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We study the dynamo instability for a Kazantsev-Kraichnan flow with three velocity
components that depends only on two-dimensions u = (u(x,y,t),v(z,y,t),w(z,y,t))
often referred to as 2.5 dimensional (2.5D) flow. Within the Kazantsev-Kraichnan frame-
work we derive the governing equations for the second order magnetic field correlation
function and examine the growth rate of the dynamo instability as a function of the
control parameters of the system. In particular we investigate the dynamo behaviour for
large magnetic Reynolds numbers Rm and flows close to being two-dimensional and show
that these two limiting procedures do not commute. The energy spectra of the unstable
modes are derived analytically and lead to power-law behaviour that differs from the
three dimensional and two dimensional case. The results of our analytical calculation
are compared with the results of numerical simulations of dynamos driven by prescribed
fluctuating flows as well as freely evolving turbulent flows, showing good agreement.
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1. Introduction

Dynamo instability refers to the amplification of magnetic fields by the flow of a
conducting fluid. It is responsible for the existence of magnetic fields in most astrophysical
bodies. In most situations the driving flow is turbulent and this prevents an analytical
treatment of the problem. Thus most studies are restricted to large scale numerical
simulations or simplified models. A simple flow that can be treated analytically is the
Kazantsev-Kraichnan flow. This model considers the kinematic dynamo instability driven
by a random velocity field that is homogeneous, delta-correlated in time and gaussian
distributed. It was first examined by Kazantsev (1968) for the dynamo instability and was
independently studied by Kraichnan (1968) for the problem of passive scalar advection.
Physically, the delta-correlated time behaviour, models the fast varying turbulent scales
of the velocity field. Under these assumption the problem can be simplified to a one
dimensional eigenvalue problem, the eigenvalue of which gives the growth rate of the
magnetic energy.

The Kazantsev-Kraichnan flow has been widely studied for three-dimensional isotropic
flows. Since the velocity field is gaussian distributed its statistics are entirely given by
the second order correlation function. The correlation function g% (r) of the velocity
field is defined as (u’ (x +r,t) u’ (x,t')) = ¢" (r) 6 (¢ — t') where due to homogeneity the
function g% is independent of x. The first study by Kazantsev considered a flow for which
the correlation function scales like |g% (r)| ~ r¢ with ¢ being the Hélder exponent. He
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found existence of dynamo instability in the range 1 < ¢ < 2 for large Rm. Flows with
Holder exponents ¢ < 2 correspond to rough flows and model the turbulent scales while
flows with ¢ = 2 correspond to smooth velocity fields that model the viscous scales where
the nonlinearities are in balance with the viscous dissipation. Since then various authors
(Ruzmaikin & Sokolov 1981; Novikov et al. 1983; Falkovich et al. 2001; Vincenzi 2002;
Schekochihin et al. 2002) have considered velocity fields with both a turbulent inertial
range and a viscous scale cut-off at various limits of the system. For smooth flows ( = 2,
Chertkov et al. (1999) calculated the higher order moments and multipoint correlation
functions by means of a Lagrangian approach. Geometric properties of the advected
field were examined by Boldyrev & Schekochihin (2000) and the effect of nonlinearities
were examined in Boldyrev (2001). More recently the predictions of the model as well as
the non-linear behaviour have been examined by means of three-dimensional numerical
simulations (Schekochihin et al. 2004; Iskakov et al. 2007; Mason et al. 2011).

There is a major difference between a two dimensional (2D) flow and a three dimen-
sional (3D) flow concerning the dynamo instability. 2D flows do not lead to a dynamo
instability for any value of the magnetic Reynolds number as shown by Zeldovich (1957).
This is also true in the 2D Kazantsev model that has been examined in detail by
Schekochihin et al. (2002) and more recently the evolution of a 3D magnetic field by
a 2D flow was examined by Kolokolov (2016). A careful analysis of the time evolving
solution indicates that in two dimensions the energy of any initial magnetic field localized
in the wavenumber space will grow exponentially due to the increasing number of excited
modes, even if the energy amplitude of each individual mode decreases. This behaviour
persists until the length scale of the magnetic field becomes comparable to the dissipation
scale after which dissipation becomes effective and the total magnetic energy decays. The
decaying magnetic field spectrum forms a power law behaviour with an exponent k2. In
contrast in the three dimensional case for sufficiently large Rm an initial magnetic field
localized in space has growing number of excited modes and each mode grows in time.
The magnetic energy spectra in 3D has a powerlaw k3/2 behaviour.

In this paper we are interested in developing the Kazantsev model for a flow where
the velocity field takes the form u = (u(z,y,t),v(z,y,t), w(z,y,t)), meaning it has three
components but depends only on two-dimensions. Such flows are refered in the literature
as 2.5D flows. They can be considered as the limiting case of a very fast rotating system
for which, according to the Taylor-Proudmann theorem (Proudman 1916; Taylor 1917),
the flow becomes two-dimensional due to the Coriolis force that suppresses fluctuations
along the direction of rotation. 2.5D flows are some of the simplest flows that give
rise to the dynamo instability and have been extensively studied for smoothly varying
flows (Roberts 1972; Galloway & Proctor 1992). Our interest lies on turbulent flows
that have been examined recently at various contexts Smith & Tobias (2004); Tobias &
Cattaneo (2008); Seshasayanan & Alexakis (2016) where the dynamo instability driven
by a turbulent 2.5D flow has been studied in detail. In Seshasayanan & Alexakis (2016) it
was shown that both helical and non-helical 2.5D flows can lead to a dynamo instability.
For the helical flow and for small Rm the instability can be explained by an a-effect. The
a-effect is a mean field effect where the small scale magnetic field and the small scale
velocity field interact to amplify the magnetic fields at large scales. For the non-helical
flow however the a-coefficient is zero and it does not provide an explanation for the
observed dynamo growth rates. Thus this dynamo remains theoretically unexplained.

The main purpose of this work is to examine analytically the dynamo instability for
the nonhelical flow for the Kazantsev-Kraichnan model for the 2.5D flow. We first derive
a system of equations that govern the second order correlation function of the magnetic
field. This leads to a linear system of equations and an eigenvalue problem which is then
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solved for a model velocity field that we consider. This allows us to explicitly calculate
the growthrate and the spectral behaviour of the most unstable modes. We restrict to
the case of smooth, velocity fields with a correlation function that scales like 72 at small
scales.

The rest of the article is constructed in the following way. Section 2 describes the
governing equations on which this study is based. We set-up a model flow to be studied
in section 3. The dynamo instability properties of this model flow is examined in section
4 and in 5. Section 6 describes the spectral behaviour of the most unstable eigen-mode. In
section 7, we compare the analytical results with the results from numerical simulations.
Finally in section 8 we conclude the study and give some future perspectives.

2. The model

We consider a 2.5D flow of the form u(z,y,t) = (ug, uy, u,) which can also be written
in terms of the stream function ¢ (z,y) as u = V x (¢€é,) + u,é, = u,, + u.€, where
z is the invariant direction. The Kazantsev-Kraichnan ansatz considers the velocity field
to be delta correlated in time, gaussian distributed, its statistics is entirely governed
by the second order correlation function. We further consider that the velocity field is
homogeneous and 2D isotropic in the plane x,y. Isotropy in 2D means that the statistics
of the velocity field is invariant under rotations around the z-axis. The correlation
function of two components of the velocity field u?, 4’ at points x 4+ r, x can be written
as,

(u' (x+r,t)uw! (x,t')) =g7 (r)6(t —1). (2.1)

Independence of g% on x emerges from homogeneity.
The general form of an isotropic second order correlation function ¢g* (r) for a 2.5D
flow (see Oughton et al. (1997)) is given by,

rtrd

97 0) =01 009 = (020 =) (37 = T ) (02 1) = 1) = L 1)) 2

s T 3jpcis™’  3ipc3Th
g0 () (075 = D97) g, () (a2 - g ) (2.2)

r T r r
where 6% is the Kronecker delta tensor and €% is the Levi-Civita tensor. The indices
i,j take the values 1,2,3. All the quantities depend only on two-dimensions in space,
hence we have used a projected coordinate r = (z,v,0) = (r!,72,7®) in equation 2.2.
The derivative of g% (r) with respect to r® = z is zero. The prime on a scalar function
¢’ denotes the derivative with respect to r. The functions g¢,,, 9y, 9c, 9p; g, are scalar

functions that depend only on r and are defined as,

oo (1) =((er-w)(u'-er)), g, (r) = ((ez-u)(u'-e.))p,
ge (r) = ((ez - w)(u' - &)y, gy (r) = ((ez-u)(0' - (ez x 1))y, (2.3)
Inw (1) = (((ez x &) -u)(u’- (ez X €))7,

where T is the unit vector along r direction. u is the velocity field at a point x +r at
time ¢, u’ is the velocity field at a point x at time ¢/, the symbol ( ), denotes both time
average and ensemble average. Physically the quantity g,, measures the longitudinal
auto correlation function of the two-dimensional velocity field. The quantity ¢, , gives
the transverse auto correlation of the two dimensional velocity field. g. and g, are the
cross correlation between the two-dimensional velocity field and the vertical velocity field.
The function g, gives the autocorrelation of the vertical velocity field. In particular the
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function g, is related to the helicity of the velocity field. Since we consider a velocity field
that is nonhelical, we take g, (r) = 0. The incompressibility condition for the velocity
field Oyuy + Oyu, = 0 implies for the correlation function, glf = gzjj = 0, where the
subscript ; in gij denotes differentiation of ¢*/ with respect to r*. This implies,

52

Inn (T) =YL (T) + g/LL (T) r (24)
ge(r) =0 (2.5)

leaving two functions g,, (r),g, (r) that determine fully the second order velocity
correlation function.

Due to the invariance of the velocity field along z-direction the perturbations of the
magnetic field can be decomposed into Fourier modes of the form B = b(x, y,t) exp(ik.z).
The complex vector field b is governed by the induction equation which can be written
as,

Ob—+ (Vx1e.) Vb+uyik.b=b-V (Vxve.)+n (A—k2)b (2.6)

where 7 is the magnetic diffusivity. The solenoidal condition for the magnetic field V-B =
0 gives,

aa:bw(-rayat) +8yby(:c,y7t) = _ikzbz(wvyat) (27)

where b = (b, by, b,). The evolution of the magnetic field can be quantified by considering
the second order correlation function defined as,

HJ (v, 1) = <(bi (x+1,4) ¥ (x, t)> (2.8)

where the symbol T denotes the complex conjugate. As shown in the appendix A, given
that the velocity field is mirror symmetric and the governing equation is of the form
equation 2.6 we only need to look at the mirror symmetric part of the magnetic field.
This is because the induction equation in the absence of a mirror asymmetric part in
the velocity field leads to a decoupled equation for the mirror symmetric and the mirror
asymmetric part. Thus we only need to concentrate on the mirror symmetric part of the
magnetic field neglecting magnetic helicity similar to most studies of Kazantsev model
in 3D, see however Subramanian (1999); Boldyrev et al. (2005), where a helical flow
is considered and the magnetic helicity is present. The general form of the magnetic
correlation function for a nonhelical complex field can be written as,

)+ (H, (1) = Hyy (1) )50

i He (r) (692 + 2099, (2.9)

HY (r,1) = Hyy (1) 89 — (Hyy (7) = Hay (1)) (09 =5

where H,,,H,,,H., H, are scalar real functions that only depend on r and are defined
as,

H,, (r,t)={(e,-b)(D -e,)),, H,(r,t)={(e.-b)(b-e,),,
H,, (rt)= <((ez X e) - bT)(b (e, x er))>T, H, (rt)= <(ez . bT)(b . ez)>T.
(2.10)

where b is the magnetic field at a point x + r at time ¢ and b’ is the magnetic field at a
point x at time t. This general form can be derived by writing the magnetic field in terms
of scalar functions and then writing the two point correlation function in terms of these
scalar functions (see Oughton et al. (1997)). The function H,, is the longitudinal auto
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correlation function of the two dimensional magnetic field and H,, , is the transverse auto
correlation function of the two-dimensional magnetic field. The function H. is the cross
correlation function of the two-dimensional magnetic field with the vertical magnetic
field b,. H, is the auto-correlation function of vertical magnetic field b,. The solenoidal
condition of the magnetic field (equation 2.7) for the correlation function implies,

HY — ik, HY =0, HY — ik H"® =0 (2.11)
which gives the set of following relations for the scalar correlation functions,
H
k.H, (r)=H.(r)+ Helr) (2.12)
H - H
hH (r) = H, (r) + Tae ) (1) (2.13)

r

When k, =0 we get H. =0 and H,, = H,, +rH, . If the magnetic field is 2.5D, the
magnetic correlation function H"” becomes real and it simplifies to a form similar to the
velocity correlation function g% .

Given the velocity correlation functions g it is possible to derive the governing
equation for H% starting from the induction equation 2.6. The governing equation for H%
leads to triple product correlations of velocity and magnetic fields. The triple product
can be written in terms of second order correlation functions of the velocity and the
magnetic field by using the Furutsu-Novikov theorem (Furutsu 1963; Novikov 1965).
This theorem uses the fact that the velocity field is Gaussian distributed. Due to the
solenoidal conditions (equation 2.12, 2.13) only two equations are required to completely
determine the magnetic correlation function H% that we here chose to be H,,, H.. The
governing equations then read

)2
6tHLL_<277+gLL (O) — gLL) {HZL +34;L} =+ k‘g (2"7"‘92 (O) - gZ)HLL = _gZLHLL

H 2

9., (2H], +372L) =3k.Ho g, + (204 9., (0) = g,, )k He (2.14)
1
2

c’)tHc—(2n + 9., (0) = gLL) [Hé’ + %Hé - H] + k2 (277 +9,(0) - gz)Hc = —k.g, H,,.

(2.15)

The details of the derivation are given in the Appendix A. The quantity g,, (0) is the
total energy of the velocity field in 2D while the quantity g, (0) is the total energy of the
velocity in the z direction. These terms, g, , (0), g, (0), depend on the frame of reference
from which they are measured and do not modify the dynamo instability.

We identify three special cases which do not lead to a dynamo instability.

(i) When k., = 0 the equations simplify to the 2D Kazantsev model which does
not give rise to the dynamo instability as shown in previous studies (see for example
Schekochihin et al. (2002)). This means that k, # 0 is required in order to have a
dynamo instability.

(ii) When the third velocity component is zero u, = 0 then g, = 0. This leads to the
function H, no longer being driven/coupled to H,, . In the presence of diffusivity in the
long time limit H, would decay to zero. Alternatively we can show that the governing
equation for the vertical magnetic field is an advection-diffusion equation without any
forcing. Thus the vertical magnetic field b, decays in the long time limit. In the absence
of H. the equations governing H,, become again the 2D Kazantsev equations and hence
H,, would also decay in the long time limit.

(iii) The case when there is no shear in the two dimensional flow g,, = g,, (0) does
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not lead to a dynamo instability. The component b, can be amplified by the stretching
of by, by by u,. But it can be seen from the induction equation that the magnetic fields
components b, b, are advected by u, and dissipated by the ohmic dissipation with no
amplification from the stretching term. Thus both b,, b, decay in the long time limit which
makes b, to decay in the long time limit. These special cases fall under the Zeldovich
anti-dynamo theorem for 2D flows. Hence the velocity field has to have all the three
components and k, # 0 in order for the existence of the dynamo instability in the long
time limit.

In the next section we will consider a model flow where we calculate the form for the
functions g, , (), g, (). We then proceed to study the dynamo instability driven by this
model flow in terms of the other control parameters of the system.

3. Model flow

We consider a smooth isotropic and homogeneous velocity field given in terms of the
stream function ¢ and the vertical velocity u, as,

¥ (1) =G (1) sin (’; [sin (61 (1)) 2 + cos (61 (1)) ] + 62 (1 ) (3.1)

s (6,6) =G (1) os (’; [sin (61 (1)) @ + cos (61 (1) ] + 62 (1 ) SR

¢1 (t), P2 (t) are random variables which are uniformly distributed over [0,2n] and
render the flow homogeneous and isotropic. ¢; (¢) and (s (¢) are random variables that are
Gaussian distributed in time with (¢1 (t) ¢ (t')) = ©10 (t — ), (G2 (t) G2 (') = O (t — 1)
and (¢; (t) ¢2 (t')) = 0. The wavenumber kq defines a typical length scale for the velocity
field. The correlation function of the velocity field is calculated to be,

e o R e [E et X C))
+%J0 (kog) 573893 (3.3)

where Jy is the Bessel function of the first kind and J| stands for its derivative. The
functions g,,,, g, are then,

ko@l r @2 r
0p (1) = =g (koS). g, ()= T (ko) (3.4)
The small » behaviour of these functions is,
Gop (1) = g,, (0) = Dy + Eyr* — O (7“6) , g, (1) =g, (0) = Dor® + Eor* — O (r6)

(3.5)

where g,,, (0) = k261/16,g, (0) = O2/2, D1 = kjO1/512, Dy = kjO4/32. At small scales
the velocity field is smooth and behaves like g,, ~ %, g, ~ 2.

We note that the D; has dimensions of inverse time and defines the dynamical time
scale 74 = 1/D; that we will use to non-dimensionalize our system. Accordingly the
magnetic Reynolds number is defined as the ratio of the diffusion time scale 1/nk3 to the
dynamical time scale Rm = D1 /(k%n) = k2/kZ where k, is the dissipation length scale
for the magnetic field kg = ko+/D1/n = kovV Rm. A third dimensionless parameter can
be defined by the ratio of the vertical velocity field gradients to the planar velocity field
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Figure 1: Normalized growth rate y7; is shown as a function of the normalized modes
k. /kq for different values of Rm. Darker shades correspond to larger values of Rm.

gradients the we will quantify as D, = D5/D;. The quantity D, depends on the ratio
of the amplitudes of k%@l and @, given in equation 3 as D, = 1605/ (@1198). Thus the
nondimensionalized control parameters are, the wavemode k, /kq, the magnetic Reynolds
number Rm and D,..

4. Growth rate

Substituting H,, = e"h,, and H, = e''h, in equation 2.15 we end up with an
eigenvalue problem for the growth rate of the magnetic energy v and the eigenfunctions
h,, and h.. The largest eigenvalue of the system ~ controls the long time evolution of
the magnetic field correlation functions. We note that since H,, and H,. are quadratic
quantities in the magnetic field b the growth rate - is twice the growth rate of the
magnetic field. We proceed in this section by solving the resulting system of equations
numerically. To solve the eigenvalue problem we use a Chebyshev spectral method to
discretize the domain, and we project the functions h,, (r),h.(r),q,, (r),9, (r) into
a truncated basis of Chebyshev functions. The equations 2.15 in this truncated basis
can now be reduced to a linear matrix eigenvalue problem. We compute the largest
positive eigenvalue of the discretized matrix using standard linear algebra software. We
have checked the convergence of the resulting eigenvalue in terms of the number of basis
functions used and the domain size taken.

Figure 1 shows the growth rate v as a function of the rescaled parameter k,/kq for
different values of Rm. Dynamo instability appears at values of Rm above the critical
magnetic Reynolds number Rm, which is found to be Rm, =~ 0.45. Close to Rm, the
instability occurs at the value k, ~ 0.18k; ~ 0.12ky. For larger values of Rm the
instability is found in a range of wavenumbers k,,;n < k < kmnqe- The maximum value of
k,/kq at which the dynamo instability occurs initially increases with Rm but reaches a
constant value independent of Rm for large value of Rm. We remind that k4 o< kgv Rm
thus the largest wavenumber k.., for which there is a dynamo instability increases like
kmaz ~ kov Rm. The smallest wavenumber at which dynamo instability occurs k,in
decreases as we increase Rm. The growth rate of each mode k, increases as we increase
Rm reaching an asymptotic value at large Rm. The supreme of the growth rate y74 = 3 is
obtained for Rm — oo and k, — 0. For very large Rm we see that the curves themselves
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seem to reach an asymptotic behaviour which is captured well by the black solid curve
representing the growth rate in the limit of Rm — oo that we discuss in the next section.

5. Three limiting behaviour

In this section we look at three different limits of the control parameters.

51. Rm — oo, k,—0

The limit of very large Rm can be taken by letting the quantity n — 0 in the equations
2.15. In this limiting procedure we do the following change of variables, 7 = rkq, t =
tnk? = t/Dy. The velocity correlation functions are expanded in the following way,
9op (F) = g,p (0) =172 +0(n*7), g, = g, (0)—D,ni2+0(n?*7*). Simplifying the resulting
equation by considering only the highest order term we get,

WOy
vrah,, — (2 + 52) [h’L’L + 3%] + R (2 + D,ﬂ) h,, =2h,,
h ~ 2 -
27 (20, +37LL ) + 67khe + = (247 ) ahe, (5.1)
T T
1, 1 - )
yTahe — (2 n f2) [h’c’ IR - TQhC} +R2 (2 + Drf2>hc = 2%k.D,7h,,.  (5.2)
T T

The growth rate in this limit does not depend on k¢ but only on the local structure of
the velocity field described by D,.. The eigenvalues of the black solid curve in figure 1
were obtained by solving the above set of equations. It is important to note that the
above set of equations are obtained in the limit of  — 0 and not the case of n = 0.
We find that the value of v (k, — 0) = 3 as Rm — oo. This value can be obtained by a
matched asymptotic expansion that is described in section 6 and in Appendix D. On the
other hand for a finite Rm we see that v (k, — 0) = 0. Thus we have the non-commuting
limits,

3= lim lim ~ 75 lim hm ~=0. (5.3)

k,—0 Rm—oco m—oo k

We mention here that the anti-dynamo theorem is still respected since it corresponds to
the second limiting procedure above.

2. Rm —-00,D, =0

Taking the limit D, — 0 reduces the flow to a two-dimensional flow and from the anti-
dynamo theorem we expect the dynamo instability to disappear. In figure 2 we show ~ as
a function of k,/ky for a finite Rm case on the top and for the case of Rm — oo on the
bottom for different values of the parameter D, as mentioned in the respective legends.
The growth rate v and the range of unstable modes k., depend on the value of D,.. In
the top panel of figure 2 we see that indeed for the finite Rm case as D, is decreased the
dynamo instability disappears. This limit is pointed out in the plot by the arrow marked
2D. On the contrary for the case of the Rm — oo (see bottom panel of figure 2) the
growth rate v curve reaches a non-zero asymptotic behaviour as D, — 0 marked in the
figure by the arrow 2D. Thus we obtain another set of non-commuting limits,

0< lim lim «# lim lim v=0 (5.4)

D,—0 Rm—o0 Rm—o0 D,.—0

This result needs to be explained. The case of D,. = 0 is a purely 2D flow and does not
give rise to the dynamo instability in accordance with the anti-dynamo theorem which
is respected by the governing equations. We can capture the limit of D, — 0 taken after
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Figure 2: Normalized growth rate v as a function of k,/k4 for different values of D,
mentioned in the legends for, top - a finite Rm ~ 1.95e+4-05, bottom - the case Rm — oo.
The black arrow marked 2D shows the direction of decreasing value of the parameter
D,.. Darker shades correspond to smaller values of D,..

the limit Rm — oo by applying the following rescaling, /D7 — 7, h, — VD, h. to
equations 5.2. The highest order which captures the limit D, — 0 leads to the following
set of equations,

!

- h -
yrah,, — 72 [h’L’L +3 } + K2 (2 + f2)hu = 9o, (5.5)

27 (21, + sh;; JE

LL
,,’;’

T%h} + k2 (2 + 52)Bc = 2k.7h,, . (5.6)

Vrahe — 72 [+ L, -
7

The eigenvalues of these equations gives the asymptotic behaviour of the growth rate

when first the limit Rm — oo is taken and then the limit D, — 0. The resulting

eigenvalues from the above set of equations are shown separately in the left panel of

figure 3. These results are valid provided that 1 > D, > Rm™!, but the expansion

fails if D, is the same order as Rm~!. For values of D, smaller than this threshold the
dissipation effects are stronger and the dynamo instability disappears.
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Figure 3: Growth rate as a function of the rescaled k, for the case of 1. on the left panel
the limit D, — 0 where only the infinite Rm has a dynamo effect, 2. on the right the
limit D, — oo where both the finite and the infinite Rm have dynamo instability.

5.3. Rm — o0, D, — o0

In the top panel of figure 2 as the parameter D,. — oo we see that the unstable k, modes
move towards smaller values. This implies that the magnetic field should be correlated
over longer distances along the z direction in order for a large u, to twist and fold the
field lines and result in the amplification of the magnetic field. A similar behaviour is
observed in the case of infinite Rm (Rm — o), shown in the bottom panel of figure 2. It
is important to note here that the growth rate 7 is non-dimensionalized with D; which is
related to the amplitude of the shear in the correlation function g,,. If the growth rate
is normalized with \/D? + D3 which takes into account both the shear in in u,, and u,

then the normalized growth rate //D? + D3 = y74/+/1 + D2 becomes zero in the limit
D, — o0. Thus there is no violation of the anti-dynamo theorem. The maximum growth
rate in figure 2 appears to be independent of D, in the large D, limit. The growth rate
curves for large D, can be plotted with a rescaled k, — /D, k, which make the curves
to collapse on each other (not shown here). Such a result can be obtained by expanding
the equations 2.15 in terms of 1/D, and solving for the lowest order equations which
represents the limit D, — oo. Since the steps are similar with the previous section the
resulting set of equations are not shown.

The eigenvalues of the resulting equations after taking the limit D, — oo are shown
in the right panel of figure 3. In this plot we show both the finite Rm and the infinite
Rm growth rates. The behaviour of the two curves are similar except for the small k.
where the finite Rm limit looses the dynamo instability as shown in section 5.1. For fixed
k./kq, however, the limits lim gy, 00 and limp, o, are commuting:

lim lim = lim lim ~. (5.7)

Rm—o00 D,—00 D, —o00 Rm—oo

6. Correlation functions and energy spectra

In this section we discuss the functional form of the correlation functions and the
spectra of the most unstable eigenmode. It is reminded that the magnetic energy spectra
of a magnetic field advected by a Kazantsev 2D flow show the power-law behaviour k2
for wavenumbers between the velocity wavenumber ky and the dissipation wavenumber
k4. While in 3D the spectrum of the unstable mode scales like k3/2 in the same range. For
the 2.5D problem there are 3 relevant scales k., kq, ko. Dynamo instability is obtained
only for a particular ordering of these scales. Based on the results from the previous
sections, to obtain a dynamo /D, k, cannot be much larger than kg nor much smaller
than ko, more precisely cpminko < vVDrks < Cmazka. The two constants cmin and cmaz
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10 T T

- . —h,, (7)
2 —h(7)

By, (), he()
o

Figure 4: The figure shows the correlation functions of the magnetic field A, (7) in dark
blue, h.(7) in light brown for k, = 0.005 with D, = 1. The black dashed lines denote
exponents that are observed in the respective range of scales.

are related to ki, and kg, respectively discussed in section 4. It is found that cp,n
depends on the Rm and ¢4, ~ 1.6 calculated for large Rm. We concentrate on the
case of Rm — oo where we have two scales in the system kg4, k,. First we examine the
behaviour of the correlation functions h,, (), h. (r) before moving to the spectra of the
magnetic field.

We start with equations 5.2, for Rm — oo where the equations are written in terms of
the rescaled quantities 7, k,. The dissipation scale rq = 1/ky is given by 7 = 1. The small
and large 7 asymptotics of h,, (7), h. (7) are mentioned in Appendix B. There are three
distinct range of scales that display different behaviour. The small 7 corresponds to the
regime of scales below the dissipation scale 7 < 1, the large 7 corresponds to the regime
F>1/ k.. In between these two range of scales we have an intermediate range of scales
1 « 7 < 1/k,. The scaling in this range of scales can be obtained by using matched
asymptotics, the details of which are given in the Appendix D. In this process we also
find that in the limit of k. — 0 we can obtain the eigenvalue v — 3 independent of the
value of D,., in accordance with results shown in figures 1, 2. The correlation functions
h,, (r),he (r) show the following scaling with the variable r for the large Rm limit,

1—cr?+00%) ifr< é art ifr< -
h,, ={cor™! if - <r<s, he=ger® fLE<r<d (6.1)
e’ ifr > ,% e~ 2" ifr> ki

where ¢y, co,c3,c4q,c5 are related to n, k., D, and can be found from the calculation
in Appendix D. In figure 4 we show the correlation functions h,, (7), he(7) for k, =
0.005, D,. = 1. Since the equations are rescaled with k; the dissipation scale is given
by 7 = 1. We can see that the behaviour of the functions h,, (7), h. (¥) described in
equation 6.1 is well captured from the numerics.

Now with the solution of i, , (r), h.(r) we can construct the spectra using the Wiener-
Khinctine relation (see Chatfield (1989)) in two dimensions. For a function M (r) its
isotopic Fourier spectrum reads as,

)=k / r)Jo (kr) dr. (6.2)
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(k)

Figure 5: Spectra of the magnetic field 1. on the left - EZ (k), 2. on the right EZ (k) for
different values of k., shown in the legends. Lighter shades of blue correspond to smaller
values of k.. The parameter D, = 1, the black lines denote power laws.

For the magnetic field we can construct the planar magnetic field spectrum EZBD (k) and
the vertical magnetic energy spectrum EZ (k). Their relations with h,, (r), he(r) are
given by,

EZ (k) =k /Ooo r(2h,, () + H,, (1) + rhohe(r)) Jo (kr) dr (6.3)
EP (k) = k/ooo rkiz(h'c(r) + thm>Jo (kr)dr (6.4)

Using the behaviour of the correlation functions h,, (r), he(r) mentioned in equation 6.1
we can use the Wiener-Khintchine relation to get the behaviour of EB (k),EP (k) in
the regimes k < k., k, < k < kg, k > kq. We can write the generalized spectra of the
magnetic field in the limit of large scale separation k, < kg as,

k! if k <k, k3 if k <k,
EB (k)= <K° ifk, <k<kqy, EP(k)=<k ifk, <k<kqg (6.5)
e F/kaif k> kg e k/kaif k> kg

These predicted power laws are in agreement with the solutions of the equations 5.2
displayed in figure 5. In this figure the dissipation wavenumber is unity and k. is varied
with the values mentioned in the legend. Figure 6 summarizes the form of the unstable
mode for the different range of scales in both k£ and r for the case of large scale separation
k, < kg and generalized to take into account the variation in D,..

7. Comparison with direct numerical simulations
7.1. White noise flows

In order to test the relevance of the theoretical results with the results of Direct
Numerical Simulations (DNS) we consider and solve numerically the partial differential
equation 2.6 for a random Gaussian distributed flow in a finite two dimensional periodic
box. We note that the two dimensional periodic flow does not respect isotropy. This is
true for any finite homogeneous system, thus we will be limited to only a qualitative
comparison. We consider a random flow of the form,

0 (@,,1) = G (8) [ sin (6 (£)) cos (kg o+ 6 (£)) + cos (65 (1)) sin (ky y + 64 (£)) ] /s
(7.1)

ws (2,y,1) = Ca (1) [sin (65 (1)) sin (kp x + ¢y () + cos (¢5 (£)) cos (ky y + ¢a (t))} (7.2)
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E,, (k)

r VD k. ka k

Figure 6: The figures above shows the form of 1. on the left of the correlation functions
h,, (r) in dark shade blue , h. (1) in light shade brown and 2. on the right the spectra
EB (k) in dark shade blue, EZ (k) in light shade brown. The black dashed lines represents
the different exponents which are observed in the respective range of scales.

© =

3 5 it
107 10? 107 107 10?
k k

Figure 7: The figures above show the magnetic field spectrum at one instant of time 1.)
EB on the left, 2.) EZ on the right for a few different values of k. mentioned in the
legend, lighter shades correspond to increasing values of k,. The results correspond to
the fluctuating velocity field with parameters Rm =~ 460.

where (5 (t), 4 (t) are two Gaussian distributed random variables satisfying the relations,
(Co (1) Ca (E)) = 8 (¢ — '), (Ca(8)Ca () = 6 (t— '), (Ga (£) Cu () = 0. s (1) , 64 (1) e
uniformly distributed random variables in the interval [0, 27]. The above flow is realized
in a domain [2nL,27L] with ky L being the forcing wavenumber. The above system is
homogeneous and invariant under 7/2 rotations. The discretized version of the induction
equation is numerically solved with the realization of the noise changing at each time
step with the Stratonovich formulation of the noise (see (Greiner et al. 1988; Leprovost
2004)).

The growth rate calculated for the magnetic field with k¢ = 1 is shown in figure 9 on
the left panel for a few values of Rm. Qualitatively the results reproduce the behaviour
of the theoretical predictions. The spectra of the growing magnetic field are shown in
figure 7 for a single time realizations for a Rm = 460 and a few values of k, mentioned in
the legend. The theoretical predictions are shown in black solid lines and they compare
well with the numerical results. The magnetic field intensity is shown in figure 8, where
the panel on the left shows |b,,[* = blb, 4 b b, the magnetic energy in the 2D plane and
the panel on the right shows the real part of the vertical magnetic field b,. The magnetic
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Figure 8: The figures above show the contour of the magnetic field with 1.) |b,,|? on the
left, 2.) the real part of b, on the right. The results correspond to the fluctuating velocity
field with parameters Rm = 210 and k. /kq =~ 0.35.

3.0,

66 Rm=6.67 3.0
2.5) -+~ Rm=13.33 o0 Rm=8.07
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Figure 9: The figures above show the growth rate v as a function of the normalized
wavemode k, /kq for 1. on the left for the delta correlated flow and 2. on the right for a
time correlated flow. Darker shades correspond to larger values of Rm.

field lines are concentrated in thin filamentary structures and their size decreases as Rm
is increased.

7.2. Freely evolving flows

To test the validity of the model for more realistic flows we also compare our results
with the growth rates of freely evolving chaotic/turbulent flows. We consider a flow driven
by a non-helical forcing at a wavenumber k; = 4 that is constant in time. The temporal
behaviour of the flow and its ‘randomness’ originates purely from the chaotic dynamics
of the Navier-Stokes equation. The details of the full study of this system of equations
can be found in Seshasayanan & Alexakis (2016).

The normalized growth rate v obtained from the turbulent flow is shown in the right
panel in Figure 9 as a function of the normalized k,/k, and for different values of Rm. For
the examined flow the quantity k4 = u/n = kyv/Rm and Rm = u/(ksn),7a = 1/(nk3)
where u is the r.m.s velocity. We find a good match in terms of the behaviour of the growth
rates and its dependence on k,/kq, Rm. The spectra of the magnetic field, E2BD and EZB
are also shown in figure 10 along with the black solid lines denoting theoretical prediction
mentioned in the previous section. The spectra shown correspond to a simulation run
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107!

EJ (k)
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Figure 10: The figures above show a time shot of the magnetic field spectra 1.) Eﬁ) on
the left, 2.) Ef on the right for a few different value of k., mentioned in the legend, lighter
shades correspond to increasing values of k,. The results correspond to the kinematic
dynamo problem of the forced Navier Stokes equation with parameters Rm = 1020, Re =~
32.

with the parameters Rm = 1020, Re ~ 32 taken after ¢ &~ 100 non-linear time scale. The
theoretical predictions seem to capture well the shape of the unstable spectra.

8. Conclusions

In this work we have examined the dynamo properties of the Kazantsev-Kraichnan
model for 2.5D flows. The simplicity of the model allowed us to examine analytically and
in detail various limits of the system. In particular we were able to examine the dynamo
properties of the system when the system is close to certain classes of flows that dynamo
action is ‘forbidden’ by the Zheldovich anti-dynamo theorem. In particular our results
showed that the limits k, — 0 and D, — 0 (that correspond to 2D magnetic fields and
2D velocity fields respectably) do not commute with Rm — oo limit. This implies that
the large Rm results are valid provided that Rm > 1/D,., and Rm > ky/k, and not for
the exactly 2D case.

Our analysis also allowed us to predict the functional form of the energy spectra of
the unstable dynamo modes. Two power law behaviours were predicted. In the range of
wavenumbes kg < k < k. the energy spectra satisfy Ef3 o« k' and Ef o k2 while in
the range k, < k < kg the spectra satisfy Eﬁ) x Ef o k%. A summary of this behavior
is depicted in figure 6. These predictions are new and can not be obtained simply by
dimensional analysis.

Finally we compared the theoretical results to direct numerical simulation of homoge-
neous, delta-correlated, Gaussian distributed flow and freely evolving flows based on the
Navier-Stokes equations. In both the cases the growth rate curves matched qualitatively
with the model and the magnetic field spectra are in agreement with the theoretical
predicted power laws. This gives support in the relevance of these results to more realistic
flows that might occur in nature.

Our study was limited only for a smooth flows. An interesting extension would be
to study the dynamo instability driven by rough flows that resembles the turbulent
flow under fast rotation. For the rough flows the holder exponent ¢ for the second order
correlation function of the velocity field should take into account the Kolmogorov spectra
of 2D-turbulence. This leads to very interesting possibilities. For scales smaller than the
forcing scale the two-dimensional velocity field u,, forms a k=3 energy spectrum and
would continue to follow the r? scaling for g,, . However the vertical velocity field that is
advected like a passive scalar and has a spectrum proportional to k=1 would have g, o r°
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scaling with possible logarithmic corrections. For scales larger than the forcing scale an
inverse energy cascade develops with a Kolmogorov energy spectrum k—>/3 for u,, while
u, reaches a thermalized distribution k'. This implies that the correlation function g,,
will follow a r2/3 scaling while the vertical scales will have a much shallower scaling. We
plan to address these possibilities in our future work.

The authors would like to thank the group of S. Fauve for their very useful comments
and fruitful discussions. K. S. would like to thank R. V. K. Chakravarthy for his help
in resolving the eigenvalue problem. The present work benefited from the computa-
tional support of the HPC resources of GENCI-TGCC-CURIE & GENCI-CINES-JADE
(Project No. x2014056421 & No. x2015056421) and MesoPSL financed by the Region
Ile de France and the project EquipMeso (reference ANR-10-EQPX-29-01) where the
numerical simulations have been performed.

Appendix A. Derivation of the equations

In order to derive the equations 2.15 we follow a procedure similar to the one mentioned
in Schekochihin et al. (2002). We start with the index form of the induction equation 2.6
written as,

Opbt = b0 U — um O™ — ik, u b+ (0FOF — k2) b (A1)
where 0° denotes the derivative with respect to the coordinate z¢. Next we write the
equation for the magnetic correlation function H% (r) = <(bi (x+ I‘))T v (x)>, which
reads as,

OuH" =2 (A = B2)HY = 0 [C™ (r,4) = €™ (x,8) = (€7 (—1,0))" + (€™ (-1,1)) ]
+ ik, [03”' (r,t) — (C¥7 (—x,8))" = ™ (x,1) + (C7% (—, t))q

(A2)

where the quantity C*¥ is the triple product average defined as C*¥ (r,t) =

<uk (x+r,t) (b (x+ r,t))T b (x, t)> This triple product average can be simplified
using the Furutsu-Novikov theorem which can be written as,

C* (r,t) = <u’“ (e, 8) (b (1, 1) ¥ <X’t)>
1) bz XTr, Tb] X,
(6 (x4 8) "0 t))>. (A3

ou™ (x/,t)

— [asdt (uF (e um (. 0) <

The above expression can be simplified by using the delta-correlation property of the
velocity correlator. The functional derivative can be simplified by taking the functional
derivative of the governing equation of the two point magnetic correlation function

(bi)T b7. Integrating it with respect to time and taking the statistical average we end
up with the following,

CHii (r,1) = ;{ (gkl (r,1) — g* (0, 1) )H}’; (r,6) = g% (v, ) H (v, ) — g% (0,4) HY (v, 1)

ik, HY (r,t) (gk3 (0,) — g" (r,1) )} (A4)
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We mention here that the Furutsu-Novikov theorem follows the Stratanovich interpreta-
tion of the noise as compared to Ito. Substituting the last expression for the triple point
averages into the equation A 4 and after some long but trivial calculation we can find the
equation for H (r).

Now given the equation for H% that can be obtained from both A 2 and A 4, we look at
constructing the equations for scalar functions of H%. The procedure to express the tensor
H' in terms of the possible scalar functions is mentioned in Oughton et al. (1997). It can
then be shown that the correlation tensor H* has the general form written out in equation
2.9. We mention here that only the mirror symmetric part of the correlation function
H is important in the discussion. This is because the helical part of the magnetic field
is not coupled to the governing equations of the nonhelical part. One simple way to see
this is to take the equation A 2, now we use the form of C*¥¥ from A 4. If we look at an
equation governing the proper scalar function in H%, it can be made up of two kinds of
terms. One form of the term is a product of two proper scalar functions, more precisely a
product of one proper scalar function in g*/ and one in H%. The other way is to construct
it using the product of two pseudo scalar functions, one pseudo scalar function in ¢* and
the other from H%. Since there are no pseudo scalar functions in g% the pseudo scalar
functions in H¥ do not enter the governing equations of the proper scalar functions in
H. Hence we consider the magnetic correlation function H% made of only the proper
scalar terms, H,,,H, ,,H,, H.. Due to the solenoidal condition we stick with two of
these quantities H,, , H, and their governing equation derived using equations A 2, A4
is mentioned in equation 2.15.

Appendix B. Asymptotic forms for correlation functions

The small and large r forms for the correlation functions h,, (r) and h.(r) can be
obtained from their governing equations 2.15. For the case of finite Rm the small r
expression reads as,

2mk? — 8Dy )ag — Ank.b
hos (r) mag — L2280 A2y 1 ®1)
16n
mk2)by — 2k, D
e (r) =byr — E20 Z)1é 203 40 (%) (B2)
1

here ag, b; are constants. For the large » behaviour we have,
hyy (r) e V2R (B3)
he (1) ~ e=V/20HRE (B4)

The case for the Rm — oo, we have the rescaled 7 = rky and l~€z = k,/kq. The small 7
behaviour of the functions h,, (7), he (7) obtained from equation 5.2 are,

(v + 2k2 — 8)dg — 4k.by 2

hLL (7;) =ap — 16 + O(f4) (B 5)
- 2k2)by — 2k, D,a
he (7) = by — (v + 2k2) 16 205 4 0@) (B6)
where ag, by are constants. For the large r we have,
By, ()~ VPR (BT)

he (7) ~ e~ VD kT (B8)
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Appendix C. Spectra of the eigenmode

From the asymptotics we can calculate the power laws of the isotropic spectra of the
eigenmode. Using the asymptotic expression from the previous section we reconstruct
the following form for the correlation functions h, , (1), he(r).

By (r) =e VP Tt (c1)
n=0

he (r) =e~VDPrk=r Z gnr*™. (C2)
n=0

Now we look for the behaviour of EZ (k), EZ (k) for k < k. and k >> k. The intermediate
range of scales when there is sufficient scale separation between k, and kg will be dealt
using matched asymptotics. The details of the calculation and the resulting scaling in
this intermediate range are mentioned in the following appendix section (see Appendix
D). Using the expression C 2 we can obtain an expression for EZ (k) , EZ (k) in the small
k < k, limit,

EB (k) :clkf +O(k*) (C3)
EP (k) :cgg +O(k?) (C4)

where ¢ and c¢o are some constants that are independent of k. For scales larger than the
dissipative scales k > kq we need to look at the small r behaviour for h,,,h,. We use
the steepest descent method for the correlation functions in equation C 2 and obtain the
following,

AUE CRIUS) (©5)
BE (k) =4 (6 + O(k™/?)) (C6)

where ¢; and ¢y are some constants independent of k. These behaviour are well captured
in the results from the eigenvalue solver (see figures 5).

Appendix D. Matched Asymptotics

We are interested in finding the behaviour of the functions EfD , Ef in the intermediate
region k, < k < kq. In this process we would would like to find the value of v in the
limit of k, < kq. From the numerics we can see that the value of « is 3 in the limit of
small &k, and independent of the value of D,., see figures 1, 3. We are interested in the
limit Rm — oo the governing equations are given by equation 5.2. Since the equation is
rescaled with k4 the small parameter now is IZ:Z <& 1. The idea here is to find the inner
solution of the equation by expanding in terms of powers of k. the equation 5.2. Then
we compute the outer solution by rescaling the variable 7 to # = \/D,.k,7. This rescaling
would then provide us with a new set of equations for the outer solution. The behaviour
of the inner solution is valid in the region 7 < 1 while the outer solution is valid in the
region 7 > 1/k,. The matching will take place in the intermediate range of scales, to get
the exponents and the eigenvalue 7.
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D.1. Inner solution
We do asymptotics for k, < 1 with h,, = Ho+ éﬁHl + --- and h., =
Dk, (Go + l%gGl + ~), the equation for zeroth order in k, satisfy,

H; H H|
~2 " 0 . 0 " 0
T{HO+77: (v 8)—f2}+[2H0+67:}f0 (D1)
G| G G G
~2 |~ 0 0 % 0 _ 0 =
7 [GO + 2= (r+ 1) ﬁ} + [QGO +22 ﬂ} =27 H (D2)

Now we write the homogeneous solution to the equations using hypergeometric functions
o Fy defined as o Fy(a,b,c,d) = I'(c)/(I'(b)(c — b)) fol (1 — )71 /(1 — tz)dt,

. 3 IT+v 3 1+ 72
R et i k] (B3)

) ol JTER 1 JIF 72
Gon (7) = Cs rgFl[i—\/2 7,§+‘/2 2,2 -] (D4)

where Gy = Gog + Gor with Goy the homogeneous solution and Gg; the inhomogeneous
solution. Gp; can be found and expressed in terms of integrals using the Wronskian. The
asymptotics for large 7 is found out to be,

1
Gop (F) = Cy ——F 2Vt D5
() = O gy (D5)
D.2. Outer solution
For the large 7 limit we could rescale 7 — k, 7 but in order to get rid of the dependence

on D, at the lowest order we do the following rescaling, 7 — VD, k, 7. This ends up with
the following set of equations,

. h .
vh,, — <2Drk§ +f2> {h’L’L +3 ﬂ + (2k§ +f2) h,, —8h,,

;
A1/ 7 é 7.2
4PN, +8—p=he + 2v/ DrkZhe (D6)
/
Yhe — (21),.122 - fQ) [hé’ - h7 — %} + (2153 + 7‘”“) he = 2f\/ Db, (D7)

Since k, < 1 we can again expand the quantities H,, (7), H, (#) in powers of k.,
by, = |[Ho () + K20 (7,7, ke /Dr) + BB (/D) +-2] (D8)
hc =V D’r‘ |:é0 (72’7) + lz‘lzél (rA7’Y7 V D’r) + ];,AzlGA(Q (rf‘a’% V D’r) + - :| (Dg)

With this expansion the equation at the leading order becomes independent of D, with
the assumptions being D,k? < 1,k? < 1. The leading order equations are,

. . JiE . . .
(7= 8) Ho — 7 [} + 370} 42l — 4R H = 87 G (D 10)
. . GG . .
1Go — 72 Gy + =0 = 22| + 2o = 20 Hy (D11)
r T

The small # behaviour of the functions Hy, G can be obtained by expanding in small
7 By direct substitution it can be shown that a simple power law expansion fails for any
value of v and the expansion for small 7 contains logarithmic corrections.
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D.3. Matching

We follow the rescale the inner and outer variable to match the solutions at an
intermediate range. The large r form for the inner solution reads like,

_ 1 1 1 1 1 1
Ho (1) = 1™ [f1 () 5 + 2 (0) = + O | +1V7 [my (1) 55 +m2 (7) 5 + O |

(D12)
Go(r) =PV [Fi ) T+ Fo () o + O] 47V [ (3) - 4 () 5+ O]
(D13)

for v # 3. For v = 3 the coefficients f;,m; and f;,7; diverge. In this case the
expansion involves logarithmic corrections to the power laws. A successful matching with
the outer solution (that also includes logarithmic corrections) becomes only possible
for v = 3. The power law behaviours then for the correlation functions are then a
direct consequence of this eigenvalue and the properties of the hypergeometric functions.
Thus in the intermediate region ry < r < 1/k, the solution has the exponents
h,, ~ r~Y he ~ v/Dyk,r°. Using Wiener-Khintchine we can find the corresponding
behaviour in the spectral space to be, EB ~ k+ 1\/D, k. /k?* and EZ (k) ~ 3/D,k.k°.
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