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Statistical equilibria of large scales in dissipative hydrodynamic turbulence
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We present a numerical study of the statistical properties of three-dimensional dissipative turbu-
lent flows at scales larger than the forcing scale. Our results indicate that the large scale flow can
be described to a large degree by the truncated Euler equations with the predictions of the zero
flux solutions given by absolute equilibrium theory, both for helical and non-helical flows. Thus, the
functional shape of the large scale spectra can be predicted provided that scales sufficiently larger
than the forcing length scale but also sufficiently smaller than the box size are examined. Deviations
from the predictions of absolute equilibrium are discussed.

Experimental and numerical studies of three-
dimensional homogeneous hydrodynamic turbulent flows
have been so far mostly focused on the finite energy flux
solutions of the Navier-Stokes that manifest themselves
on scales smaller that the forcing scale for which the
Kolmogorov cascade and intermittency take place [1].
This is because the flows of many experiments designed
to study statistically stationary turbulent regimes are
forced at scales not much smaller than the size of the
container. This is also the case of most direct numerical
simulations (DNS) for which the flow is often forced in
the largest possible modes aiming for the largest scale
separation between the forcing scale and the small scales
in the dissipative range. A notable exception is of course
the limit of two-dimensional flows for which the inverse
cascade of energy [2] leads to a negative flux of energy
that excites scales larger than the forcing scale.

Many flows of geophysical or astrophysical interest far
from the two-dimensional limit involve spatial structures
at scales larger than the forcing scale. At these scales,
no energy flux is expected and the usual Kolmogorov
cascade picture does not hold. This is also true for some
flows involved in industrial processes, such as large scale
turbulent mixing. Dynamical and statistical properties
of the zero flux solutions in scales larger than the forcing
scale could thus be of interest for many applications in
three-dimensional hydrodynamic turbulence.

Despite the lack of quantitative studies of the large
scales in three-dimensional statistically stationary tur-
bulence, it has been believed since a long time that the
scales larger than the forcing scale are in statistical equi-
librium (see page 209 of reference [1]). The argument is
that the energy driving the flow is transferred from the
forcing scale ℓf to the dissipation scale ℓη by the Kol-
mogorov cascade and that no mean energy flux exists
toward scales larger than ℓf . The scales between ℓf and
the container size L, thus do not involve any mean energy
flux and could be in statistical equilibrium.

With this assumption a k2 energy spectrum similar
to the Rayleigh-Jeans spectrum for blackbody radiation
would result with all modes in the range 2π/L < k <
2π/ℓf being in equipartition. Such a spectrum has been

obtained long ago using the Hopf equation for flows with-
out forcing and viscosity [3]. It is also the spectrum
obtained in the absence of mean helicity in the trun-
cated Euler equations (i.e. the Euler equations where
only Fourier modes with wavenumbers |k| ≤ kcut have
been kept, kcut being the truncation wavenumber) [4]. It
should be noted that the steady state problem consid-
ered here differs from the one of the large scale structure
in decaying turbulence, although a similar spectrum has
been predicted [5].

When the initial conditions involve mean helicity H
in addition to kinetic energy E, both quadratic invari-
ants need to be taken into account in deriving the en-
ergy and helicity distribution among scales for the trun-
cated Euler system. Following the statistical mechan-
ics approach that is usually used to predict absolute
equilibria of ideal homogeneous turbulence [6, 7] the
Boltzmann-Gibbs equilibrium distribution is defined as
P = Z−1 exp(−αE − βH), where Z =

∫
Γ
exp(−αE −

βH)dΓ is the partition function integrated over the phase
space Γ and α, β can be seen as the inverse temperatures
in the classical thermodynamic equilibrium sense, which
are determined by the total energy and the helicity of the
system. From there Kraichnan [2] derived the absolute
equilibria of the energy spectrum E(k) and the helicity
spectrum H(k) which are

E(k) =
4παk2

α2 − β2k2
and H(k) =

8πβk4

α2 − β2k2
(1)

with α > 0 and α > |β|kcut. These spectra have a sin-
gularity at k = ks ≡ α/β > kcut outside the range of
validity of Eqs. (1). The ratio |β|kcut/α gives a measure
of the relative helicity H(k)/(kE(k)) of the flow with 0
corresponding to a non-helical flow, and 1 to the fully-
helical singular case where all energy and helicity is con-
centrated in the largest wavenumbers |k| = kcut. The
truncated Euler equations have been widely studied by
Brachet and coworkers [8] and the validity of the pre-
dicted spectra in Eqs. (1) has been verified. A recent
work has also shown that the kinematic dynamo proper-
ties of an ABC flow forced at small scales compared to
the domain size can be well described by modelling the
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large scales of the flow using the truncated Euler equation
[9].

In this letter we show that despite the fact that in
three-dimensional hydrodynamic turbulence the scales
between the forcing scale and the container size are not
isolated from the turbulent scales, their statistics may
still be reasonably approximated as if they were in sta-
tistical equilibrium. We consider flows with high enough
scale separation by applying helical and non-helical forc-
ings at intermediate scales using numerical simulations
of the forced hyperviscous Navier-Stokes equations and
we focus on the dynamical and statistical properties of
the large scales.

In laboratory experiments as well as in planets and
stars, physical boundaries confine fluids and determine
the largest possible length scales. In our DNS, the com-
putational domain is the surrogate for this spatial con-
finement. For our study it is important to obtain high
enough scale separation between the size of our periodic
box 2π and the forcing scale while at the same time
small scale turbulence is resolved. Forcing at interme-
diate scales and aiming for a turbulent flow with high
enough scale separation is almost prohibitive even with
today’s supercomputing power. We partly circumvent
this difficulty by considering the hyperviscous Navier-
Stokes equations under the assumption that the viscous
scale should not significantly affect the statistical proper-
ties of the large scales. The hyperviscous Navier-Stokes
equations then read as

∂tu+ (u ·∇)u = −∇P + (−1)h+1νh∇
2nu+ f (2)

where u(x, t) denotes the solenoidal velocity field, νh is
the specified constant hyperviscocity, f is the forcing
function, which is described below and P is the hydro-
dynamic pressure. Note that for our purposes the hyper-
viscous term was chosen to take the value of n = 4. In
the ideal case νh = 0 and f = 0 Eq. (2) conserves the
kinetic energy E = 1

2
〈|u|2〉 and the helicity H = 〈u · ω〉

with ω = ∇ × u being the vorticity and angular brack-
ets denoting a spatial average unless indicated other-
wise. The level of helicity in the flow corresponds to
the degree of the alignment between the velocity and
the vorticity and this is given by the normalized helic-
ity −1 ≤ ρH ≡ H/(〈|u|2〉〈|ω|2〉)1/2 ≤ 1.

Using a standard pseudo-spectral code we numerically
solve Eq. (2) satisfying ∇ ·u = 0. Aliasing errors are re-
moved using the 2/3 rule, i.e. wavenumbers kmin = 1 and
kmax = N/3, where N is the number of grid points on
each side of the computational box. The temporal inte-
gration was performed using a third-order Runge-Kutta
scheme. Further details on the code can be found in [10].

In this study, the velocity field is forced at intermediate
wavenumbers kf . The forcing that we consider are a

helical random forcing

fH = f0{[cos(kfy + φy) + sin(kfz + φz)]x̂,

[cos(kfz + φz) + sin(kfx+ φx)]ŷ,

[cos(kfx+ φx) + sin(kfy + φy)]ẑ} (3)

where fH · ∇ × fH = kff
2
H > 0 at each point in space

and a non-helical random forcing

fNH = f0{[sin(kfy + φy) + sin(kf z + φz)]x̂,

[sin(kfz + φz) + sin(kfx+ φx)]ŷ,

[sin(kfx+ φx) + sin(kfy + φy)]ẑ} (4)

where 〈fNH ·∇× fNH〉 = 0. The phases φx, φy, φz were
changed randomly at given correlation time scales τc. All
the necessary parameters of our problem are tabulated
below (see Table I). Here we define the Reynolds number
based on our control parameters as Re ≡ ufk

1−2n
f /νh,

where uf ∝ (f0/kf )
1/2.

TABLE I: Numerical parameters of the DNS. Note that
τf ≡ (kminf0)

−1/2.

kf ρH f0 τc/τf νh Re N
10 0.6 1.0 0.3 5× 10−12 6.3× 103 128
20 0.6 2.0 0.15 5× 10−15 3.5× 104 256
40 0.6 4.0 0.075 1× 10−17 9.7× 104 512
10 0.0 1.0 0.3 5× 10−12 6.3× 103 128
20 0.0 2.0 0.15 5× 10−15 3.5× 104 256
40 0.0 4.0 0.075 1× 10−17 9.7× 104 512

Since we are interested on the large scale behavior we
need to make sure that our DNS have been integrated
long enough so that the largest scales are in a statistically
stationary state. In order to illustrate that such states
have been reached, we define the energy weighted in the
large scales as Z(t) =

∑
k,k 6=0

k−4E(k, t). Z is a large
scale quantity and we monitor it as a function of time
(see Fig. 1). After long enough time integration the

(a) (b)

FIG. 1: (Color online) Large scale quantity Z
normalised by its time-average 〈Z〉 as a function of time

for (a) helical and (b) non-helical flows.

large scales reach a stationary state for both helical (Fig.



3

1a) and non-helical flows (Fig. 1b). In what follows we
analyze the data from this saturated states.
Figure 2 presents the energy spectra compensated with

k−2 (Fig. 2a) and the helicity spectra compensated with
k−4 (Fig. 2b). Note that the energy and helicity spectra
collapse since they are rescaled with k/kf . In Fig. 2a the
energy spectra for the helical and non-helical flows are
shown with the non-helical spectra being shifted down
for clarity. Our data displays a E(k) ∝ k2 scaling at low
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FIG. 2: (Color online) (a) Compensated k−2E(k)
energy spectra for helical (top) and non-helical

(bottom) flows. (b) Compensated k−4H(k) helicity
spectra. The dotted lines represent Kraihnan’s absolute

equilibria (Eqs. (1)).

wavenumbers k < kf both for the helical and the non-
helical flows. Similarly the collapsed helicity spectra in
Fig. 2b display the scaling H(k) ∝ k4. These scalings
are in agreement with the absolute equilibria of the trun-
cated Euler equations for helical and non-helical flows.

For comparison to the Kraichnan’s theory, we have plot-
ted Eqs. (1) as dotted lines (see Fig. 2) using values of
α and β obtained from a linear fit. These curves indicate
that the divergence of the spectra predicted by Kraich-
nan’s Eqs. (1) at ks = α/β is expected at ks ≃ 2.5kf
which is well beyond the expected validity of the absolute
equilibrium regime. For this reason no singular behavior
is observed deviating from the H(k) ∝ k4 scaling and the
E(k) ∝ k2 power law due to the presence of helicity.

To investigate the effect of helicity in the large
scales for the helical runs we plot the relative helic-
ity spectra rescaled with k/kf in Fig. 3. Kraich-
nan’s absolute statistical equilibria (Eqs. (1)) imply that
(kf/k)H(k)/(kE(k)) is equal to the non-dimensional
number 2βkf/α = 2kf/ks. This ratio appears to be ap-
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FIG. 3: Relative helicity spectra H(k)/(kE(k)) rescaled
with k/kf .

proximately constant for the highest kf runs and only for
the range of wavenumbers 3kmin ≤ k < kf . The mea-
sured value of this ratio in this range gives 2βkf/α ≃ 0.8
indicating the amount of the relative helicity in the large
scales. Despite the fully helical forcing (Eq. 3) used, not
enough helicity has been transfered in the large scales to
make the flow fully helical (i.e. βkf/α = 1).

Deviations from Eqs. (1) do exist at the largest scales
of the system k ≤ 2kmin. These scales appear to be
more energetic and more helical than absolute equilib-
rium predicts. There are many possible reasons for this
behavior. First for modes with wavelengths close to the
box size the assumptions of isotropy used in the deriva-
tion of Eqs. (1) are not valid and deviations from the
isotropic result are expected. Another possibility is that
a large scale instability could be present [11]. Such an in-
stability can transfer energy directly from the forced and
turbulent scales to the largest scale of the flow and al-
ter the distribution of energy among modes in the steady
state.
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At steady state no inverse cascade (negative flux) is
expected in three-dimensional hydrodynamic turbulence
for either energy or helicity. Figure 4 shows the en-
ergy flux ΠE(k) (Fig. 4a) and the helicity flux ΠH(k)
(Fig. 4b) normalised by the energy dissipation rate
ǫE = 2ν

∫∞

0
k2E(k, t)dk and the helicity dissipation rate

ǫH = 2ν
∫∞

0
k2H(k, t)dk respectively for the helical flow

with kf = 40. For the wavenumbers k > kf both fluxes

(a) (b)

FIG. 4: (Color online) (a) ΠE(k)/ǫE spectra and (b)
ΠH(k)/ǫH spectra for the helical flow with kf = 40.
Thick blue lines represent the time-averaged values
while thin gray lines the instantaneous values for

various instants in time.

are positive and constant over the range of kf < k <
2.5kf signifying a forward energy and helicity cascade.
In the k < kf range both time averaged fluxes are zero as
expected for absolute equilibria. However, even though
the time-averaged ΠE(k) and ΠH(k) are zero this is not
true for the instantaneous fluxes that have large fluctua-
tions of both signs. These fluctuations imply a transfer of
energy and helicity towards and from the turbulent scales
in such a way that on average the total flux is zero. This
exchange of energy with the turbulent small scales is in
disagreement with the assumptions of absolute equilib-
rium that the modes following the spectra in Eqs. (1)
are isolated from external sources and sinks of energy.

In this letter we investigated to what extend the large
scale flow in three-dimensional dissipative hydrodynamic
turbulence can be described by the absolute statistical
equilibria exhibited from the truncated Euler equations.
Using numerical simulations we focus at the spectra of
the energy and helicity at large scales. We considered
both helical and non-helical flows which were forced at
intermediate wavenumbers. For the non-helical flows we
observed a k2 energy spectrum at large scales, where the
energy is equally distributed among the wavenumbers
k < kf . For the helical flows a k2 energy spectrum per-
sisted at large scales and the helicity spectrum displayed
a k4 power law at k < kf in agreement to Kraichnan’s
theory for ideal helical flows [2].

Despite the fully helical forcing used not enough helic-
ity was transfered in the large scales to allow us to test

the singularity of the spectra at ks = α/β that would also
distinguish the scaling of the energy spectra between the
helical and the non-helical flows. In absolute equilibria of
flows without forcing and dissipation of energy the val-
ues of the inverse temperatures are determined by the
initial conditions. However, in this dissipative system is
not clear how the system selects these values.

A measurable deviation in the energy and helicity spec-
tra was also observed at the largest scales of the system.
Scales of size similar to the box were observed to be more
helical and more energetic than the absolute equilibrium
predictions. We speculate that these deviations are ei-
ther due to the absence of isotropy in these scales or due
to the presence of a large scale instability.

Energy and helicity fluxes were also investigated. The
energy and helicity have a forward cascade for k > kf and
no cascade (zero-flux) for k < kf . Notably, even though
the time-averaged energy and helicity flux is zero, the
absolute equilibrium spectra at large scales are formed
and sustained by flux fluctuations of the energy and the
helicity. The presence of these fluctuations implies that
there is energy exchange between the large scale flow and
the turbulent small scale fluctuations. Whether these
fluctuations play a sub-dominant role or whether they
provide a different mechanism for the formation of the k2

spectra is a question that requires further investigation.

To conlude, the present results provide support to the
relevance of the absolute equilibrium spectra to the be-
havior of the large scales in forced dissipative turbulent
flows despite the fact that scales between the forcing scale
and the domain size (k < kf ) are not isolated from the
turbulent small scales (k > kf ).
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