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We demonstrate that there is an optimal forcing length scale for low Prandtl number dynamo
flows, that can significantly reduce the required energy injection rate. The investigation is based on
simulations of the induction equation in a periodic box of size 2πL. The flows considered are the
laminar and turbulent ABC flows forced at different forcing wavenumbers kf , where the turbulent
case is simulated using a subgrid turbulence model. At the smallest allowed forcing wave number
kf = kmin = 1/L the laminar critical magnetic Reynolds number Rmlam

c is more than an order
of magnitude smaller than the turbulent critical magnetic Reynolds number Rmturb

c due to the
hindering effect of turbulent fluctuations. We show that this hindering effect is almost suppressed
when the forcing wavenumber kf is increased above an optimum wavenumber kfL ' 4 for which
Rmturb

c is minimum. At this optimal wavenumber Rmturb
c is smaller by more than a factor of ten

than the case forced in kf = 1. This leads to a reduction of the energy injection rate by three
orders of magnitude when compared to the case where the system is forced at the largest scales and
thus provides a new strategy for the design of a fully turbulent experimental dynamo.

Dynamo is the mechanism by which magnetic fields
are amplified in stars and planets due to their stretching
by the underlying turbulent flow [1]. In the last two
decades several experimental groups have attempted to
reproduce the dynamo instability in the laboratory [2–
4]. The first successful dynamos were achieved in Riga
[2] and Karlsruhe [3]. The flow in these dynamos were
highly constrained and did not allow for turbulence to
fully develop at large scales. Thus the results could be
successfully modelled by laminar flow dynamos. The first
fully turbulent dynamo was achieved in [4] where the flow
was driven by two counter rotating propellers. However,
in this experiment a dynamo was only obtained when
at least one ferromagnetic iron propeller was used. So
far other attempts to achieve dynamo are not successful
and unconstrained dynamos driven just by the turbulent
flows have not been achieved.

One of the major difficulties to achieve liquid metal dy-
namos are the low values of magnetic Prandtl numbers
P

M
(the ratio of viscosity ν to magnetic diffusivity η)

that characterizes liquid metals which is less than 10−5.
This implies that very large values of the Reynolds num-
ber Re = UL/ν (where U is the rms velocity and L is the
domain size) are needed to reach even order one values of
the magnetic Reynolds numbers Rm = UL/η = P

M
Re.

The magnetic Reynolds number is the critical parame-
ter that determines the dynamo onset. For small values
of Rm no dynamo instability exists and Rm should be
larger than a critical value Rmc in order to generate the
spontaneous growth of the magnetic field. The large Re
needed to reach values of Rm above Rmc implies that the
flow is turbulent and large power consumption is needed
which scales like I ∝ ρU3L3/`f (where `f is the length
scale of the forcing).

For laminar flows Rmc and its dependence on the forc-
ing lengthscale has been calculated in [5–7]. The laminar

threshold Rmlam
c however strongly underestimates Rmc

for large Reynolds numbers and cannot be used to pre-
dict the dependence of Rmc on the parameters of the
system in the presence of turbulence. Turbulent fluctu-
ations considerably inhibit dynamo action and increase
Rmc. The dependence of the dynamo threshold Rmc

on the Reynolds number was investigated by different
groups [8–11] for different flows with the use of numeri-
cal simulations. These studies showed that as Re is in-
creased (P

M
is decreased) the critical magnetic Reynolds

number Rmc is initially increased. The turbulent fluc-
tuations generated at large values of Re were preventing
dynamo, raising Rmc to values much larger than the case
of organized laminar flows. However when sufficiently
large Reynolds numbers are reached this increase satu-
rates and a finite value of Rmc is reached in the limit
of Re → ∞. We will refer to this value as the tur-
bulent critical magnetic Reynolds number and define it
as Rmturb

c ≡ limRe→∞Rmc, The opposite limit defines
the laminar critical value Rmlam

c ≡ limRe→0Rmc. The
afore mentioned studies managed to reach this asymptote
only by using subgrid scale models (either hyperviscoc-
ity, α model LES, or a dynamical turbulent viscosity)
that model the high Reynold number flows. It is worth
pointing out that the different flows considered led to
different values of Rmturb

c implying that it is possible
to optimize the flow to reduce Rmturb

c . In this work we
try to determine the dependence of the turbulent Rmturb

c

on the length scale of the forcing `f with respect to the
domain size L in order to find its optimal value. The
study is based on the results of numerical simulations us-
ing a pseudospectral method in a triple periodic domain
[12, 13] and analytic estimates based on scale separation
arguments.

In their simplest form the governing equation for the
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evolution of the magnetic field is given by

∂tb = ∇× (u× b) + η∆b (1)

where b is the magnetic field, and η the magnetic diffusiv-
ity. u is the velocity field that is determined by solving
the independent incompressible Navier-Stokes equation
of a unit density ρ = 1 fluid,

∂tu + (u · ∇u) = −∇P + ν∆u + f . (2)

where f is an external forcing. In the present study the
domain considered is a triple periodic box of size 2πL
and f is taken to be the ABC forcing

f =

 A sin(kfz) + C cos(kfy),
B sin(kfx) +A cos(kfz),
C sin(kfy) +B cos(kfx)


with A = B = C = 1. kf is the forcing wave number,
and we define the forcing lengthscale as `f ≡ k−1f . The
ABC flow has been the subject of many dynamo studies
both in the laminar [14, 15] and turbulent state [9].

In this set up some analytical progress can be made
in the case that kfL � 1. Then one can use standard
mean-field approximations to estimate the critical onset
Rmc [14, 16, 17]. Splitting the magnetic field in a large
scale component B and a fluctuating part b̃ for scale
separation we obtain to first order for the fluctuating
field

η∆b̃ = −B∇u (3)

and for the large scale field

∂tB = ∇× (αB)− η∆B. (4)

Here equation (3) has been derived assuming that the
magnetic Reynolds number based on the forcing length
scale Rmf = Rm(kfL)−1 is small. α is a tensor such

that αijBj = 〈u× b̃〉i. The angular brackets stand for
small scale average and summation over the index j is
implied. For the particular forcing chosen the α-tensor is
diagonal and isotropic. The non-zero diagonal elements
αii can be calculated by solving (3) for a given velocity
field and are

αii =
−1

η
〈u×∆−1∇iu〉i = a

U2

ηkf
, (5)

(no summation over i is implied). a is the non-
dimensional αii element that is independent of U, η and
kf and needs to be calculated from the flow. For the lami-
nar case a can be calculated directly and gives alam = 1/3,
while for the turbulent case it needs to be calculated from
eq. 5 using the turbulent solutions obtained numerically
(see e.g. [18]). The growth rate γ for a helical large-scale
mode of wavenumber K = 1/L is then

γ = a
U2

ηkfL
− ηL−2 (6)

that leads to a critical Reynolds number Rmc =√
kfL/a. The critical magnetic Reynolds number based

on the forcing scale is Rmfc =
√

1/kfLa � 1 verifying
the original assumption of small Rmf . This result was
discussed in [19]. Note that this argument is true both
for turbulent and laminar flows although the value of the
coefficient a will depend on the level of turbulence. At
large Re however a will reach an asymptotic value aturb

that will determine the value of Rmturb
c to be

Rmturb
c =

√
kfL/aturb . (7)

This scaling implies that in the large scale separation
limit kfL � 1 for fixed L and η as kf is increased it
becomes more difficult to obtain a dynamo.

To calculate Rmturb
c in the absence of scale separa-

tion we performed numerical simulations of equations
1,2 varying the forcing wavenumber kf for fixed L. In
order to mimic the large Reynolds number flow that
requires large grid size N we do not use an ordinary
viscosity ν for the dissipation but rather a dynamical
wavenumber-dependent turbulent viscosity [20] defined
in spectral space as

νturb(k, t) = 0.27[1 + 3.58(k/kc)
8]
√
E

K
(kc, t)/kc (8)

where k = |k| is the wavenumber, kc = N/3L is the max-
imum wavenumber after de-aliasing and E

K
(k, t) is the

kinetic energy spectrum of the flow. The same modeling
was also used in [8] to obtain Rmturb

c . The dynamical
viscosity νturb depends on the grid size N , but the de-
pendence of the large scale components of the flow on N
are expected to die off much faster than in the case of
ordinary viscosity.

To calculate Rmturb
c as a function of kf the following

procedure was used (see also [8, 11]): For a given kf and
grid size N a series of simulations was performed varying
Rm and the exponential growth rate of the magnetic en-
ergy was measured. The onset Rmc was determined by
linearly interpolating the values of Rm between the slow-
est growing dynamo and the slowest decaying dynamo.
The series of runs was then repeated for higher values
of N until either the value of Rmc remained unchanged
in which case this determined Rmturb

c or the maximum
of our attainable resolution was reached. Typically con-
vergence was reached at grid sizes N = 256 but a few
runs at N = 512 were also performed for verification. In
addition we solved eq. 3 (with u given by eq. 2) with an
imposed uniform magnetic field to calculate the elements
of the α tensor and determine aturb .

The results for the critical Reynolds number as a func-
tion of the forcing wave number kf are shown in figure
1. The predicted scaling behavior (7) is shown with a
dashed line in the same figure with aturb computed using
eq. 5. We get aturb ' 0.22 that is of the order of the
laminar value alam = 1/3. The filled circle indicates the
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FIG. 1. Rmc as a function of kfL obtained from numerical
simulations with different resolutions N = 64 − 512. The
data indicate that for N ≥ 128, Rmc does not vary as N is
increased further and thus it approximates well Rmturb

c . The
error-bars correspond to the maximum/minimum value of Rm
for which we obtained a clear positive/negative growth rate
for the simulations with N = 256. The dashed-dotted line
corresponds to the dynamo threshold of the laminar flow. The
filled circle corresponds to the value of Rmturb

c obtained from
direct numerical simulations in [9]. The dashed line shows the
mean field (alpha) prediction valid in the limit kL→∞.

the value of Rmturb
c calculated in [9] using simulations of

higher resolutions and α-model LES.

The results are very motivating for future laboratory
experiments. Although for large kfL the asymptotic scal-
ing of (7) seems to be verified indicating that making the
forcing length scale very small will not benefit dynamo
experiments, at intermediate length scales Rmturb

c ap-
pears to reach a minimum around kfL = 4 to 8. In fact
the value of Rmturb

c at this optimal wavenumber is one
order of magnitude smaller than the value of Rmturb

c at
kfL = 1.

The kinetic and magnetic energy spectra for the
slowest growing mode for three different forcing wave-
numbers at highest resolution N = 512 are shown in the
three panels of figure 2. When the flow is forced at the
largest scale kfL = 1 the kinetic energy shows a clear
k−5/3 spectrum while no clear power law scaling can be
observed for the magnetic field. Most of the magnetic en-
ergy is concentrated at the small scales with very weak
energy at the largest scale.

At the other extreme where the flow is forced at the
small scales kfL = 64 most of the kinetic energy is at
small scales with a k−5/3 scaling at the sub-forcing scales
and a k2 power-law scaling at scales larger than the forc-
ing scale, suggesting equipartition of energy among all
modes as predicted by equilibrium-statistical-mechanics
[21]. In addition a small peak at large scales kL ' 1− 2
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FIG. 2. Kinetic E(k) and magnetic Em(k) energy spectra for
the marginally unstable modes for kfL = 1 (top), kfL = 4
(middle), kfL = 64 (bottom).

is observed. The k2 energy spectrum has been observed
before in numerical simulations of the truncated Euler
equation [22], and more recently for the large scales in
simulations of the Navier-Stokes equation forced at small
scales [23, 24]. The role and cause of this peak and its
effect on dynamo is the subject of current investigations.
The magnetic field on the other hand has a dominant
peak at kL = 1, caused by the α dynamo that is followed
by a flat spectrum k0, a peak at the forcing scale and then
by a k−11/3 power law until the dissipation scales. The
two peaks at kL = 1 and k = kf are in agreement with
the mean field dynamo prediction. The two power-laws
can also be explained by a balance between the stretch-
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FIG. 3. The non-dimensional critical injection rate IN as a
function of kfL.

ing rate S of the large scale field B
L

by the fluctuations
u` that is proportional to S ∝ B

L
u`/` and the Ohmic

dissipation that is proportional to ηb`/`
2. Substituting

u` ∝ `1/3 for the turbulent scales and u` ∝ `−3/2 for
the scales in equipartition one recovers the two expo-
nents k−11/3 and k0 respectively. The k−11/3 spectrum
was predicted in [25, 26] and has been observed in ex-
periments [27] and numerical simulations [28]. The flat
spectrum k0 up to our knowledge is reported for the first
time here.

The case kfL = 4 that is close to the optimal wavenum-
ber seems to be somewhere in between the two extreme
cases. The magnetic field at the largest scale appears
neither dominant as in the mean field case nor negligible
as in the kfL = 1 case. At the large scales there is not
enough scale separation to observe any power-law, but at
the small scales a power law close to k−5/3 for the kinetic
spectrum and k−11/3 for the magnetic spectrum can be
seen.

Our results have shown that future dynamo experi-
ments can benefit from forcing at scales smaller than the
domain size by a factor of 4 to 8. To further demonstrate
this fact in figure 3 we plot the minimum energy injection
rate I = (2πL)3〈f · u〉 to achieve dynamo, normalized by
the domain size L, the mass density ρ and magnetic dif-
fusivity η IN = IL/(ρη3). The reason we have chosen
this non-dimensionalization is because the mass density
and magnetic diffusivity are properties of the liquid met-
als that vary only with temperature, while the domain
size is typically fixed. In other words by normalizing it
this way we ask the question: in a laboratory experiment
of a given domain size what is the optimal forcing scale
to achieve dynamo with a minimal energy injection rate?

The result is very encouraging! The optimal injection
rate is almost three orders of magnitude smaller than the

case for which the forcing was at the largest scale. This
large drop in the injection rate can be partly explained by
considering the turbulent scaling for the energy injection
rate I ∝ ρU3L3/`. Substituting U from the definition of
Rm we obtain I ∝ ρRm3η3/` and thus IN ∝ Rm3kfL.
Thus the energy injection rate is very sensitive to changes
in Rm and the beneficial factor of 20 that was observed
in figure 1 translates to a factor 2000 for the energy in-
jection rate. It is also worth pointing out that while for
optimizing Rmturb

c the optimal forcing wavenumber was
between kfL = 4 and kfL = 8, when IN is optimized the
optimal wave number is more clearly given by kfL = 4.

In the light of this result we can envision the design of
new dynamo experiments where the flow is forced by an
array of propellers so as to result in the small scale forcing
required while the large scales are left unconstrained for
turbulence to develop. Such experiments will challenge
long-standing theoretical assumptions about mean field
dynamo theories.
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