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We present a new form of intermittency, Lévy on-off intermittency, which arises from multiplica-
tive a-stable white noise close to an instability threshold. We study this problem in the linear and
nonlinear regimes, both theoretically and numerically, for the case of a pitchfork bifurcation with
fluctuating growth rate. We compute the stationary distribution analytically and numerically from
the associated fractional Fokker-Planck equation in the Stratonovich interpretation. We character-
ize the system in the parameter space (a, 8) of the noise, with stability parameter a € (0,2) and
skewness parameter 8 € [—1,1]. Five regimes are identified in this parameter space, in addition to
the well-studied Gaussian case v = 2. Three regimes are located at 1 < o < 2, where the noise has
finite mean but infinite variance. They are differentiated by 8 and all display a critical transition at
the deterministic instability threshold, with on-off intermittency close to onset. Critical exponents
are computed from the stationary distribution. Each regime is characterised by a specific form of
the density and specific critical exponents, which differ starkly from the Gaussian case. A finite
or infinite number of integer-order moments may converge, depending on parameters. Two more
regimes are found at 0 < o < 1. There, the mean of the noise diverges, and no critical transition
occurs. In one case the origin is always unstable, independently of the distance p from the deter-
ministic threshold. In the other case, the origin is conversely always stable, independently of u. We
thus demonstrate that an instability subject to non-equilibrium, power-law-distributed fluctuations
can display substantially different properties than for Gaussian thermal fluctuations, in terms of

statistics and critical behavior.

I. INTRODUTION

On-off intermittency is a common phenomenon in
nonequilibrium physical systems, which is characterized
by an aperiodic switching between a large-amplitude
“on” state and a small-amplitude “off” state. It was
originally studied theoretically in the context of low-
dimensional deterministic chaos and nonlinear maps [1-4]
and has since then been observed in numerous experi-
mental setups ranging from electronic devices [5], spin-
wave instabilities [6], liquid crystals [7, 8] and plasmas [9]
to multistable laser fibers [10], sediment transport [11],
human balancing motion [12, 13] and blinking quantum
dots in semiconductor nanocrystals [14, 15]. On-off in-
termittency has also been observed in numerical simula-
tions of turbulence in thin layers [16, 17] and magneto-
hydroydnamic dynamo flows [18-20].

From a theoretical perspective, on-off intermittency
arises in the presence of multiplicative noise close to an
instability threshold. Therefore it is natural to study it
using appropriate stochastic models, such as

dX
O = () + X — X, (1)
i.e. a supercritical pitchfork bifurcation [21] with a
fluctuating growth rate, where p is the deterministic

growth rate, and f(¢) is usually zero-mean, Gaussian,
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white noise, (f(¢)) =0, (f(t)f(¥')) = 20(¢t — '), in terms
of the ensemble average (-). In this study, we adopt
the Stratonovich interpretation [22] of eqn. (1), unless
stated otherwise. We may take X to be non-negative,
since sign changes are incompatible with the exact
solution of (1) given in [23] and in appendix A. For
Gaussian noise, the exact stationary probability density
function (PDF) is known to be p(z) = Nz~ ltre=37
with normalisation N, for p > 0 [24]. For p < 0, the
distribution approaches Jd(z) at late times, with the
cumulative distribution function (CDF) (the integral of
the PDF up to x) converging to 1 for all z > 0. In that
case, all moments of the stationary density vanish. For
w > 0 the moments of X scale as (X™) o p° with the
critical exponents ¢, = 1 for all n > 0, see [23]. The ¢,
for Gaussian noise are different from their deterministic
“mean field” values, which are ¢, = n/2. This is an
instance of anomalous scaling, a phenomenon which has
received much attention in various areas of physics, in
particular in the context of continuous phase transitions
at equilibrium and critical phenomena [25, 26], as well
as in turbulence [27, 28].

Here, we introduce Lévy on-off intermittency as the
case where f(t) is given by Lévy white noise, whose PDF
is an a-stable distribution featuring power-law tails as-
sociated with extreme events in terms of noise amplitude
[29, 30]. The Gaussian distribution (which is a special
case of a-stable distributions) is of fundamental impor-
tance due to its stability: by the central limit theorem
[31], it constitutes an attractor in the space of PDFs
with finite variance. Similarly, by the generalized cen-
tral limit theorem [32, 33], non-Gaussian a-stable dis-



tributions constitute an attractor in the space of PDFs
whose variance does not exist. Non-Gaussian fluctu-
ations, which may often be modeled as «-stable, are
found in incompletely thermalized systems or, in gen-
eral, in systems driven away from thermal equilibrium:
non-equilibrated heat reservoirs can be considered as a
source of non-Gaussian noise [29, 34].

If X (t) solves equation (1) with f(¢) being Lévy white
noise, then ¥ = log X (t) is said to perform a Lévy
flight in a particular anharmonic potential. Lévy flights
were first introduced by Mandelbrot in [35] and have
since found numerous applications, such as anomalous
diffusion, for instance in different fluid flows, [36-39],
the statistics of 2-D fluid turbulence [40], plasma tur-
bulence [41], finance [42], climatology [43, 44], animal
foraging [45, 46], human mobility [47] (although a de-
bate about the applicability in the latter two cases is
ongoing [48, 49]), COVID-19 spreading [50], human bal-
ancing motion [51] and more [52, 53]. Fluctuations obey-
ing heavy-tailed distributions have also been observed for
neuron activity patterns in the human brain [54]. More-
over, Lévy walks, a class of random processes similar
to Lévy flights with increments following a heavy-tailed
PDF, but with each step taking finite time [55, 56], have
been proposed as a model of blinking quantum dots in
semiconductor nanocrystals [57, 58]. We highlight that
blinking quantum dots and human balancing motion are
two examples which exhibit both Lévy statistics and on-
off intermittency. Furthermore, very recently, in an ide-
alised model of three-dimensional perturbations in two-
dimensional flows, described in the companion paper to
this study, [59], it was found that the perturbation am-
plitude obeyed equation (1) with an approximately white
noise whose PDF had power-law tails due to the power-
law structure of the velocity fields involved. The findings
of the companion paper originally motivated the present
study and suggested a rationale for numerically observed
jump-like growth signals of three-dimensional perturba-
tions in rapidly rotating turbulence [60].

A significant body of theoretical literature is devoted to
Lévy flights in potentials, driven by additive Lévy noise,
[61-68], as well as to stochastic processes driven by mul-
tiplicative Lévy noise [69-73]. For additive noise, it has
been shown that Lévy flights in a quartic or steeper po-
tential possess finite mean and variance, for all param-
eters of the Lévy noise [63]. Many classical problems
which are well studied for Gaussian noise have been re-
visited using Lévy noise, such as the escape from a poten-
tial well [74-78], noise-induced transitions and stochastic
resonance [79-83], oscillators under the influence of noise
[62, 84, 85], the Verhulst model [86] and the Lévy ra-
chet [87]. However, despite this impressive body of work,
while the impact of colored noise [23, 88-92] and higher
dimensions [93] on on-off intermittency have received at-
tention, the theory of on-off intermittency due to multi-
plicative Lévy noise close to an instability threshold has
not been studied systematically before, to the best of our
knowledge.

Here, we show theoretically and numerically that for
Lévy white noise, the phenomenology of equation (1) can
differ starkly from the case of Gaussian white noise. In
some cases, the origin never changes stability — there is
no critical point. When there is a critical point, the crit-
ical behavior and the properties of on-off intermittency
near onset depend non-trivially on the parameters of the
Lévy noise. It is shown that in stationary state a finite
or infinite number of integer-order moments may exist,
depending on the parameters of the noise.

The remainder of this paper is structured as follows.
In section II, we present the theoretical background of
this study. In section ITI, we analyse the linear (y = 0)
regime. In section IV, we present analytical results on the
nonlinear (v > 0) statistically stationary state and verify
our results against numerical solutions of the stationary
fractional Fokker-Planck and Langevin equations. Fi-
nally in section V, we discuss our results and conclude.

II. THEORETICAL BACKGROUND

Here, we introduce aspects of the theory of stable PDFs
and describe how they are related to Lévy flights.

A. Properties of a-stable probability densities

For parameters o € (0,2],8 € [~1,1], the a-stable
PDF for a random variable Y is denoted by g, s(y) and
defined by its characteristic function (i.e. Fourier trans-
form),

Pa,p(k) = exp { — k"1 = iﬁsgn(k)@(k)]}a (2)

with

a#l

a=1

2 1og(k) @

B(k) = {tan (z2)
see [33]. A standard method for simulating stable ran-
dom variables is given in [94]. Note that (2) is not the
most general form possible: there may be a scale param-
eter in the exponential, which we set equal to one. One
refers to « as the stability parameter. For o = 2, where
[ is irrelevant since ® = 0, one recovers the Gaussian
distribution. In the following, we consider o < 2. The
parameter 3, known as the skewness parameter, measures
the asymmetry of of the distribution, where 5 = 0 corre-
sponds to a symmetric PDF, while |3] = 1 is referred to
as maximally skewed. We highlight the symmetry rela-
tion

9a,6(Y) = Pa,—s(—Y), (4)

which follows directly from the definition. Importantly,
there are two different possible asymptotic behaviors that



a stable distribution can display. When |3] < 1, there are
two long (“heavy”) power-law tails, at y — +o0,

0ap(ly] = 00) o {1+ Bsign(y)}y|~' " (5)

The presence of power-law tails implies that the stable
PDF has a finite mean (equal to zero), but a diverging
variance for 1 < a < 2, while both mean and variance
diverge for o < 1. For g = %1, the asymptotics given in
(5) break down on one side. In this case, there is a short
exponential tail on the side where the power law breaks
down and only a single long power-law tail remains. For
1 < a <2, pop=+1(y) is supported on R. By contrast,
for « < 1 and § = =1, the probability density is one-
sided, with the exponential tail vanishing at the origin,
such that p, s=1(y) =0at y <0 and p, s=—1(y) =0 at
y > 0, which is consistent with the symmetry (4). Both
forl < a <2 f=-1asy — 400, and for a < 1,
B =1asy — 0", the leading-order asymptotic form
of the short tail of the stable PDF can be obtained by
Laplace’s method and is given by

1—a/2

@a,[ﬁ(y) ~ Coyﬁ exp (701yﬁ) , (6)

where cg, ¢; are positive, a-dependent constants, cf. the-
orem 4.7.1 in [33]. Note that this reduces to a Gaussian
when o = 2. By the symmetry of eq. (4), the same result
holds, with y replaced by —y, for 1 < a < 2, f = +1 as
y— —ocand at a < 1, = —1 as y — 0~. The differ-
ent behaviors are illustrated for three cases in figure 1.
Unfortunately, useful explicit expressions for the stable
PDF only exist in a small number of special cases.
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FIG. 1. Ilustration of long power-law tails and short expo-
nential tails in the stable distributions discussed in the text.

B. Lévy flights and the space-fractional
Fokker-Planck equation

Consider the Langevin equation (1) with f(¢) being
white “Lévy” noise. More precisely, for a given time

3

step dt, we let f(t)dt = dt'/*F(t), where F(t) obeys
the alpha-stable PDF g, g(F'), defined by (2), and is
drawn independently for any time ¢, [39]. Since the
Langevin equation (1) involves a multiplicative noise
term, one needs to decide on an interpretation thereof.
As has been discussed in the literature, [70, 73], like in
the Gaussian case, the two standard interpretations are
the Stratonovich [22] interpretation, which preserves the
rules of standard calculus, and the non-anticipating 1t6
[95] interpretation. According to the choice of interpreta-
tion, the probability density will be governed by a differ-
ent form of the (space-)fractional Fokker-Planck equation
(FFPE), so called since it involves fractional derivatives
in the state variable. First consider the Stratonovich in-
terpretation, such that Y = log(X) obeys the following
equation with additive noise,

ay

E:#—’YGW‘Ff(t)a (7)

which says that Y (¢) performs a Lévy flight in the poten-
tial V(V) = —pY + %eQY. The density associated with
Y (), denoted by p,(y,t), then obeys the FFPE

Oepy(y,t) = =0y [(1n — ve*) py(y, )| +DgPpy (y, 1), (8)

[96], where the fractional derivative operator

(1+5)Dig(y) + (1 - B)D2g(y)

2 cos (‘%’T) ’

DyPyly) = -

(9)
for an arbitrary function ¢(y), is known as the Riesz-
Feller fractional derivative of order a and skewness f
[97]. It can be expressed in terms of the left and right
Riemann-Liouville fractional derivatives, which for 1 <
a < 2 are given by [64, 98],

2 1y 2)dz
P00 = s yae |G 00
and
1 d? [ z)dz
(D2g)(y) = Mdyz/y (ngzj)al (11)

For 0 < o < 1, the definitions are similar [98],

o B 1 d (Y g(z)dz
P390 =iy |G
and

D00 =iy | e 03

I(1—a)dy z—y)°

For a@ = 2, one has Dg"ﬂ = 85. The Riemann-Liouville
fractional derivatives have a simple Fourier transform,
F[D% f1(k) = (L£ik)*F[f](k), see chapter 7 of [98], which
is often invoked. However, our analysis will be performed
mostly in physical space. Once the solution to equation



(8) is known, then the probability density p,(z,t) asso-
ciated with the original variable X (¢) is given by

pal 1) = ~p, log(a), ) (14)

If, instead of the Stratonovich interpretation, one adopts
the Ito interpretation, then the FFPE is given by

8,5]3;5(337 t) = _8;8 [(N’x - Wxg)pw(xv t)] ""_Dg’ﬁ(l‘apw(xa(t)))’
15
as derived in [96].

We continue in the Stratonovich interpretation. In the
absence of nonlinearity, when v = 0, one can solve in
Fourier space for a delta-peaked initial condition, e.g.
X (0) =1, which leads to the fundamental solution given
in [97],

1 _
o (W)

/o (16)

po(z,t) =

where p, g(-) is the a-stable PDF whose Fourier trans-
form is given in eq. (2). The corresponding cumulative
probability distribution (CDF) is

Pl <) =P (EOIZ1),

tl/«a (17>

in terms of the a-stable CDF Py 5(2) = [~ __ pa,5(2")dz’".
Clearly, equation (16) holds for the Gaussian case of @ =
2, the familiar log-normal distribution. By analogy with
the latter, for 0 < o < 2 the PDF in eq. (16) is known
as the log-stable PDF and the associated process as the
log-stable process. For 0 < t < oo, the moments of the
log-stable PDF are only finite for § = —1. This is because
it is the only case where the a-stable PDF does not have
a heavy tail of the form (5) at +00. When a heavy tail is
present (8 > —1), then averaging over e™¥ = z™ for any
n > 0 does not give a finite result. For this reason the
associated stochastic process with f = —1 is also known
as the finite-moment log-stable process. It is well known,
in particular in finance, see [99] (there, only 1 < a < 2 is
considered).

III. LINEAR THEORY

Here we study the late-time limit of solution (16) corre-
sponding to eq. (1) with v = 0, starting from a localized
initial condition at z > 0, to determine the stability of
the origin « = 0. This will be helpful later for interpret-
ing the nonlinear (y > 0) results.

A. The Gaussian case

First, for illustration, consider the Gaussian case o = 2
in (16), which gives the log-normal PDF for X

1 —(log(x) — pt)?
pz(l‘,t) = x\/ﬁ eXp( & o & ) : (18)

The probability P(z < x) to find the system at < x
after time ¢ is given by the CDF in eq. (17), which here
equals

Pa<x) = {1 torf (W\/g‘“)] . a9

where erf(x) is the error function. Considering the limit
of late times t — oo for fixed x, using that erf(z —
+00) = +1, one deduces that P(z < x) — 1if p < 0,
while P(z < x) — 0 if g > 0. This indicates that at
u = 0 the origin x = 0 goes from asymptotically stable
to unstable.

Alternatively, one might attempt to determine the sta-
bility of the origin by studying the moments of X as a
function of time. For ao = 2, the FFPE in (8) reduces to
the the ordinary Fokker-Planck equation

Multiplying by exp(ny) = 2™ and integrating over y, one
arrives, upon integrating by parts, at the relation

O (X™) = (un +n®) (X™), (21)
which implies that
(X7(1)) = Xger i, (22)

for an initial condition X (0) = X, with the growth rate
An(p) = (nu+n?). Importantly, the value of ;1 where the
growth rate of (X™) vanishes, denoted p.(n), depends on
n and is given by p.(n) = —n. We have shown based on
the CDF that the system is stable for u < 0. However,
equation (22) indicates that for n large enough, (X™)
grows exponentially in time even for g < 0. This is
due to rare transient excursions to large y, which give
a non-negligible contribution since €™ is large. Thus,
the moments are not the correct indicator for stability in
the system (1) with v = 0 and one needs to be careful
when concluding stability based on them. However, as
discussed in [100], the limit of u.(n) as n — 0 does indi-
cate the correct threshold, namely p = 0. This is because
that limit is related to the growth of (log(X(t))), which
weighs large-X contributions less strongly.

B. The general a-stable case: moments

In the general a-stable case the solution is the log-
stable distribution given in (16). When S > —1, mo-
ments (X") diverge for any n > 0, as described above.



Thus no stability criterion can be derived based on the
moments.

For the special case 8 = —1, the moments (X™) exist
and can be calculated. While the moments have been
given in the literature before in the It6 interpretation,
see [99], we give a novel (to our knowledge) derivation in
the Stratonovich interpretation. For 8 = —1 the FFPE
reads

Dy 7= f(y) = —sec(am/2) D f(y), (23)

with D% given by (10). Following the steps made in the
Gaussian case, we multiply (8) by ¢™¥ and integrate over
y. Fractional integration by parts obeys

/ O;f(y)(Dig)(y)dy— /

—0o0

oo

(D2 f)(y)g(y)dy,  (24)

for sufficiently well-behaved functions f and g such that
the fractional derivatives and integrals exist, [98]. Here,
this requires § = —1. Furthermore, note that

D¢ (") = n%e™, (25)

which for 0 < o < 1 and 1 < a < 2 follows directly from
the definition of D¢ in egs. (10), (12) upon changing
integration variables to u = y — z. One obtains

B(X™) = [np — sec(ma/2n] (X™),  (26)
such that
(X)) = Xge, (27)
with
Y = [np — sec(am/2)n®] . (28)

Hence, the value of u where the growth rate vanishes
depends on n,

pe(n) = sec(am/2)n*" . (29)

For o = 2, this reduces to the Gaussian result. For
completeness, we note that the growth rate in the It6
interpretation given in [99] is similar (see their eq. (8)),

M = \¥ 4 nsec(am/2). (30)

We have verified equation (27) for both & > 1 and
a < 1 by computing the moments of the exact solution
(16) numerically (not shown). However, the moments
which we just computed for f = —1 are ill-suited for
studying the linear stability problem. This is because,
as in the Gaussian case, the moments are dominated by
rare large-amplitude events. However, taking the limit
n — 0 in p.(n) following [100], where large amplitudes
are weighted less strongly, one predicts the threshold to
beat p =0 for a > 1 and at g = oo for « < 1. In the
following section, we consider the CDF of the log-stable
process to deduce the asymptotic stability of the origin
and show in particular that the n — 0 predictions are
correct.
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FIG. 2. CDF of log-stable law (16) for 8 = 0, o = 1.5 (top
panel) and a = 0.5 (bottom panel) with 4 = 1 and time ¢
increasing in the order red, orange, green, blue, cyan, grey.
Clearly, the CDF shifts to the right as time increases in the
top panel indicating that probability is leaking to +o00, but
takes the constant value 0.5 in the bottom panel, indicating
that the probability leaking to both 400 and —oo.

C. The general a-stable case: the CDF

Consider the log-stable CDF given in eq. (17). Figure
2 shows the time evolution of the CDF for § = 0 and
a = 1.5 (top panel), « = 0.5 (bottom panel), both for
1= 1. One observes that for aw > 1, probability shifts to
the right due to the drift, indicating leakage to positive
infinity. Conversely, for o < 1, the CDF approaches
a constant value, strictly larger than zero and strictly
smaller than one, indicating that probability is leaking
to both positive and negative infinity.

More precisely, for 1 < « < 2 and 8 < 1, p > 0 one
may use eqns. (5) and (17) to show that at late times
(t — o0), for any given y, the probability for xz < y, is



given by

(1-p)t

it —Tog(e <A B

Pz < x) x

Thus P(xz < x) decreases as time progresses, in agree-
ment with our conclusion based the top panel of figure
2. A similar argument for ;4 < 0 and the same range of
« shows that in this case P(z > x) decreases in time.

For 8 = 1 and the same range of «, taking the same
limit, for > 0, t — oo and y fixed, one finds using (6)
and (17) that

Pz < x) x et (32)

which also decays, this time exponentially fast, as ¢
increases. Similarly for 4 < 0 and the same range of
a, one can show that P(x > x) decreases in time. In
short, we find that for any « in the range 1 < a < 2, the
probability leaks to log(x) — sign(u)oo as ¢ — oo for
the linear (y = 0) problem.

If 0 < a < 1, then for any p and fixed x as t — oo, the
argument of the CDF in (17), (log(x) — pt)tfl/o‘ — 0,
such that

P(x < x) = Pa,p(0), (33)

where the right-hand side is the a-stable CDF evaluated
at zero, which is a p-independent constant. For 8 = 0,
the constant is 0.5 by symmetry, as illustrated in figure
2, but in general, it will depend on g in a continuous
way. In particular, for § = 1, P, =1(0) = 0, since the
stable PDF is only supported at positive values in this
case. On the other hand, for 3 = —1, the constant is
Po,p=—1(0) = 1, since the PDF is only supported at neg-
ative values. In short, we find that for any « in the range
0 < a < 1 the probability leaks to both log(z) — —oo
and log(x) — +o0, with the exceptions of § = 41, where
probability leaks to log(z) — Soo.

In the marginal case a = 1, the fact that (log(x) —
ut)/t — —p for any fixed x implies

Pz < x) = Pa=1,5(—n), (34)

where the right-hand side is the a-stable CDF evaluated
at —p, which is a positive constant for any finite x4 and
any 8 € [—1,1]. Hence, at @ = 1, probability leaks to
both log(z) — —oo and log(z) — oo for all p. Only the
fraction of the weight escaping in each direction depends
on fi.

We note that all of the results obtained above from the
exact linear (7 = 0) solution can be understood in terms
of a competition between the drift ut and the widening
of the PDF, which goes as t'/®. For a > 1, the drift
is dominant over the widening and probability leaks to
log(x) — sign(p)oo. On the other hand, for 0 < a < 1,
the drift no longer dominates and probability spreads out
to both log(z) — +o00, except for one-sided noise.

B
. -1 (-1,1) 1

(0,2] | Sign(p)oo | Sen(u)oo | sign(i)
1 |4+o0& —oo|+o& — co|+oo& — o0
(0,1) —00 +oo& — 00 +o0

TABLE I. Summary of the late-time behavior of the (linear)
log-stable process (16). For a given combination of o and f3,
it is indicated where the weight of the probability will leak to
in terms of the variable Y = log(X).

In summary, translating the results back to the original
variable x, we have shown that in the log-stable process,
for 1 < a < 2, for any § € [—1,1], all the probability
leaks to x — +oo for p > 0, while for u < 0 all the
probability accumulates at the origin x = 0. On the
other hand, for 0 < a < 1, the probability leaks both
x — 0 and to x — oo independently of u, except for
one-sided noise at 8 = +1. There, all the probability
leaks to x = 0 for # = —1 and to x — oo for § = 1. At
«a = 1, the probability leaks to both = 0 and =z = oo,
independently of 5 and p. Table I summarises the late-
time behavior of the linear solution.

Finally, we point out that in the only case where the
moments exist, at 8 = —1, they do not straightforwardly
indicate asymptotic stability. For 1 < a < 2, and p < 0,
the origin is stable. Yet, moments of sufficiently high
order will grow. For 0 < a < 1, the origin is stable
independently of p, but there also, high-order moments
grow. However, taking the moment order n — 0 predicts
the correct thresholds ¢ = 0 for & > 1 and p = oo (no
instability at any finite ) for o < 1.

IV. NONLINEAR THEORY

In this section, we study the effect of the nonlinear
term in equation (1) with v > 0 in the development of
the instability. The nonlinearity will prevent the leakage
of probability to * — oo that was observed for many
cases in the linear regime, thus leading to a stationary
distribution that we try to estimate here.

For illustration, typical solutions of the nonlinear
Langevin equation (1) are shown in figure 3. The re-
alizations are generated efficiently by integrating eq. (1)
using its exact solution given in appendix A. Three dif-
ferent cases are shown: in panel a) « = 1.5, 8 = 0, in
panel b) @ = 0.5,8 = 1, in panel ¢) o = 0.5, = —1.
For each case, two typical time series are shown, one for
positive u and one for negative u at fixed v = 1. In panel
a), at negative u, X decays to zero. At positive p, there
is on-off intermittency: X fluctuates over many orders
of magnitude, but does not decay. There is a qualitative
change of behavior between p > 0 and p < 0. Typical
trajectories at 8 # 0, 1 < a < 2 resemble those in panel
a). In panel b), the origin is unstable for both positive
and and negative u. In panel c¢) the origin is stable for
both positive and negative pu.
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FIG. 3. Semi-logarithmic plots of time series X (t) (see eq.
(1)). Panel a): « =1.5, 8 =0, v = 1. Orange (top): p=10.2
— X (t) varies over 20 orders of magnitude, displaying on-off
intermittency. Blue (bottom): g = —0.2 — X decays to zero.
A critical transition occurs between the two, at u = 0. Panel
b): a« =05, 8 =1, v = 1. Orange (top): u = 1. Blue
(bottom): g = —1. The origin is unstable for all u. Panel c):
same as panel b) but with 3 = —1. Here, the origin is stable
for all p.

A. Exact relation for the second moment

One important property of equation (1) is that if {f(¢))
exists (i.e. for 1 < a < 2), then for X > 0 it implies that

d

7 (le(X)) = p = (X?) + (f(£)). (35)
Assuming (f(¢)) = 0, then for v > 0, < 0 the right-
hand side is negative, resulting in

(log(X)) < ut, (36)

which tends to —oo as ¢ — co. However, if p > 0, then
a stationary state is reached for which d(log(X))/dt =0
and the second moment satisfies

(X) = /7. (37)

By contrast with the linear regime, for which it was
shown above that moments are not a reliable indicator of
stability, moments in the nonlinear regime are pertinent
to the stability of the origin. This is due to the fact
that the nonlinearity in equation (1) impedes excursions
to large amplitudes, which are the reason why high
moments may grow exponentially in the linear case
(v = 0), even when the origin is stable. Equation (37)
thus already indicates that for 1 < a < 2 the system is
unstable when g > 0 in agreement with the predictions
of section III C. Note, however that stability or instabil-
ity cannot be concluded from (37) for 0 < a < 1, since
eq. (37) is not valid there.

B. Asymptotics of the PDF at large =

In this section, we study the fractional Fokker-Planck
equation under the assumption of stationarity to derive
the asymptotics of the stationary density for x — oo.
Here, we need to consider 5 > —1 and 8 = —1 separately.

1. The case > —1

Let B > -1, and consider the FFPE in the
Stratonovich interpretation, i.e. equation (8). For y —
0o, we neglect D, < DT and pu < yexp(2y) to find the
following equation for the stationary distribution associ-
ated with the process Y = log(X), denoted by py +(v),

(1+B8)L [*, Bestiide
2cos(ma/2)T(2 — )

7€y st (y) = (38)

Asymptotically, the integral is dominated by z < y.
Hence (y—2)*"! ~ y®~!. The remaining integral can be
approximated as f;yoo Py st(2)dz = ffooo Py st(z)dz = 1.



The resulting equation implies the following asymptotic
behavior for the stationary density at large y,

C(l1+ o
Py.st(y) ~ (Vﬁ)y exp(—2y). (39)
The prefactor is given by
C =sin(ra/2)T'(a) /7, (40)

which has been simplified using Euler’s reflection formula
I(a)T'(1 — a) = 7/sin(ra). In terms of the stationary
distribution p, «(x) associated with the original process
X, this gives

Cc(1+08)

Past(T) ~ log(z)~ %273, (41)

for x — co. While the above derivation is valid for 1 <
« < 2, one may repeat the same steps for 0 < a < 1
with the corresponding fractional derivative from eqns.
(12), and finds the same result. For a > 1, there is
both a finite mean and a finite variance. For a < 1,
the variance in infinite, but the mean is finite. We note
that the derivation given here is inspired by a similar
argument from [64].

Further, if one chooses the It6 interpretation, then one
may derive the large-x asymptotics in a similar way. One
begins by considering the stationary solutions of the as-
sociated Ité6 FFPE for p,(x,t), i.e. equation (15). Then
one takes the limit + — oo, assuming D¢ > D¢, and
using pr < 3 to find

T 2%, st(2)dz
(1+6)% ffoo (9207—‘2)‘("*)1
2cos(ma/2)(2 — «)

V2 Py s () R (42)

Now, ffoo Z?ff‘;’;((f,)flz ~ ffooo 29Dy st(2)dz by a sim-
ilar reasoning as for the Stratonovich case. The remain-
ing integral cannot be performed explicitly, but it is an
z-independent constant. Hence, one finds the asymptotic

proportionality
1t6 —3—a
Py st(®) o< (14 f)x , (43)

for large x. This result is remarkable, since the power
law matches exactly the one found for additive noise in a
quartic potential, [64]. In particular, the third moment
is finite in the It6 interpretation for 1 < a < 2 (where it
diverges in the Stratonovich case), and the variance is fi-
nite for 0 < o < 1 (where it diverges in the Stratonovich
case). The observation that the asymptotic form of
the tails of the stationary PDF are altered by a state-
dependent Lévy noise amplitude in the Stratonovich in-
terpretation, but not in the Ito interpretation, has been
made in previous studies with different functional forms
of multiplicative noise [69, 70]. For the remainder of this
paper, we will adopt the Stratonovich interpretation.

2. The case = —1

The asymptotics in (41) and (43) break down for 8 =
—1, which is the nonlinear version of the finite-moment
log-stable process. For Gaussian noise, a = 2, the sta-
tionary PDF in y is known to be p, «(y) = Netve—3e™
which decays faster than e™ at large y for any n > 0.
For 1 < a < 2 and § = —1, the stable PDF has a
short tail +o00, decaying faster than a Gaussian (since
af(a—1) > 2in eqn. (6)). This implies that the station-
ary PDF under such Lévy noise will decay faster than
in the Gaussian case. Hence, the moments of z for any
order n > 0 exist there also. In terms of p, s (y), one
expects a double-exponential function as in the Gaussian
case. However, unfortuantely, we cannot derive these
large-x asymptotics explicitly as we did for g > —1, since
the Riemann-Liouville derivative of such functions is not
known in simple terms. Rather, we will rely on numeri-
cal solutions to confirm that the PDF of y indeed decays
faster than exponentially at y — +00. At 0 < a < 1,
B = —1, since the origin is stable for all g in the lin-
ear regime, it will continue to be stable in the nonlinear
regime (the nonlinearity in equation (1) is strictly nega-
tive). Thus the stationary PDF is d(x) in this case, i.e.
the CDF converges to 1 for all > 0 in the long-time
limit.

C. Asymptotics of the PDF at z — 0

We now investigate the asymptotic behavior of the sta-
tionary density for z — 0. Here we need to distinguish
between the cases 8 =1 and § < 1.

1. The case =1

Consider § =1 and p > 0. The FFPE (8) in steady
state, taking y — —oo and neglecting ve?¥ < u, reads
1

W(Difﬂy)- (44)

0= _,uaypy,st(y) -

Making an exponential ansatz p, «(y) < e¥ and using
the fractional derivative of the exponential given in equa-
tion (25) leads to

1

— —pAety —  —
0 pae cos(am/2)

pAe, (45)

implying
A= Aa(n) = (—pcos(an/2)V ™ (16)
In terms of the original variable x, this corresponds to
Past(x) oc 7 1H AW (47)

which for @ > 1 is integrable when p > 0. The term
integrable is used here to mean that the integral of a given



function over its domain converges. When o > 1 and
1 < 0, on the other hand, the solution is non-integrable,
which is associated with the absence of a steady-state
solution in the space > 0. In that case, the stationary
density is given by §(x), with the CDF converging to 1
for all  in the long-time limit. For a« < 1 and —oo <
u < 0, the same result (47) holds with A > 0, such
that the solution is integrable. For a < 1, u > 0, the
solution again ceases to be integrable. From the Langevin
equation (7) one deduces that this is due to the fact that
in this case Y > 0 for Y < 11n(u/7), since the noise is
strictly positive, and thus the probability to be at ¥ <
£ In(pu/7) vanishes at late times. The stationary PDF is
thus only supported at values of y above the deterministic
saturation point 1In(u/v) and vanishes for all smaller
y. Hence, the exponential ansatz is inappropriate and
breaks down. This indicates that for a < 1, u > 0, we
cannot neglect the nonlinear term in equation (1), since
it is the only one that decreases Y.

The above discussion confirms the intuition based on
the linear solution (including an arrest of the leakage of
probability to +oo by the nonlinear term in eq. (1)). For
B8 =1, a > 1 a critical transition occurs at p = 0, from
all weight of the stationary PDF being at 2 = 0 (origin
stable) to non-zero weight at x > 0 (origin unstable). On
the other hand, for 0 < o < 1, § = 1, the origin is always
unstable.

2. The case B < 1

Let 5 <1 and p > 0. We follow once again the argu-
ments of [64], starting from eq. (8). Consider y — —o0,
such that p > ye?¥, and neglect D¢ <« D2 to find

. d [0 py,st(2)dz
(1 ﬁ>dy fy (z—y)>! ) (48)

2cos(mra/2)[(2 — )

_Mpy,st(y) =

Using normalisation of the PDF, as for the large-z limit
at 8 > —1, we find that the stationary PDF is asymp-
totically given by

(1-p)C

p (=y)~% (49)

Py,st(y) ~
for y — —oo, where C' is given by (40). In terms of the
original variable, this corresponds to

c-p) _ _

prale) ~ Dot ogu/m) e (o0)

for x — 0. While the above derivation is for 1 < a < 2,
the case 0 < a < 1 leads to the same result. Clearly, this
solution breaks down at negative p, since the predicted
PDF ceases to be positive. In this case, the stationary
distribution is §(x). For a < 1, the fact that the solution
(49) is not integrable at y = —oo implies that there is
no stationary state at > 0. Instead, the stationary
density in that case is 0(z), for all p. For 1 < a < 2

and g > 0, on the other hand, (49) gives a consistent,
integrable stationary PDF.

B Pa st(z — 0) Pz, st (T — 00)

-1 C(pz) Tlog™%(1/x) exponential decay
L1 | Cluz) Tog(1/z) | Cv 'z "log "(z)

1 o g~ 1Al Cry~tz 31log™(x)

TABLE II. Summary of the different asymptotic behaviors
of pz,st(x) obtained in the previous sections for @ < 2. The
domain of validity of the formulas is discussed in the text.
The constants C and A, (u) are given in eqns. (40), (46).

Table IT summarises the different asymptotic behav-
iors obtained above. The closest resemblance with the
a = 2 case is seen in the large-x exponential decay at
B = —1 (which is Gaussian for « = 2), and the small-
x p-dependent power-law at § = 1 (where Aa(p) = p).
The asymptotics in the remaining cases are qualitatively
different from the Gaussian case.

Summarising, a transition occurs at u =0 for 1 < a <
2, from a stable origin at x4 < 0 to an unstable origin at
@ > 0. This is as predicted in the linear theory. When
a < 1, B < 1, the origin is stable for all u, and for o < 1,
B = 1, the origin is always unstable. These results are
also consistent with the linear theory, taking into account
saturation by the nonlinearity.

D. PDFs and Moments

Here we attempt to deduce the moments based on the
asymptotic behavior of the PDF's discussed in the previ-
ous sections complemented by numerical solutions of the
stationary FFPE, using a heuristic approach. The nu-
merical solutions are computed using the finite-difference
formulation described in appendix B.

1. Thecasel <a<2, =1

We begin by showing the results from the numerical
solution of the FFPE. Figure 4 indicates an agreement
with the theoretical results of the previous section, for
z <1l (ie y— —o0)and x> 1 (i.e. y — 00). In order
to calculate the scaling with p of the different moments
we can model] the PDF as

1 |zt t T < Ty

x,s R R — ’ ol
Past(7) N {Ba:‘Slog Ux) x> w (51)

where z* and N are model parameters, A, (u) is as given

in equation (46) and B = g2+ A1) log*(x,) for conti-

nuity. To determine the two unknowns N and x,., we
impose normalisation of the PDF and the second mo-
ment identity (37). At small x, the dominant part of the
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FIG. 4. Semi-log plot of numerically obtained stationary PDF
for a = 1.5, g = 1.0, varying p = 0.1,0.33,0.55,0.78, 1.0, at
v = 1 fixed. The dashed line on the right is the theoreti-
cal prediction (41) for the the cut-off by non-linearity. The
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exp(A(p)y) from (47).

1.00 »
¢ n=1 y e
] e n=2 /‘
0.75 »
= d
S 0.50 .

0.25- . e
e 0‘/‘_,—‘ oxX 'u2(a—1)
0.00 Q’-’-’O-‘*f‘ | |
0.00 025 050 075  1.00
1

FIG. 5. First and second moment of X for « = 1.5, 8 =1
versus u at v = 1. The first moment scales as predicted in
(55), shown by the curved dashd line, and the second moment
is linear, in agreement with (37).

weight is at negative y, i.e. at small x, as visible in figure
4. This implies

an(N)
N~ = 52
A" 52
as p — 07. In addition,
1 1 1-a 2+ A (1)
(5 + iy log! ()
(X?) = 2+4a(p) a1 (53)

N

and moments of order higher than two diverge. By equa-
tion (37) we have (X?) = pu/y. For 0 < pu < 1, this

10

implies,

T~/ 21/ (Aa(p)y), (54)

such that
(X) & Aa(), o g7, (55)

where A, (p) was inserted from equation (46). Figure
5 shows that this agrees with the numerical solution of
the stationary FFPE for the examplary case a = 1.5,
B = 1. We note that (55) can simply be extended to

(X™) o pf with 0 < n <2, with ¢, = %ﬁ;)@ which

varies continuously with n. In particular ¢, ~ =15 for

small n, ¢; = Z(cxa—l) and, by construction, co = 1.
10~ ~
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FIG. 6. Log-log plot of the numerically obtained stationary
PDF p, «t(y) versus |y| for a = 1.5, 8 = —1. Five different
values of u are shown (0.01,0.025,0.085,0.3,1.0) for v = 1.
The tail at y — —oo fits the prediction (49) (dashed lines
on the right). Before that limiting scaling is observed at
y — —oo, an intermediate, flatter power-law range occurs
at y < 0, whose exponent is independent of p, but whose am-
plitude decreases and whose range increases as p decreases.
At large positive y, there is a faster-than-exponential decay
as predicted (compare with figure 8 at y > 0).

2. Thecasel <a<2, f=-1

Figure 6 shows the numerically obtained PDF. It
matches the theoretically predicted asymptotics in the
y — £oo limits. In addition, an intermediate, shallower
range is observed at intermediate negative y before the
predicted asymptotic behavior at y — —oo is realized.
Figure 6 suggests that this intermediate range is a power
law. A close inspection shows that it is only approx-
imately a power law since it has a finite curvature in
the log-log diagram. Notwithstanding this caveat, we
propose a simplistic model approximately describing the
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FIG. 7. Moments for « = 1.5, § = —1 versus p at v = 1
from the numerically computed steady-state PDF. Symbols
represent n = 1 (diamond), n = 2 (hexagon), n = 3 (circles),
n = 4 (triangles). The dashed lines show linear scaling.

numerical result

0 ty >0
Py.st(y) = D(—y)~* 0>y >y, (56)
20/ (=y)™ 1y« >y

where C' = I'(m) sin(ma/2) /w. The portion of the PDF
at y > 0 makes a negligible contribution to its nor-
malisation and any moments of X, due to the faster-
than-exponential decay at y > 0. The value of A can
only be determined numerically, with relatively large er-
rorbars. Thus fixing A\ numerically (e.g. A ~ 0.6 for
a = 1.5,8 = —1 in figure 6), there are two unknowns D
and y, which we determine by imposing normalisation of
the PDF and the second moment identity (37). Formally,

D _
L=y +

2C 11—
1—\ )(_y*) ’ (57)

(e —1

0
20 [V
E-p (—y)’Aerdy+7/ (—y) “e*¥dy. (58)
7 ”. T

Figure 6 suggests that y, — —oo as u — 07. In eq. (58),
this implies that the second integral, from —oo to y., is
exponentially suppressed for small . For large |y.|, the
lower limit of the first integral may be replaced by —oo.
This leads to

21—)\
D~—r—
a0 (59)
o0 \Ve
Yo A — ((a—l)) TAC (60)

Note that, as expected, v, — —oo as u — 0. The
two results (59), (60) imply that the moments of X of
arbitrary order n > 0 scale linearly, since large negative

11

y are exponentially suppressed:

0
(X™) = (") ~ D / (—y) vy
o pu (61)

Note that the critical exponent in the final result is in-
dependent of the value of A\. The result of eq. (61) is
confirmed in figure 7, where the integer moments up to
order four, determined from the numerical solution of the
stationary FFPE, are all shown to scale linearly with u.
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FIG. 8. Log-log plot of the numerically obtained stationary
PDF py,st(y) versus |y| for = 1.5, 8 = 0. Five different
values of y are shown (0.01,0.025,0.085,0.3,1.0) for v = 1.
The tail at y — —oo fits the prediction of (49) shown in
dashed straight lines on the right. At intermediate y < 0, a
flatter power-law range is seen, with exponent independent
v of u (v = 0.25 here), but with amplitude decreasing and
width increasing as p decreases. The tail at y > 1 matches
the prediction (41), shown by the curved dashed line.

3. Thecasel <a<2, | <1

Figure 8 shows that the PDF, which matches the pre-
dicted asymptotics at y — 400, strongly resembles the
case of f = —1 in that in addition to the asymptotic
power-law range, an intermediate, approximately power-
law range is seen at negative y. Again, close inspection
shows that the intermediate range shows small deviations
from a power law. However, the most marked difference

from the case § = —1 is that the decay for |3] < 1 is
only exponential in y at positive y, not faster than ex-
ponential as for § = —1. In particular, the asymptotics

at positive y imply a slow, power-law convergence of the
second moment since pg;(y)e?¥ o<y~ at y > 1. Bearing
this in mind, we nonetheless employ the same approxi-
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FIG. 9. First and second moment of X for a« = 1.5, § =
0 versus p at v = 1. The scaling of the first moment is
compatible with the prediction of (67), shown by the curved
dashed line, with v & 0.25 from figure 8. The second moment
is linear in u, satisfying the identity (37).

mate form for the PDF as for § = —1,

0 :y2>0
E(iy)iy 20> Y > Y s (62>
(1 _6)C/N|y|_a Y < Ysx

where once more C' = I'(a) sin(an/2) /7. We may again
determine v numerically, albeit with significant uncer-
tainty. In figure 8, where o = 1.5, § = 0, we observe
v =~ 0.25. As for 8 = —1, the portion of the PDF at
y > 0 makes a subdominant contribution to the normal-
isation and the moments of order n < 2. To determine
FE, v, we need two conditions. By contrast with the case

Dy,st(y) ~

B = —1, we impose continuity at y.. instead of (37),
normalisation of the PDF. Formally,
—v 1-— B C —«
By U= (e (63)
E _ (1-p5)C _
1= —Yxx 1w Yxx 1me
T, () +u(a71)( Yo )
(64)

Solving these two equations gives

yw—{Liy+ai1%1ma@_wmﬂ (65)

E = Vfa(l_ﬁ)c

=y’ A=A T = (g

® [L_FL}j

1—v a—1

This implies that the first moment exhibits the anoma-
lous scaling

0
(X) = (") ~ B / V(—y) "y o u 5. (67)

— 00
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Note that, by contrast with the case 5 = —1, the critical
exponent in (67) depends on the exponent v of the inter-
mediate power-law range at negative y, which we have
not determined theoretically as a function of «, 8, but
only measured numerically. The critical scaling of the
first moment predicted in eq. (67) is shown to be consis-
tent with the numerically obtained moments in figure 9
for the case o = 1.5, § = 0. The prediction (67) for the
critical exponent at n = 1 was also verified for different
values of o at 8 = 0 (not shown).

4. Thecase 0 <a<l1l, =1

In this case the origin is unstable for all u, and a non-
trivial stationary state exists due to the nonlinearity in
equation (1). The point-vortex model presented in the
companion paper [59], where a = 2/3, 8 = 1, falls into
this parameter range. The asymptotic theoretical results
suggest that for u < 0, the PDF can be modeled as

BeAa(my Ly < Yy
s = , 68
Py.st(v) {fe%ya:y>m (%)

where C' = sin(an/2)I'(a) /7, Aa(p) given by (46), and
the two unknowns B and y, are in principle determined
by continuity at y. and normalisation. We note that
the second moment does not exist because y~® is not
integrable at infinity for & < 1. Moments of order higher
than two also diverge. However, (X™) does exist for all
0<n<2.

For illustration, we consider the special case o = 1/2,
v = 1 and take the limit u — 07, where A, () — oco.
Clearly then p, s (y) — 0 at y < 0. Further, since

20 / e~y 24y =1, (69)
0

taking y. ~ 0 as p — 0~ gives a consistently normalized
model of the PDF. For this special case, « = 1/2, v =1,
the n-th moment of the PDF for 0 < n < 2 may be
computed to be

2
S (70)

o0
(X™ = 2C/ ey =gy =
0

for p small and negative. Note that the result is inde-
pendent of u. For n = 1, equation (70) was found to
be satisfied to within a few percent relative error by av-
eraging over sample trajectories (not shown) using the
method in appendix A.

V. CONCLUSIONS

We have studied the stochastic process obeying the
Langevin equation (1) with Lévy white noise. The theory
of on-off intermittency was generalized, from the known
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FIG. 10. The parameter space of (1) with white Lévy noise,

€ (0,2], B € [-1,1]. A critical transition occurs at g = 0
for 1 < a < 2, and for the Gaussian case o = 2. For 0 <
a < 1, the origin is either always stable or always unstable,
independently of p.

case of Gaussian noise, to Lévy noise by studying the
FFPE (8) analytically and numerically. First the linear
(v = 0) solution was analysed, which showed leakage of
the probability to £ = 0, £ = oo or both, depending on
the noise parameters o and 3. Then we computed the
nonlinear (v > 0) stationary solutions of the stationary
FFPE, for which the leakage of probability to large z is
arrested by the nonlinearity in equation (1). We showed
that for 1 < a < 2 the origin is stable at 4 < 0 and
unstable at 4 > 0. For 0 < a < 1, the origin is always
stable, or always unstable, for any u, due to the diver-
gent mean of the noise. In addition to the Gaussian case
a = 2, where the stationary PDF for g > 0 is given by
Da,st(T) = Nz~ 1*tre=32" and all critical exponents are
equal to 1, we identify a total of five qualitatively distinct
regimes in the parameter space « € (0,2], 5 € [-1,1], il-
lustrated in figure 10,

(i) “Critical 17 with 1 < « < 2, 8 = 1. For p >
0 and small z, the PDF is p, o (v) oc x~ ! FAaln)

with A, (@) ,uﬁ. This matches the Gaussian
small-z result for « = 2. At & > 1, the PDF is
Past(z) o< 273 (log(x)) ™%, i.e. (X™) < oo forn <2
but (X") = oo for n > 2. As gy — 07, one has
(X™) oc e, with ¢; = sy and ¢ = 1.
(ii) “Critical 27 with 1 < a < 2, |B] < 1. The
PDF is p,st(x) o< p~ta=t(log(1/z))™ at small
x > 0. This is in stark contrast with the Gaus-
sian result; the logarithmic term here is crucial for
integrability at x = 0. At = > 1, the PDF is
Pa.st(r) = Cx~3(log(z)) ™ as in case (i), s.t. only
moments of order n < 2 are finite. At 2 < 1, but
not too small, there is an intermediate range where
approximately p, st(z) o< 27! (log(z)) ™", where the
exponent v was determined numerically. It remains
an open problem to compute it theoretically as
a function of «,f. For small p > 0, we found
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n 3 ~ 1= _
(X™) oc p, with ¢; =~ -=4 and ¢y = 1.

(iii) “Critical 3”7 with 1 < o < 2, f = —1. At
small © and g > 0, the PDF is p,«(z) «
ptz=t(log(1/x))~« as for case (ii). For large z,
the PDF p, s (x) decays faster than any power of
x. At x < 1, but not too small, there is an inter-
mediate range similar to that in (ii) where approx-
imately p, st (z) oc 27 (log(z))~?, with a different
exponent A which was determined numerically. It
remains an open problem to compute A theoreti-
cally as a function of «, 3. However, the critical
exponents are independent of A: for small u > 0,
one finds (X™) o p, with ¢, =1 for all n > 0.

(iv) “Unstable” with 0 < a < 1, = 1. Since the noise
is strictly positive and has infinite mean, the origin
x = 0 is always unstable, independently of p. At
small = and for all ¢ < 0, the PDF is p, o (z) x
x4« For 4 > 0, the PDF vanishes at = <
1t/v. For p < 0small, in the special case « = 1/2,
v = 1, the n-th moment is shown to be (X™) =

V2/(2—mn) for 0 <n < 2. For n > 2, all moments
(X™) diverge.

(v) “Stable” with 0 < o < 1, f < 1 or o = 1 for
any (. The origin is always stable in this case, the
stationary PDF is §(x) for all u as long as v > 0.

In summary, we have shown that instabilities under
the influence of multiplicative heavy-tailed noise, mod-
eled as Lévy white noise, can display anomalous critical
exponents differing from those for Gaussian noise, where
¢, = 1 for all n. Anomalous critical exponents different
from the Gaussian results have been found previously,
for instance for instabilities subject to colored noise [92].
Here, we add the scenario of Lévy white noise, which
leads to several new possibilities of anomalous scaling, as
discussed above.

Our work serves as a first step in the study of instabil-
ities in the presence of multiplicative Lévy noise. There
are many directions that can be further pursued. First
of all the values of the power-law exponents A, v in egs.
(62), (56) remain unknown leading to only a non-rigorous
estimate of the scaling exponents of the different mo-
ments with g. Furthermore, the behavior of the system
under truncated Lévy noise [42, 63, 64, 101, 102], com-
bined Lévy-Gaussian noise [103], a finite-velocity Lévy
walk [104], different nonlinearities [105], higher dimen-
sions [93, 106, 107] and its time statistics [4-10, 23, 108]
would also be interesting to understand. Finally, since
Lévy statistics are found in many physical systems, we
permit ourselves speculate that the anomalous critical
exponents predicted here for instabilities in the presence
of power-law noise may be observable experimentally.
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Appendix A: Solution of the Langevin equation

Equation (1) is of the form of a Bernoulli differential
equation. Hence, it admits an exact solution, which can
be derived by dividing (1) by X? and letting Z(t) =
1/X?(t), such that

az(t
% +2r()Z(t) = 2v. (A1)
This gives
sign(x
X(t) — - ; g ( 0) %’
6—2ut—2L t 7 7y —
(7.7@3 + 2y [1e2nt—D2AL() L(t))dt/)
(A2)

which is non-negative if zy > 0. We denote dL/dt = f(t)
with f(¢) white Levy noise, i.e. L(t) is a free Levy flight.
This solution is also given in [23], where it is stressed that
it holds for any type of noise with L(t) being the integral
of the noise. By contrast with other nonlinear equations
involving multiplicative Lévy noise, such as [86], where
the analytical solution of the nonlinear Langevin equa-
tion gives access to the exact time-dependent PDF, this
is impossible here since the result depends the integral
of L(t), in addition to L(t). However, the expression is
useful for numerical evaluation to generate realisations
of the random process. It is advantageous over a direct
iterative numerical integration since it does not require
smaller time steps at large nonlinearity. Nonetheless, for
large values of L(t') — L(t), the exponential in the in-
tegrand may produce an overflow error. This can be
avoided by choosing integration step dt and the total in-
tegration time ¢ not too large.

Appendix B: Finite-difference numerical solution

We recall the stationary space-fractional Fokker-
Planck equation in the Stratonovich interpretation in
terms of Y = log(X), which reads

O = _‘93,/[(# - Wer)pst (y)} + 'D;ﬁpst (y)7 (Bl)
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where the fractional derivative is given by

[(1+ B)DSpst + (1 — B) D% py]

a,f3 _ _
Dy pst(y) 2COS(7TO[/2) (B2)
D2+ D%+ B(D3 — D%)lpa;
B 2 cos(mar/2) - (B3)

We consider 1 < a < 2, for which Riemann-Liouville
derivatives are given by (10), and (11). Integrating once

in y gives
0=~ (1 —7e*)pse(y)
ri [T e,y
ly —zl>—t
where K, = —(2cos(ra/2)['(2 — «))~!. To simplify

discretization further, it is advantageous to rewrite the
term stemming from the fractional derivative in the the
Griinwald-Letnikov form, cf. [109], thereby transferring
the y-derivative into the integral. This gives

0= —(u—7e")psi(y)+Ka /jo Pae(2)[L + fienly = 2)]

ly — 2t
(B5)
For discretization we consider a large domain
[Ymin, Ymaz), meshed by intervals [y,_1,yn], whose

N + 1 endpoints are y,, where pg(y,) = ppn, with
n=0,..., N. We prescribe an arbitrary initial condition
p—1 > 0. Then, using a backward difference scheme
for f'(z) and regularising |y — z|*™! — |y — z|*"! + €
(0 < e < 1), we find a matrix equation

N
= Z Ln,mpm» (BG)
m=0

where n =1,..., N,

b — K p—l((l + ﬁSign(yn - yO))) (B?)
" “ |?J71_Z/0|(171_~'6
and
L =—pu+ 7623,/0 + K (1 + ﬁSign(yO B ym))) (BS)

|yn - ym|04_1 + €
) (1 + /BSign(yn - merl)) (Bg)

+K,0(N
of( [Yn — Ymy1|*™! + €

—1-m

where 0(x) designates the Heaviside function. Finally,
the steady density p,,, m = 1,..., N is obtained by in-
verting the matrix L, ,, and normalising the result. For
B < 1 we chose a non-uniform grid, composed of a loga-
rithmically spaced grid at y < —0(100), combined with
a uniform grid in the region O(100) > y > —O(100).
The total grid size was N = 24000. For 8 = 1, a uniform
grid was used with N = 16000 (the PDF does not extend
to y < 0 as far). Choosing € on the order of the small-
est grid resolution to the appropriate power a — 1 gives
results consistent with exact theoretical predictions, as
described in the text.



15

[1] H. Fujisaka and T. Yamada, A new intermittency in cou-
pled dynamical systems, Progress of theoretical physics
74, 918 (1985).

[2] N. Platt, E. Spiegel, and C. Tresser, On-off intermit-
tency: A mechanism for bursting, Physical Review Let-
ters 70, 279 (1993).

[3] E. Ott and J. C. Sommerer, Blowout bifurcations: the
occurrence of riddled basins and on-off intermittency,
Physics Letters A 188, 39 (1994).

[4] J. Heagy, N. Platt, and S. Hammel, Characterization of
on-off intermittency, Physical Review E 49, 1140 (1994).

[5] P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy,
and B. D. Lee, Experimental observation of on-off in-
termittency, Physical review letters 73, 1095 (1994).

[6] F. Rédelsperger, A. Cenys, and H. Benner, On-off in-
termittency in spin-wave instabilities, Physical review
letters 75, 2594 (1995).

[7] T. John, R. Stannarius, and U. Behn, On-off inter-
mittency in stochastically driven electrohydrodynamic
convection in nematics, Physical review letters 83, 749
(1999).

[8] A. Vella, A. Setaro, B. Piccirillo, and E. Santamato, On-
off intermittency in chaotic rotation induced in liquid
crystals by competition between spin and orbital angu-
lar momentum of light, Physical Review E 67, 051704
(2003).

[9] D. Feng, C. Yu, J. Xie, and W. Ding, On-off intermit-
tencies in gas discharge plasma, Physical Review E 58,
3678 (1998).

[10] G. Huerta-Cuellar, A. N. Pisarchik, and Y. O. Bar-
menkov, Experimental characterization of hopping dy-
namics in a multistable fiber laser, Physical Review E
78, 035202 (2008).

[11] S. Benavides, E. Deal, J. Perron, J. Venditti, Q. Zhang,
and K. Kamrin, Multiplicative noise and intermittency
in bedload sediment transport (2020).

[12] J. L. Cabrera and J. G. Milton, On-off intermittency in
a human balancing task, Physical Review Letters 89,
158702 (2002).

[13] J. L. Cabrera and J. G. Milton, Stick balancing: On-off
intermittency and survival times, Nonlinear Studies 11,
305 (2004).

[14] G. Margolin, V. Protasenko, M. Kuno, and E. Barkai,
Power law blinking quantum dots: Stochastic and phys-
ical models, arXiv preprint cond-mat/0506512 (2005).

[15] P. Frantsuzov, M. Kuno, B. Janko, and R. A. Mar-
cus, Universal emission intermittency in quantum dots,
nanorods and nanowires, Nature Physics 4, 519 (2008).

[16] S. J. Benavides and A. Alexakis, Critical transitions in
thin layer turbulence, Journal of Fluid Mechanics 822,
364 (2017).

[17] A. van Kan and A. Alexakis, Condensates in thin-layer
turbulence, Journal of Fluid Mechanics 864, 490 (2019).

[18] D. Sweet, E. Ott, J. M. Finn, T. M. Antonsen Jr, and
D. P. Lathrop, Blowout bifurcations and the onset of
magnetic activity in turbulent dynamos, Physical Re-
view E 63, 066211 (2001).

[19] A. Alexakis and Y. Ponty, Effect of the lorentz force
on on-off dynamo intermittency, Physical Review E 77,
056308 (2008).

[20] R. Raynaud and E. Dormy, Intermittency in spherical
couette dynamos, Physical Review E 87, 033011 (2013).

[21] S. H. Strogatz, Nonlinear dynamics and chaos with stu-
dent solutions manual: With applications to physics, bi-
ology, chemistry, and engineering (CRC press, 2018).

[22] R. Stratonovich, A new representation for stochastic in-
tegrals and equations, STAM Journal on Control 4, 362
(1966).

[23] S. Aumaitre, K. Mallick, and F. Pétrélis, Noise-induced
bifurcations, multiscaling and on-off intermittency,
Journal of Statistical Mechanics: Theory and Experi-
ment 2007, P07016 (2007).

[24] A. Schenzle and H. Brand, Multiplicative stochastic pro-
cesses in statistical physics, Physical Review A 20, 1628
(1979).

[25] L. P. Kadanoff, W. Gotze, D. Hamblen, R. Hecht,
E. Lewis, V. V. Palciauskas, M. Rayl, J. Swift, D. Asp-
nes, and J. Kane, Static phenomena near critical points:
theory and experiment, Reviews of Modern Physics 39,
395 (1967).

[26] N. Goldenfeld, Lectures on phase transitions and the
renormalization group (CRC Press, 2018).

[27] G. Eyink and N. Goldenfeld, Analogies between scal-
ing in turbulence, field theory, and critical phenomena,
Physical Review E 50, 4679 (1994).

[28] N. Goldenfeld and H.-Y. Shih, Turbulence as a prob-
lem in non-equilibrium statistical mechanics, Journal of
Statistical Physics 167, 575 (2017).

[29] M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, Lévy
flights and related topics in physics (Springer, 1995).

[30] A. V. Chechkin, R. Metzler, J. Klafter, V. Y. Gonchar,
et al., Introduction to the theory of 1évy flights, Anoma-
lous Transport , 129 (2008).

[31] W. Feller, An introduction to probability theory and its
applications, vol 2 (John Wiley & Sons, 2008).

[32] B. Gnedenko, A. Kolmogorov, B. Gnedenko, and
A. Kolmogorov, Limit distributions for sums of inde-
pendent, Am. J. Math 105 (1954).

[33] V. V. Uchaikin and V. M. Zolotarev, Chance and stabil-
ity: stable distributions and their applications (Walter
de Gruyter, 2011).

[34] B. Dybiec and E. Gudowska-Nowak, Resonant activa-
tion in the presence of nonequilibrated baths, Physical
Review E 69, 016105 (2004).

[35] B. B. Mandelbrot, The fractal geometry of nature, Vol.
173 (WH freeman New York, 1983).

[36] M. Shlesinger, B. West, and J. Klafter, Lévy dynamics
of enhanced diffusion: Application to turbulence, Phys-
ical Review Letters 58, 1100 (1987).

[37] T. Solomon, E. R. Weeks, and H. L. Swinney, Obser-
vation of anomalous diffusion and lévy flights in a two-
dimensional rotating flow, Physical Review Letters 71,
3975 (1993).

[38] R. Metzler and J. Klafter, The random walk’s guide to
anomalous diffusion: a fractional dynamics approach,
Physics reports 339, 1 (2000).

[39] A. A. Dubkov, B. Spagnolo, and V. V. Uchaikin, Lévy
flight superdiffusion: an introduction, International
Journal of Bifurcation and Chaos 18, 2649 (2008).

[40] B. Dubrulle and J.-P. Laval, Truncated lévy laws
and 2d turbulence, The European Physical Journal B-



Condensed Matter and Complex Systems 4, 143 (1998).

[41] D. del Castillo-Negrete, B. Carreras, and V. Lynch,
Nondiffusive transport in plasma turbulence: a frac-
tional diffusion approach, Physical review letters 94,
065003 (2005).

[42] C. Schinckus, How physicists made stable lévy processes
physically plausible, Brazilian Journal of Physics 43,
281 (2013).

[43] P. D. Ditlevsen, Anomalous jumping in a double-well
potential, Physical Review E 60, 172 (1999).

[44] P. D. Ditlevsen, Observation of a-stable noise induced
millennial climate changes from an ice-core record, Geo-
physical Research Letters 26, 1441 (1999).

[45] G. M. Viswanathan, V. Afanasyev, S. Buldyrev, E. Mur-
phy, P. Prince, and H. E. Stanley, Lévy flight search pat-
terns of wandering albatrosses, Nature 381, 413 (1996).

[46] D. W. Sims, E. J. Southall, N. E. Humphries, G. C.
Hays, C. J. Bradshaw, J. W. Pitchford, A. James, M. Z.
Ahmed, A. S. Brierley, M. A. Hindell, et al., Scaling laws
of marine predator search behaviour, Nature 451, 1098
(2008).

[47] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and
S. Chong, On the levy-walk nature of human mobility,
IEEE/ACM transactions on networking 19, 630 (2011).

[48] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, Un-
derstanding individual human mobility patterns, nature
453, 779 (2008).

[49] A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P.
Freeman, E. J. Murphy, V. Afanasyev, S. V. Buldyrev,
M. G. da Luz, E. P. Raposo, H. E. Stanley, et al., Re-
visiting lévy flight search patterns of wandering alba-
trosses, bumblebees and deer, Nature 449, 1044 (2007).

[50] B. Gross, Z. Zheng, S. Liu, X. Chen, A. Sela, J. Li, D. Li,
and S. Havlin, Spatio-temporal propagation of covid-
19 pandemics, EPL (Europhysics Letters) 131, 58003
(2020).

[51] J. L. Cabrera and J. G. Milton, Human stick balancing:
tuning lévy flights to improve balance control, Chaos:
An Interdisciplinary Journal of Nonlinear Science 14,
691 (2004).

[52] R. Metzler and J. Klafter, The restaurant at the end
of the random walk: recent developments in the de-
scription of anomalous transport by fractional dynam-
ics, Journal of Physics A: Mathematical and General
37, R161 (2004).

[53] D. Applebaum, Lévy processes-from probability to fi-
nance and quantum groups, Notices of the AMS 51,
1336 (2004).

[54] J. A. Roberts, T. W. Boonstra, and M. Breakspear, The
heavy tail of the human brain, Current opinion in neu-
robiology 31, 164 (2015).

[65] M. F. Shlesinger and J. Klafter, Lévy walks versus lévy
flights, in On growth and form (Springer, 1986) pp. 279
283.

[56] V. Zaburdaev, S. Denisov, and J. Klafter, Lévy walks,
Reviews of Modern Physics 87, 483 (2015).

[57] Y. Jung, E. Barkai, and R. J. Silbey, Lineshape the-
ory and photon counting statistics for blinking quantum
dots: a 1évy walk process, Chemical Physics 284, 181
(2002).

[58] G. Margolin and E. Barkai, Nonergodicity of blinking
nanocrystals and other lévy-walk processes, Physical re-
view letters 94, 080601 (2005).

16

[59] A. van Kan, A. Alexakis, and M. E. Brachet, Inter-
mittency of three-dimensional perturbations in a point-
vortex model, submitted to Physical Review E (2020).

[60] K. Seshasayanan and B. Gallet, Onset of three-
dimensionality in rapidly rotating turbulent flows, Jour-
nal of Fluid Mechanics 901, R5 (2020).

[61] S. Jespersen, R. Metzler, and H. C. Fogedby, Lévy
flights in external force fields: Langevin and fractional
fokker-planck equations and their solutions, Physical
Review E 59, 2736 (1999).

[62] A. Chechkin, V. Gonchar, J. Klafter, R. Metzler, and
L. Tanatarov, Stationary states of non-linear oscillators
driven by lévy noise, Chemical Physics 284, 233 (2002).

[63] A. V. Chechkin, J. Klafter, V. Y. Gonchar, R. Metzler,
and L. V. Tanatarov, Bifurcation, bimodality, and finite
variance in confined lévy flights, Physical review E 67,
010102 (2003).

[64] A. V. Chechkin, V. Y. Gonchar, J. Klafter, R. Metzler,
and L. V. Tanatarov, Lévy flights in a steep potential
well, Journal of Statistical Physics 115, 1505 (2004).

[65] B. Dybiec, E. Gudowska-Nowak, and I. Sokolov, Sta-
tionary states in langevin dynamics under asymmetric
lévy noises, Physical Review E 76, 041122 (2007).

[66] S. Denisov, W. Horsthemke, and P. Hénggi, Steady-
state 1évy flights in a confined domain, Physical Review
E 77, 061112 (2008).

[67] B. Dybiec, I. M. Sokolov, and A. V. Chechkin, Station-
ary states in single-well potentials under symmetric lévy
noises, Journal of Statistical Mechanics: Theory and
Experiment 2010, P07008 (2010).

[68] A. Padash, A. V. Chechkin, B. Dybiec, I. Pavlyukevich,
B. Shokri, and R. Metzler, First-passage properties of
asymmetric 1évy flights, Journal of Physics A: Mathe-
matical and Theoretical 52, 454004 (2019).

[69] T. Srokowski, Fractional fokker-planck equation for lévy
flights in nonhomogeneous environments, Physical Re-
view E 79, 040104 (2009).

[70] T. Srokowski, Multiplicative 1évy processes: Itd ver-
sus stratonovich interpretation, Physical Review E 80,
051113 (2009).

[71] A.La Cognata, D. Valenti, A. Dubkov, and B. Spagnolo,
Dynamics of two competing species in the presence of
1évy noise sources, Physical Review E 82, 011121 (2010).

[72] T. Srokowski, Nonlinear stochastic equations with mul-
tiplicative 1évy noise, Physical Review E 81, 051110
(2010).

[73] T. Srokowski, Multiplicative lévy noise in bistable sys-
tems, The European Physical Journal B 85, 65 (2012).

[74] A. V. Chechkin, V. Y. Gonchar, J. Klafter, and R. Met-
zler, Barrier crossing of a lévy flight, EPL (Europhysics
Letters) 72, 348 (2005).

[75] B. Dybiec, E. Gudowska-Nowak, and P. Hinggi, Escape
driven by a-stable white noises, Physical Review E 75,
021109 (2007).

[76] A. V. Chechkin, O. Y. Sliusarenko, R. Metzler, and
J. Klafter, Barrier crossing driven by lévy noise: Uni-
versality and the role of noise intensity, Physical Review
E 75, 041101 (2007).

[77] T. Koren, M. A. Lomholt, A. V. Chechkin, J. Klafter,
and R. Metzler, Leapover lengths and first passage time
statistics for lévy flights, Physical review letters 99,
160602 (2007).

[78] K. Capala, A. Padash, A. V. Chechkin, B. Shokri,
R. Metzler, and B. Dybiec, Lévy noise-driven escape



from arctangent potential wells, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 30, 123103 (2020).

[79] L. Zeng, R. Bao, and B. Xu, Effects of 1évy noise in ape-
riodic stochastic resonance, Journal of physics A: Math-
ematical and Theoretical 40, 7175 (2007).

[80] B. Dybiec, Lévy noises: Double stochastic resonance in
a single-well potential, Physical Review E 80, 041111
(2009).

[81] B. Dybiec and E. Gudowska-Nowak, Lévy stable noise-
induced transitions: stochastic resonance, resonant ac-
tivation and dynamic hysteresis, Journal of Statisti-
cal Mechanics: Theory and Experiment 2009, P05004
(2009).

[82] Y. Xu, J. Li, J. Feng, H. Zhang, W. Xu, and J. Duan,
Lévy noise-induced stochastic resonance in a bistable
system, The European Physical Journal B 86, 198
(2013).

[83] R. Yamapi, R. M. Yonkeu, G. Filatrella, and J. Kurths,
Lévy noise induced transitions and enhanced stability in
a birhythmic van der pol system, The European Physi-
cal Journal B 92, 152 (2019).

[84] I. M. Sokolov, W. Ebeling, and B. Dybiec, Harmonic
oscillator under lévy noise: Unexpected properties in
the phase space, Physical Review E 83, 041118 (2011).

[85] T. Tanaka, Low-dimensional dynamics of phase oscil-
lators driven by cauchy noise, Physical Review E 102,
042220 (2020).

[86] A. Dubkov and B. Spagnolo, Verhulst model with 1évy
white noise excitation, The European Physical Journal
B 65, 361 (2008).

[87] B. Dybiec, E. Gudowska-Nowak, and 1. Sokolov, Trans-
port in a lévy ratchet: Group velocity and distribution
spread, Physical Review E 78, 011117 (2008).

[88] M. Ding and W. Yang, Distribution of the first return
time in fractional brownian motion and its application
to the study of on-off intermittency, Physical Review E
52, 207 (1995).

[89] S. Aumaitre, F. Pétrélis, and K. Mallick, Low-frequency
noise controls on-off intermittency of bifurcating sys-
tems, Physical review letters 95, 064101 (2005).

[90] S. Aumaitre, K. Mallick, and F. Pétrélis, Effects of the
low frequencies of noise on on—off intermittency, Journal
of statistical physics 123, 909 (2006).

[91] A. Alexakis and F. Pétrélis, Critical exponents in zero
dimensions, Journal of Statistical Physics 149, 738
(2012).

[92] F. Pétrélis and A. Alexakis, Anomalous exponents at
the onset of an instability, Physical Review Letters 108,
014501 (2012).

[93] A. Alexakis and F. Pétrélis, Planar bifurcation subject
to multiplicative noise: Role of symmetry, Physical Re-
view E 80, 041134 (2009).

[94] J. M. Chambers, C. L. Mallows, and B. Stuck, A method
for simulating stable random variables, Journal of the

17

american statistical association 71, 340 (1976).

[95] K. It6, Stochastic integral, Proceedings of the Imperial
Academy 20, 519 (1944).

[96] S. I. Denisov, W. Horsthemke, and P. Hanggi, General-
ized fokker-planck equation: Derivation and exact solu-
tions, The European Physical Journal B 68, 567 (2009).

[97] F. Mainardi, Y. Luchko, G. Pagnini, and D. T. R.
Gorenflo, The fundamental solution of the space-time
fractional diffusion equation, Fract. Calc. Appl. Anal ,
153.

[98] S. G. Samko, A. A. Kilbas, O. I. Marichev, et al.,
Fractional integrals and derivatives, Vol. 1 (Gordon and
Breach Science Publishers, Yverdon Yverdon-les-Bains,
Switzerland, 1993).

[99] P. Carr and L. Wu, The finite moment log stable pro-
cess and option pricing, The journal of finance 58, 753
(2003).

[100] K. Seshasayanan and F. Pétrélis, Growth rate distribu-
tion and intermittency in kinematic turbulent dynamos:
Which moment predicts the dynamo onset?, EPL (Eu-
rophysics Letters) 122, 64004 (2018).

[101] R. N. Mantegna and H. E. Stanley, Stochastic process
with ultraslow convergence to a gaussian: the truncated
lévy flight, Physical Review Letters 73, 2946 (1994).

[102] 1. Koponen, Analytic approach to the problem of con-
vergence of truncated 1évy flights towards the gaussian
stochastic process, Physical Review E 52, 1197 (1995).

[103] W. Zan, Y. Xu, J. Kurths, A. V. Chechkin, and R. Met-
zler, Stochastic dynamics driven by combined lévy—
gaussian noise: fractional fokker—planck—kolmogorov
equation and solution, Journal of Physics A: Mathemat-
ical and Theoretical 53, 385001 (2020).

[104] P. Xu, T. Zhou, R. Metzler, and W. Deng, Lévy walk
dynamics in an external harmonic potential, Physical
Review E 101, 062127 (2020).

[105] F. Pétrélis and S. Aumaitre, Modification of instability
processes by multiplicative noises, The European Physi-
cal Journal B-Condensed Matter and Complex Systems
51, 357 (2006).

[106] R. Graham and A. Schenzle, Stabilization by multiplica-
tive noise, Physical Review A 26, 1676 (1982).

[107] K. Mallick and P. Marcq, Stability analysis of a noise-
induced hopf bifurcation, The European Physical Jour-
nal B-Condensed Matter and Complex Systems 36, 119
(2003).

[108] E. Bertin, On-off intermittency over an extended range
of control parameter, Physical Review E 85, 042104
(2012).

[109] F. Liu, V. Anh, and I. Turner, Numerical solution of
the space fractional fokker—planck equation, Journal
of Computational and Applied Mathematics 166, 209
(2004).



