviors of the critical exponents that includes anomalous exponents:
exponents that differ from the deterministic (mean-field) prediction, and multiscaling: non-
linear dependence of the exponents on the order of the moment.

Keywords Stochastic processes · Nonlinear physics · Instabilities · Multiplicative noise ·
Critical exponents

1 Introduction

Critical exponents are usually introduced in the context of continuous phase transitions at
equilibrium. The order parameter (for instance the magnetization for a system of spins or
the density difference between the phases for the liquid-gas critical point) depends on the
distance from the critical point as a power-law. The exponent of the power-law, traditionally
named β , is one of the critical exponents of the system. Mean-field approximations sim-
plify the analytical approach and allow to calculate β . In this case simple rational values
are obtained that depend on the nonlinearity (itself usually constrained by the symmetries)
of the system. However, because of thermal fluctuations the mean-field results are not al-
ways correct for low spatial dimensions. In particular β can take non-mean-field values [1].
Apart from the few cases in which exact analytical results exist, renormalization methods
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are used from which β is obtained as a series in the critical dimension (the dimension above
which mean-field results apply) minus the spatial dimension [2]. The importance of spatial
dimensionality appears also clearly in the fact that equilibrium phase transitions do not oc-
cur when the spatial dimension is too small and short range interactions are considered. For
continuous phase transitions at equilibrium, thermal fluctuations, nonlinearities and spatial
variations must be taken into account.

In these systems at equilibrium, fluctuations are additive terms in the equation for the or-
der parameter. In out of equilibrium systems, fluctuations can be coupled differently to the
order parameter and in several models, multiplicative noise is considered. For example, in
the dynamo effect, the magnetic field is generated by the flow of an electrically conducting
fluid. If the flow is turbulent, the velocity fluctuations can be treated as random and appear
as a multiplicative term in the evolution equation of the magnetic field. A second example
can be found in the study of chemical reactions when the kinetic of the reaction involves the
product of concentrations of two species. When one of the concentration fluctuates around
a fixed value, the evolution equation of the other specie contains a multiplicative noise term.
In these situations, the analogous of phase transition can occur even when space is not taken
into account and only the time evolution of a finite number of modes is considered. Since
spatial dimensions are not taken into account we refer to these models as zero dimensional.
The simplicity of zero dimensional models allows a much more thorough analytical investi-
gation and in a few cases the calculation of the full probability distribution function (p.d.f.)
is possible. This is the direction that we pursue in this work.

We introduce a family of zero dimensional models for which we can calculate (in the
small deviation from criticality limit) the stationary p.d.f. of the system and thus we can
obtain the exact value of the critical exponents βm for all the moments. Despite the simplicity
of the models the results show a rich behavior. The critical exponents can differ from their
deterministic values and in some cases vary continuously with the system parameters. In the
later case a non-linear dependence of the exponents on the order of the moment is observed
and thus the system displays multiscaling.

In Sect. 2, we present what is known in the deterministic limit and in the case of a
white noise. The family of models under study is presented in Sect. 3. In Sects. 4 and 5,
we present two particular cases the second of which results in anomalous exponents. In
Sect. 6, our results are interpreted based on a heuristic arguments from which the value of
the critical exponents is understood. We conclude in the last section. In [3], we reported on
the value of the exponent of the first moment obtained for certain values of the parameters.
The associated asymptotic expansion is presented in detail here together with several new
expansions that are valid for other parameter values. Overall we are now able to calculate
the whole set of exponents of all orders of the described model.

2 Zero-Dimensional Bifurcations

We consider the evolution of an order parameter, x, which is a function only of time t . It
satisfies the Langevin equation

ẋ = μx − |x|nx + ξx, (1)

where μ is the parameter that controls the instability, n > 0 characterizes the nonlinearity
(for instance n = 2 for cubic nonlinear terms, n = 4 for quintic ones) and ξ represents
random fluctuations with zero mean (noise). As mentioned in the introduction, the magnetic
field subject to dynamo instability and certain chemical reactions are systems for which
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such multiplicative noises appear. More generally, close to the onset of any instability that
breaks an existing x → −x symmetry, Eq. (1) is the evolution equation of the unstable mode
amplitude if the departure from onset fluctuates for instance because of loose experimental
control. From now on, in the case that ξ is white noise, we use the Stratanovich interpretation
[4]. We note that the solution x(t) conserves its sign and we thus restrict only to positive
values for x. We are going to characterize the behavior of x using its moments evaluated
in the long time limit that we write here as 〈xm〉, where 〈·〉 stands for average over the
realizations of the noise. The stability of the x = 0 solution is determined by calculating
the value of the growth rate γ = 〈ẋ/x〉 for the linear system [5]. Here γ = μ thus the onset
of the instability is given by μ = 0. For μ < 0 the only attracting solution of the system is
x = 0 and thus all moments are zero. For positive values of μ, 〈xm〉 takes non-zero values
whose amplitude has a power-law dependence on μ: 〈xm〉 ∝ μβm . The exponents of these
power-laws βm are of primary interest in this work. Explicitly we define

βm ≡ lim
μ→0

log
(〈
xm

〉)/
log(μ). (2)

In the deterministic limit (ξ = 0) and for positive μ the long time solution satisfies
limt→∞ xm = μm/n. The critical exponents are thus βm = m

n
. We will refer to this scaling

as mean-field or deterministic scaling.
A second well-studied limit is obtained when ξ is a Gaussian delta-correlated noise, i.e.

〈ξ(t)ξ(t ′)〉 = 2δ(t − t ′). Then the stationary probability distribution function (p.d.f.) of x,
P (x), satisfies the one dimensional Fokker-Planck Equation

∂x

(
μx − xn+1

)
P + ∂xx∂xxP = 0. (3)

Its solution is given by

P (x) = n1−μ/n

Γ (μ/n)
xμ−1e−xn/n (4)

where the normalization condition
∫

P (x)dx = 1 has been used. The moments can then be
calculated as

〈
xm

〉 =
∫

Pxm dx (5)

that, due to the singularity of P at x = 0, result to 〈xm〉 ∝ μ in the small μ-limit. We thus
have βm = 1 for all moments m. This property is an effect of the noise on the dynamics of
x close to the onset. Indeed, the time series alternates between phases where the value of x

is either large and nonlinearities are important (on-phases) or it fluctuates close to zero (off-
phases) [6–8]. This behavior is called on-off intermittency and an example of time series
is displayed in Fig. 1. The mean duration of the off-phases, say TOFF can be estimated by
considering the evolution of z = log(x) for which Eq. (1) is written as

ż = μ + ξ − enz. (6)

Thus z displays Brownian motion with a small drift (μ) when x 	 1 while it is repelled
towards the origin x = 0 by the nonlinearity when x is order 1. As a result the duration of
the off-phases diverges as TOFF ∼ μ−1 while the duration of the on-phases remains finite.
During the on-phases, x achieves finite values, say xNL that do not depend on μ (in the small
μ limit). An estimate of the moments is given by 〈xm〉 � TONxm

NL/(TON + TOFF) from which
the linear dependence of the moments on μ is recovered [9].
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Fig. 1 Time series of the solution of Eq. (7) for μ = 0.01. Top: linear scale and bottom in log scale. (a) F = 0
corresponding to a white noise; (b) F = γ Y 2/2, Ornstein-Uhlenbeck noise with γ = 1.5; (c) F = ν|Y |, with
ν = 0.75. Note the differences in the y-coordinate values

3 Bifurcations in the Presence of Colored Noise

For colored noise, it has been shown that the regime of on-off intermittency is controlled
by the value of the noise spectrum at zero frequency, D = ∫ ∞

0 〈ξ(t)ξ(0)〉dt .1 As long as D

is non zero, the behavior for very small μ is on-off intermittency [9, 10]. In what follows,
we examine the properties of the bifurcation when the noise has vanishing spectrum at zero
frequency.

We consider the family of models

ẋ = μx − xn+1 + x
[
ξ − Fy(y)

]
,

ẏ = [
ξ − Fy(y)

] (7)

where ξ is a Gaussian white noise, 〈ξ(t)ξ(t ′)〉 = 2δ(t − t ′). We have introduced the potential
F(y) which is a function of y only, and Fy its first derivative.

The amplitude of the order parameter, x, undergoes a bifurcation at μ = 0 and is subject
to a multiplicative noise ẏ = ξ −Fy(y). Provided the stationary distribution of y has a finite
second moment, the spectrum of ẏ vanishes at zero frequency. Indeed, for initial conditions
y(0) = 0, we can write

dy2

dt
= 2yẏ = 2ẏ(t)

∫ t

0
ẏ
(
t ′
)
dt ′. (8)

By averaging over the realizations and taking the long time limit, the last expression is the
integral of the autocorrelation of ẏ. This is also its spectrum at zero frequency using the
Wiener-Kintchin theorem. At long time, if the second moment of y tends to a constant, then
ẏ has vanishing spectrum at zero frequency.

The stationary p.d.f. for y, Π(y), satisfies the equation L0Π = 0, where the linear oper-
ator L0 is defined as

L0Π ≡ ∂y

[(
∂yF (y)

)
Π

] + ∂2
yΠ, (9)

and the normalization condition
∫

Πdy = 1 is assumed. Equation L0Π = 0 has the solution

1By virtue of the Wiener-Kintchin theorem, the noise spectrum is the Fourier transform of the autocorrelation
function. We thus recognize here the noise spectrum at zero frequency.
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742 A. Alexakis, F. Pétrélis

Π(y) = Exp
[−F(y)

]
/N, (10)

where N is a normalization constant.
To isolate the noise term we make the following transformation w = log(x) − y. The

Langevin equation becomes

ẇ = μ − en(w+y), (11)

ẏ = ξ − Fy. (12)

The Fokker-Planck equation for the stationary joint p.d.f. P in these coordinates then
reads

∂w

(
μ − en(w+y)

)
P = ∂y[FyP ] + ∂2

yP = L0P. (13)

Solving the partial differential equation (13) for all values of the parameters is out of reach.
Since we are interested in the critical behavior, we successively introduce various asymptotic
approaches in order to determine the critical exponents.

4 Steep Potential-Recovery of the Deterministic Scaling

4.1 The General Case

The top panel of Fig. 2 shows the location in phase space of 103 trajectories for different
values of μ (different colors) obtained by the numerical integration of the Langevin equa-
tions (7) for the potential F(y) = 1

2γy2 that is studied in detail in Sect. 4.2. As will be shown
in the following expansion, the observed behavior is controlled by the form of the tail of the
potential F and more precisely by how fast it tends to infinity at large |y|. In this sense the
considered F is steep. It can be seen that as μ becomes smaller the distribution is concen-
trated around a value of w = w0 that depends on μ. Inspired from the numerical results and
without any assumptions yet on the functional form of F , we make the following change of
variables w = w0 + ln(μ)/n + u

√
μ where w0 = ln(X0) is a constant that will be set by the

expansion. The Fokker-Planck equation then reads

L0P = √
μ∂u

(
1 − Xn

0e
n(

√
μu+y)

)
P. (14)

We expand the p.d.f. as P = P0 + √
μP1 + μP2 + · · · .

To lowest order we obtain the equation for the stationary distribution in y

L0P0 = 0. (15)

The solution of which can be written as

P0 = A(u)Π0(y) = A(u)e−F , (16)

where the amplitude A(u) is left undetermined. To next order we have

L0P1 = ∂u

(
1 − Xn

0e
ny

)
P0. (17)

Integrating this equation over y provides us with a solvability condition. More precisely,
since L0P1 is a total gradient, integration over y makes the left hand side equal to zero and
we are thus left with

0 =
∫ +∞

−∞

(
1 − Xn

0e
ny

)
e−F dy. (18)
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This condition determines the value of X0 to be

X0 =
( ∫ +∞

−∞ e−F dy
∫ +∞

−∞ eny−F dy

)1/n

. (19)

We can then solve for P1 and we obtain

P1 = Aue
−F

∫ y

0
eF ′′

∫ y′′

∞

(
1 − Xn

0e
ny′)

e−F ′
dy ′ dy ′′,

= AuΠ1(y), (20)

where F ′ and F ′′ denotes that the function F depends on the variables y ′ and y ′′ respectively.
To second order we have

L0P2 = ∂u

[(
1 − Xn

0e
ny

)
P1 − uXn

0e
nyP0

]
. (21)

Using again the solvability condition, we integrate over y and obtain

Au

∫ +∞

−∞

(
1 − Xn

0e
ny

)
Π1 dy − AuXn

0

∫ +∞

−∞
eny−F dy = 0, (22)

that leads to A = e−δu2
with

δ = 1

2
Xn

0

∫ +∞

−∞
eny−F(y) dy

/∫ +∞

−∞

(
Xn

0e
ny − 1

)
Π1(y) dy. (23)

Denoting Q(y) = ∫ y

−∞(Xn
0e

ny′ − 1)e−F ′
dy ′, we can show by integration by parts that

∫ +∞

−∞

(
Xn

0e
ny − 1

)
Π1(y) =

∫ +∞

−∞
Q2eF dy > 0,

thus δ > 0. The zeroth order solution then becomes

P0 = 1

N
e−δu2−F(y), (24)

where N = √
π
δ

∫ +∞
−∞ e−F dy. The moments can be calculated as

〈
xm

〉 = μm/nX
m/n

0

N

∫ +∞

−∞
emy+m

√
μu−δu2−F(y) dy du. (25)

The integral and N are independent to first order in μ. Provided the integral and X0 are
finite, the moments follow the scaling 〈xm〉 ∝ μm/n. Therefore, we recover the deterministic
exponents βm = m/n.

4.2 An Example: y Is the Ornstein-Uhlenbeck Process

A simple potential for which the former expansion is valid consists in F(y) = 1
2γy2. This

case corresponds to the Ornstein-Uhlenbeck process for the variable y [4]. Time series of x

are presented in Fig. 1. Compared to the white noise case, the amplitude of the fluctuations is
reduced. As mentioned, we show in Fig. 2 the position of several trajectories in phase-space
from which the concentration of the p.d.f. around the value w0 appears clearly. In this case
the p.d.f. at lowest order becomes

P0 = 1√
π

exp

[
− δ

μ

(
w − w0 − 1

n
ln(μ)

)2

− 1

2
γy2

]
, (26)
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744 A. Alexakis, F. Pétrélis

Fig. 2 Top panel: Position in
phase-space of 103 realizations
of the numerical solution of the
Langevin equation (7) with
F = 1

2 γy2, and γ = 2. Different
shades/colors (online)
correspond to different values of
μ as indicated. The dashed line
corresponds to w + y = 0 where
the nonlinear term is of order
one. Lower panel: The marginal
probability Π(w) =∫

P(y,w)dy from the numerical
investigation (dots) and the
analytical prediction of Eq. (26)
(solid line). Shades and colors
are the same as in the top panel

with w0 = logX0 = −n/(2γ ) and δ is given by the integral (23). Note that X0 takes very
small values when γ is small which requires high accuracy when solving numerically the
Langevin equation (7). In Fig. 2, we present the marginal probability

∫
P (ω,y)dy as a

function of (w − w0)/μ
1/2 for different values of μ and γ = 1. The numerically computed

p.d.f. agree well with the theoretical expression (26).

4.3 Crossover: Two Non-commutative Limits

Setting γ = 0 in Eq. (7), we recover Eq. (1) with a white noise and this is the case in which
on-off intermittency takes place. In this case, the exponents are βm = 1. This is at odd with
the deterministic scaling βm = m/n that we have predicted for non-zero γ (but possibly
arbitrarily small).

Some insight on this problem of exchange of limits can be obtained by investigating
the small γ limit (or small amplitude of F in general). In this case, we write P = P0 +
γ 1/2P1 + γP2 + · · · and use the fast z = w + y = ln(x) and slow Y = γ 1/2y variables. The
Fokker-Planck in these coordinates reads

∂z

(
μ − enz − γ 1/2Y

)
P = ∂Y γ YP + ∂2

z P + γ ∂2
Y P + 2γ 1/2∂z∂Y P .

Author's personal copy



Critical Exponents in Zero Dimensions 745

Fig. 3 First moment as a
function of μ obtained from the
numerically computed solutions
of Eq. (7) for F = γy2/2 and
five different values of γ . The
first moment has been rescaled
by the deterministic scaling μ1/2

At lowest order in γ we get

∂z

(
μ − enz

)
P0 − ∂2

z P0 = 0, (27)

that leads to

P0 = A(Y ) exp
[
μz − enz/n

] ≡ A(Y )Π(z).

Note that Π is the p.d.f. obtained when the noise is white, i.e. associated to on-off behavior.
At next order we have

∂z

(
μ − enz

)
P1 − ∂2

z P1 = ∂z(YP0 + 2∂Y P0). (28)

The solvability condition (here integration over z) does not set the amplitude A(Y ) at this
order, however Eq. (28) can be easily solved to obtain P1.

At second order we have

∂z

(
μ − enz

)
P2 − ∂2

z P2 = ∂z(YP1 + 2∂Y P1) + ∂Y YP0 + ∂2
Y P0. (29)

Integrating over z, we obtain

0 = ∂Y (AY + ∂Y A), (30)

that leads to

P0 = exp
[
μz − enz/n − γy2/2

]
. (31)

Using this result to calculate the moments for small μ, we recover the on-off scaling βm = 1
for all moments m. The validity of this expansion however holds only when γ tends to zero
with fixed μ and thus it does not provide the actual critical exponent. The two limits of
small μ and small γ cannot be exchanged:

lim
γ→0

βm = lim
μ→0

lim
γ→0

log
(〈
xm

〉)
/ log(μ).

This explains the crossovers that are observed if we calculate the moments numerically
for small values of γ . In Fig. 3, we display the first moment as a function of μ for n = 2. For
large γ , the mean-field exponent β = 1/2 is found for μ up to unity. In contrast for small γ ,
this exponent is recovered only for very small μ. For larger μ, an apparent exponent β

smaller than unity can be estimated which traces back to the on-off behavior and is only a
cross-over. We note that in an experiment or in a numerical simulations, such cross-overs
can easily be interpreted as anomalous exponents. Indeed they can be observed on a large
range of μ and the deterministic result is only recovered for very small μ.
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746 A. Alexakis, F. Pétrélis

Fig. 4 Top panel: Position in
phase-space of 103 realizations
of the numerical solution of the
Langevin equation (7) with
F = ν|y|, and ν = 1. Different
shades/colors (online)
correspond to different values of
μ as indicated. The dashed line
corresponds to w + y = 0 where
the nonlinear term is of order
one. Lower panel: The marginal
probability Π(w) =∫

P(y,w)dy from the numerical
investigation (dots) and the
analytical prediction (solid line)

5 Anomalous Exponents for a Less Steep Potential

The expansion presented in Sect. 4.1 fails when the denominator in Eq. (19) diverges. A sim-
ple potential F for which this expansion can break down is F = ν|y|. In this case y follows
a Brownian motion with solid friction [15, 16]. By contrast with the potentials considered
in the former section, we qualify such potentials as less steep. Time series of x, displayed in
Fig. 1, show an intermediate behavior between on-off intermittency and the one described
in Sect. 4.2. Phase-spaces for the numerically computed solutions of Eq. (7) are displayed
in Fig. 4.

For this choice of F , we need to consider two cases separately. For ν < n, the expansion
of Sect. 3 breaks down at lowest order and a different asymptotic must be performed. For
ν > n, the expansion remains valid for the first moments but need to be modified for larger
moments.

5.1 The Case ν > n

In this case the previous expansion works only for the calculation of the moments of order
smaller than ν. To fix this we need to consider a separate expansion for small and for large y.
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For y = O(1) the previous expansion is valid and the probability distribution function in this
region is given by

P in �
√

δν2

4πμ
e−δu2−ν|y|, (32)

with δ given by Eq. (23). This solution is sufficient to calculate the moment m provided that
m < ν. Indeed, we have

〈
xm

〉 =
∫

em(y+w)P dy dw = ν

ν2 − m2
Xm

0 μm/n. (33)

Thus in this case, we obtain the deterministic scaling

βm = m/n for m < ν and n < ν. (34)

For m > ν the integral in Eq. (33) diverges and the calculation for the moments fails
because the expansion does not capture the large y behavior of the p.d.f.. To remedy this
we need to calculate the large y behavior of the p.d.f. P out. We then rescale variables to
y = y ′ − ln(μ)/n and w = w′ + ln(μ)/n (so that y ′ + w′ = O(1) > 0), and obtain

∂w′
(
en(w′+y′)P out

) + ν∂y′P out + ∂2
y′P out = 0. (35)

Making the change of variables P out = e−νy′−nw′
Θ and τ = e−nw′

, r = eny′
/n, we arrive at

∂τΘ = −ν̃∂rΘ + ∂rr∂rΘ (36)

which is an advection-diffusion equation with space-varying diffusivity. The advecting ve-
locity ν̃ = ν/n is directed away from the r = 0 boundary. The boundary conditions are
Θ → 0 for r2 + τ 2 → ∞ and Θ = f (τ) for r → 0 and τ finite, where f (τ) is determined
by matching with the inner solution. This problem can be solved exactly and its solution is
given by

Θ(τ, r) = 1

Γ (ν̃)

∫ τ

−∞
f (τ0)

rν̃

(τ − τ0)ν̃+1
e−r/(τ−τ0)dτ0.

To obtain the functional form of f we match at an intermediate value of y chosen to be
α/n ln(μ) with 0 < α < 1. We obtain that to first order in μ

f
(
e−w′) � μν̃ ν

2
δ
(
w′ − w0

)
,

thus

P out
(
y ′,w′) = νnμν̃

2nν̃Γ (ν̃)

e−nw′
exp[ −eny′

n(e−nw′ −e−nw0 )
]

(e−nw′ − e−nw0)ν̃+1
(37)

for w′ < w0 and zero otherwise. The calculation of the higher moments m > ν can then be
performed as

〈
xm

〉 =
[∫ +∞

−∞

∫ − α
n ln(μ)

−∞
emy+mwP in(w,y) dy dw

]

+
[∫ +∞

−∞

∫ +∞

− α
n ln(μ)

emy+mwP out(w,y) dy dw

]
.

In the limit μ → 0 and for m > ν the main contribution comes from the second integral
resulting in
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748 A. Alexakis, F. Pétrélis

〈
xm

〉 = νΓ (m̃)Xν
0J (m̃, ν̃)

2Γ (ν̃)nν̃−m̃+1
μν̃ (38)

where J (m,ν) = ∫ ∞
0 (u + 1)−mum−ν−1 du and m̃ = m/n. Thus the scaling exponent βm of

the m-th moment is

βm = ν/n for m > ν and ν > n. (39)

5.2 The Case ν < n

When ν < n the previous expansion fails due to the divergence of the denominator in
Eq. (19). Figure 4 shows the location in phase space of 103 trajectories for different val-
ues of μ (different colors) obtained by the numerical integration of the Langevin equations.
It can be seen that as μ becomes smaller the distribution moves to smaller values of w but
retains its width, unlike the case of the steep potential. We thus need a different expansion.
Making the substitution w = w′ + 1

n
ln(μ), the Fokker-Planck equation becomes

L0P = μ∂ ′
w

[(
1 − en(w′+y)

)
P

]
. (40)

Since the derivative with respect to w′ is multiplied by the small parameter, we write

P = exp

(
1

μ
S
(
w′)

)
R

(
w′, y

)
,

and expand R(w′, y) as R = R0(w
′, y) + μR1(w

′, y) + · · · . At lowest order we obtain

Lσ R0 ≡ σ
(
en(w′+y) − 1

)
R0 + L0R0 = 0 (41)

where σ = dS(w′)/dw′. This equation can be solved exactly for positive and negative y.
The two solutions are then matched at y = 0 that selects the value of σ

n = 2νIκ

[
λenw′/2

]
Kκ

[
λenw′/2

]
, (42)

where λ2 = −4σ/n2, κ = √
ν2/n2 − λ2 and Iκ and Kκ are modified Bessel functions of

order κ .
We can find an approximate solution of Eq. (42) to obtain σ for w′ → −∞. To pro-

ceed we use the following relation for Bessel functions Ia[z]Ka[z] � 1/(2a) + C1z
2a +

C2z
2 + · · · , valid for z → 0 and where C1 and C2 are two constants. In this limit and for

ν < n, we obtain λ ∝ enw′ν/(2(n−ν)). The asymptotic behavior of S is then of the form

S � −n(n − ν)

4ν
enw′ν/(n−ν). (43)

We observe that the exponential term eS(w′)/μ acts as a cut-off that selects very negative
values of w′ in the small-μ limit. This limit will turn out to be useful when we calculate
the moments. For the time being we proceed with our expansion without considering the
w′ → −∞ limit.

The solution for R0 is R0 = A(w′)e−F/2g(w′, y) where g is defined by

g ≡
{

Kκ [λen(w′+y)/2]Iκ [λenw′/2] (y > 0)

Iκ [λen(w′+y)/2]Kκ [λenw′/2] (y < 0).
(44)

The solution R0 decays exponentially R0 ∼ eνy for y → −∞ while for positive y the ex-
ponential decay (R0 ∼ e−νy ) is followed by a super-exponential cut-off (R0 ∼ exp[−eny])
for y � −w′/(1 − ν/n). The amplitude A(w′) is obtained by a solvability condition on the
equation at next order
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Lσ R1 = ∂w′
[(

1 − en(y+w′))R0

]
. (45)

To obtain the solvability condition we need to multiply and integrate Eq. (45) by eF g(w′, y)

that is an element of the kernel of the adjoint operator of Lσ and thus the left hand side
integrates to zero. The resulting solvability condition after some transformations reads

∂w′ log
(
A

√∣∣enw′ In − I0

∣∣) = − nenw′ In

2(enw′ In − I0)
, (46)

where Iq(w
′) is the integral

Iq =
∫ ∞

−∞
eqyg2

(
w′, y

)
dy.

We can find the asymptotic behavior of I0 and In in the limit w′ → ∞ that leads to I0 �
n2/2ν3 and In � (n/2ν2)e−nw′

. Inserting this result into Eq. (46), we obtain that

A
(
w′) � exp

[
nν

2(n − ν)
w′

]

for w′ → −∞. Already at this point we can observe by balancing the behavior of A with
the expression for S in Eq. (43), that the most probable w scales like w ∝ 1

ν
ln(μ) that is

different from the scaling w ∝ 1
n

ln(μ) observed in Sect. 4.1. A comparison of the asymptotic
result for the p.d.f. with the results of numerical simulations can be seen in the lower panel
of Fig. 4.

We can now calculate the moments
〈
xm

〉 = 〈
emw+my

〉 = μm/n
〈
emw′+my

〉 = μm/nMm/M0 (47)

where we have introduced

Mq =
∫

y

∫

w′
R0

(
w′, y

)
eqw′+qyeS(w′)/μ dw′ dy. (48)

The small μ behavior of Mq is obtained by keeping in mind that we can restrict to very
negative values for w′ which simplifies the expression of the Bessel functions. For m > ν,
the major contribution of the integral Mm comes from the large y and large w part of the
p.d.f. that scale like y ∼ −w ∼ −1/ν ln(μ). For m < ν the major contribution comes from
the small y ∼ 0 and large −w ∼ 1

ν
ln(μ). Careful evaluation of the integrals in the μ → 0

limit then leads to

βm = min

[
m

ν
,1

]
for ν < n. (49)

5.3 General Expression for βm

We have obtained several analytical expressions for the critical exponents that depend on
the values of m, n and ν. These expressions given in Eqs. (34), (39), (49) can be written in
a compact form

βm = min[m,ν]
min[n, ν] , (50)

that divides the (ν,m)-parameter space in four distinct regions with different scaling behav-
iors, as displayed in Fig. 5. Depending on the statistical measure examined (degree of the
moment m) different transitions can be observed. Increasing ν we observe that the system
transitions from on-off behavior βm = 1 (when ν is small and the noise is dominated by
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Fig. 5 Phase diagram displaying
the four regions where different
scalings of the moments βm are
observed

Fig. 6 Critical exponents of the
first 4 moments (β1 diamonds,
β2 triangles, β3 squares, β4
circles) as a function of ν for
n = 2. The results were obtained
from numerical integration and
are compared with the analytical
predictions

the δ-correlated component) to the anomalous scaling βm = m/ν (for m < n) or βm = ν/n

(for m > n) and finally to the deterministic one (when ν is large and the distribution of y is
narrow). We refer to the two intermediate scalings (for ν between m and n) as anomalous
because they do not follow neither the mean field nor the on-off prediction. We note that
the exponents are continuous functions of the parameter ν but not analytic. Therefore, they
cannot be captured as a single Taylor series valid over the whole parameter space.

For moments of small degree, the expression for the anomalous exponent m/ν does not
involve the nonlinearity n while for moments of large degree, the exponent ν/n does not
depend on the considered moment.

For fixed value of ν and of the nonlinearity n, the scaling of the moments with m contains
two regimes. A linear behavior for small m and a plateau for large m. The value at the plateau
depends on the width of the noise: corresponding to on-off (β = 1) for wide noise (small ν),
and a different value ν/n for a narrow noise (large ν). We point out that the moments do
not depend linearly on m, i.e. that the solutions display multiscaling. This traces back to the
non-trivial expressions found for the p.d.f. obtained in Sect. 5.

In Fig. 6 we display the first 4 exponents measured from numerical simulations. To
obtain these exponents the Langevin equations were solved for μ in the range 10−6 < μ <

10−3 and for a duration long enough for the 4th moment to be converged. The exponents
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were then calculated by a linear fit. Simulations with μ as small as 10−7 for which only the
first two moments were converged were also performed to verify that transient behavior as
the one observed in Sect. 4.3 is not present. The measured exponents are in agreement with
the results obtained analytically.

We have also performed several numerical simulations using potentials of the form F =
−ν

√
Y 2

0 + Y 2. We have observed that only the behavior of F for large values of |Y | is
important. In other words, the universality classes of the problem (i.e. the models having
the same critical exponents) are determined by the behavior of the tails of Π(Y). This also
shows that the anomalous scaling is not caused by the non-analyticity of F at Y = 0.

As mentioned in Sect. 2, we have considered the white noise terms in Eq. (7) with the
Stratanovich interpretation. If the Ito interpretation is used instead, our results remain es-
sentially the same. Indeed the Fokker Planck equation has the same form as Eq. (13) with
μ changed into μ − 1. The onset of instability is thus shifted to μc = 1 and the behaviors
of the moments expressed as a function μ − μc are the same as the ones obtained with the
Stratanovich interpretation. Therefore the values of the critical exponents do not depend on
the choice of Ito or Stratanovich interpretation.

6 A Heuristic Determination of the Critical Exponents

In this section, we try to explain the predicted critical exponents by giving a physical inter-
pretation of the anomalous behavior. The evolution of z = log(x) satisfies ż = μ − xn + ẏ.
We note that close to criticality (μ 	 1) the amplitude of x remains small most of the time
and thus the noise ẏ is the dominant effect. Keeping only this effect, we have ż = ẏ that
leads to the relation z = y + C, where the value of the integration constant C needs to be
determined. Accordingly the marginal probability writes Πz(z) = Πy(z + C) = 1

N
e−ν|z−C|.

This relation is only violated at large x = O(1) where the nonlinearities need to be taken
into account and provide a large z cut-off. Taking all these into account and returning to the
x variable we can write the marginal probability Πx(x) as

Πx(x) = 1

N

⎧
⎪⎨

⎪⎩

x−1+νx−ν
c if 0 < x < xc

x−1−νx+ν
c if xc < x < xNL

0 if xNL < x

(51)

where xc = eC is still undetermined, xNL = O(1) stands for the nonlinear cut off and N

is determined by normalization. Figure 7 shows the marginal probability distribution Πx

obtained from the numerical integration of the Langevin equations demonstrating that the
two power laws model (51) gives a qualitative good description of Πx . Straightforward
estimates of the moments 〈xn〉 = ∫

xnΠx dx for this form of p.d.f. result in
〈
xm

〉 ∝ xm
c if m ≤ ν

∝ xm−ν
NL xν

c if ν ≤ m. (52)

All that is left is to determine the value of xc . This can be obtained by balancing the
averaged effect of the nonlinearity (〈xn〉) with the linear drift (μ). As the estimates for the
moments indicate two cases need to be considered.

For ν > n, the average value of the nonlinearity is given by 〈xn〉 ∝ xn
c . Balancing with

the drift leads to xc ∼ μ1/n.
For ν < n, the tails of the p.d.f. and the large x cut-off determine the averaged value of

the nonlinearity given by 〈xn〉 ∝ xν
c xn−ν

NL ∼ xν
c . Balancing with the drift leads to xc ∝ μ1/ν .
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Fig. 7 The marginal probability
density function of x, Π(x),
computed from the numerical
solution of Eq. (7) for ν = 0.4
and for three different μ (10−3,
10−4, 10−5). The position of the
crossover between the
power-laws moves to smaller
values when μ decreases

Inserting the expressions of xc into Eq. (52), we obtain all the behaviors predicted by
Eq. (50). It is clear from these arguments that the tails of the y distribution control the
presence of anomalous exponents. If y has a narrow distribution (F is a steep potential)
x does not deviate far from the deterministic value and thus mean-field scaling is obtained.
On the other hand, if y has a wide distribution it is the tails of the p.d.f., and the rare visits
of x to the nonlinear regime x ∼ xNL that determine the balance with the nonlinearity and
the resulting scaling is anomalous.

7 Conclusions

We have introduced and studied the behavior of a family of zero-dimensional models in
the vicinity of the instability threshold. The amplitude of the unstable mode in our models
evolve in the presence of multiplicative fluctuations that makes it possible to have bifur-
cation at zero dimensions. Because this model is zero-dimensional (does not depend on
space), it is among the simplest that can be considered. However, despite its simplicity the
model exhibits nontrivial behavior. Depending on the control parameters the solutions dis-
play anomalous scaling close to the onset of instability: moments scale with the distance
to onset as power-laws different than the ones predicted by mean-field theory. In addition,
the system displays multi-scaling: the exponents are not simply proportional to the moment
degree.

The values of the exponents were obtained by an exact calculation through perturbative
expansions in the departure from criticality. This differs from what is usually obtained in
equilibrium phase transitions where the exponents are expressed as a series in the spatial
dimension minus the critical dimension. In addition to the expansion we have presented
heuristic arguments that allow to determine the critical exponents. This enables us to identify
the basic ingredients for obtaining the anomalous behavior. First the model relies on a noise
which spectrum vanishes at zero frequency. We note that in the context of advection of
a passive scalar in a turbulent flow, stochastic processes that have vanishing spectrum at
zero frequency have been used to model anomalous diffusion [14]. In the present model
vanishing spectrum at zero frequency is achieved by considering the derivative of a noise y

that follows a random walk in a confining potential. If y has a narrow distribution, normal
scaling is obtained. If y has a wide distribution, truly anomalous behavior takes place.
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All the analytical results were tested and verified by numerical simulations. Convergence
of the estimated exponents from the numerical results proved significantly difficult due to
the appearance of intermediate power laws that are present in some limiting cases. These
intermediate power laws can contaminate the value of the exponents if sufficiently small
values of μ are not investigated. Experimentally if such cross overs exist it may be difficult
to distinguish them from true anomalous scaling, given the experimental limitations.

As an example we mention that in a recent experiment, the dynamo instability was ob-
served in a turbulent flow of liquid sodium [11–13]. The first moment displays an exponent
0.78 located in-between 1/2 (as expected for cubic nonlinearities) and 1 (as expected for
on-off intermittency). The present model gives a possible explanation for the observed ex-
ponent since β1 can be larger than the mean-field 1/n prediction and smaller than the on-off
exponent 1. However the dynamo equations are more complicated than the model consid-
ered here: two fields (magnetic field and velocity field) are coupled and depend on space
and time. Whether and when the dynamo problem can be reduced to the model studied here
remains an open question.

Several additional investigations can be thought of. Other critical exponents can be de-
fined and studied. The response to a constant field and the associated susceptibility are of
particular interest. It is expected that simple scaling relations between the exponents exist
(as in equilibrium phase transitions) and can be obtained exactly in the present context. Fi-
nally, taking space into account is also an attracting path. A possible attempt being to search
for an expansion in the dimension since we have obtained a solution in the d = 0 case.
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