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The presence of large scale magnetic fields in nature is often attributed to the inverse cascade of
magnetic helicity driven by turbulent helical dynamos. In this work we show that in turbulent helical
dynamos the inverse flux of magnetic helicity towards the large scales ΠH is bounded by |ΠH| ≤ ϵk−1

η ,
where ϵ is the energy injection rate and kη is the Kolmogorov magnetic dissipation wavenumber.
Assuming the classical isotropic turbulence scaling for which kη ∝ ℓ−1

f Rm3/4 max[1, P r]−1/4, with
ℓf the forcing lengthscale, implies that the inverse flux of magnetic helicity decreases with Rm at

least as ΠH ≤ cϵℓfRm−3/4 max[Pr, 1]1/4, where c is an order one constant. We demonstrate this
scaling with Rm using direct numerical simulations of turbulent dynamos forced at intermediate
scales. The results further indicate that nonlinear saturation is achieved by a balance between the
inverse cascade and dissipation at domain size scales L and the saturation values of magnetic energy
are bounded by Em ≲ cL(ϵℓf )

2/3Rm1/4 max[1, P r]1/4. Numerical simulations also demonstrate this
bound.

I. INTRODUCTION

Magnetic fields are observed in a plethora of astro-
physical objects from planetary to galactic scales [1–3].
Their generation and sustainment is often attributed to
dynamo action: their self-amplification by a continuous
stretching and refolding of magnetic field lines due to the
underlying (turbulent in most cases) flow [4]. In many
cases the magnetic structures formed span the entire as-
trophysical object, reaching scales much larger than the
small scale turbulence that generates them. The pioneer-
ing work of [5] showed that large scale magnetic fields can
be generated from small scale flows if the advecting flow
is helical. This result is based on an expansion for large
scale separation and is referred as alpha-dynamo. How-
ever, such expansion can be formally done only below a
critical value of Rm (the ratio of Ohmic to dynamic time
scales). Above this critical value small scale dynamo ac-
tion begins and the expansion ceases to be valid [6–8].

The validity of the alpha model is further questioned
in the nonlinear regime for which the magnetic field
feeds back to the velocity field through the Lorentz force.
In [9, 10] it was argued that the growth of alpha dynamos
saturates when the large scale magnetic field B becomes
larger than |B| < UrmsRm−1/2, where Urms is the root
mean square value of the velocity fluctuations. This gives
a very weak magnetic field for most astrophysical appli-
cations for which Rm ≫ 1.
An alternative way of explaining the formation of large

magnetic fields is through the inverse cascade of helic-
ity [11, 12]. This intrinsically non-linear mechanism (that
is however compatible with alpha dynamos) predicts that
magnetic helicity will be transferred by nonlinear inter-
actions to larger scales. Indeed, several works that fol-
lowed [13–16] demonstrated with numerical simulations
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that when magnetic helicity is injected in a flow (by a dy-
namo or other mechanism), it cascades inversely to larger
scales. These results however were performed on moder-
ate values of Rm and the inverse cascade of magnetic
helicity at large Rm is not tested. To our knowledge a
quantitative understanding of how turbulent helical dy-
namos saturate with clear predictions of the saturating
amplitude does not exist.
In this work we demonstrate by analytical arguments

and numerical simulations that in dynamo flows, the in-
verse cascade of magnetic helicity is bounded from above
by a decreasing power of Rm. Thus it cannot survive
the infinite Rm limit. This leads to a prediction for the
saturation amplitude of the magnetic field that we test
with numerical simulations.

II. THEORETICAL ARGUMENTS

We begin by considering the MHD equations for the
incompressible velocity u and magnetic field b given by

∂tu+ u · ∇u = −∇P + (∇× b)× b− ν∇2u+ f , (1)

∂tb = ∇× (u× b)− η∇2b, (2)

in a cubic periodic domain of size 2πL, with ν being
the viscosity η the magnetic diffusivity and f an external
mechanical force. The non-linear terms of this equation
conserve the total energy E = 1

2 ⟨|u|
2+|b|2⟩ and magnetic

helicity H = 1
2 ⟨a · b⟩, where the angular brackets stand

for spatial average and a = −∇−2∇ × b is the vector
potential. Their balance reads

∂tE = IE − ϵ, ∂tH = −ϵH , (3)

where IE = ⟨f ·u⟩ is the energy injection rate, ϵ = ϵu+ ϵb
is the energy dissipation rate with ϵu = ν⟨|∇u|2⟩ the
viscous dissipation rate and ϵb = η⟨|∇b|2⟩ the Ohmic
dissipation rate. Finally ϵH = η⟨b · ∇×b⟩ is the helicity
generation/dissipation rate. The forcing f is assumed to
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act on a scale ℓf ≪ L while dissipation acts at the smaller
viscous scale ℓν and Ohmic scale ℓη. For large Reynolds

number Re = ϵ1/3ℓ
4/3
f /ν and large magnetic Reynolds

number Rm = ϵ1/3ℓ
4/3
f /η, the dissipation length scales

ℓν , ℓη scale like [17]

ℓν ∝ ℓfRe−3/4 and ℓη ∝ ℓfRm−3/4 (4)

for Pm = ν/η ≤ 1 while for Pr ≥ 1

ℓν ∝ ℓfRe−3/4 and ℓη ∝ ℓfRm−3/4Pm1/4. (5)

At intermediate scales ℓ (so called inertial scales ℓf ≪
ℓ ≪ ℓη, ℓν), there is a constant flux of energy across scales
given by

ΠE(k) = ⟨u<
k · (u ·∇u−b ·∇b)−b<

k · (∇×u×b)⟩, (6)

where u<
k ,b

<
k stand for the filtered velocity and mag-

netic field respectively so that only Fourier modes with
wavenumbers of norm smaller than k ∝ 1/ℓ are kept [18].
Conservation of energy by the non-linear terms implies
that the energy flux at the inertial scales is constant in k
and equals the energy dissipation rate ΠE(k) = ϵ.

Similarly, there is a flux of magnetic helicity

ΠH(k) = −⟨b<
k · (u× b)⟩ (7)

that also has to be constant at scales that dissipation
plays no role. However, unlike energy, the forcing does
not inject magnetic helicity which can be only gener-
ated or destroyed by the Ohmic dissipation at rate ϵH .
Nonetheless if the forcing is helical the flow can trans-
port magnetic helicity from the small Ohmic scales to
ever larger scale L′ > ℓf up until the domain size reached
L′ ≃ L where a helical condensate will form. Conserva-
tion of magnetic helicity by the non-linear terms implies
again that the flux of helicity at scales L′ ≫ ℓ ≫ ℓη has
to be constant in k ∝ 1/ℓ with ΠH(k) = ϵH .

The two cascades, energy and helicity, are not inde-
pendent and the first limits the later [19]. To show that,

we write the magnetic field in Fourier space b̃k using the
helical basis b̃k = b+kh

+
k + b−k h

−
k where

h± =
e× k× k√
2|e× k× k|

± i
e× k√
2|e× k|

(8)

are the eigenvectors of the curl operator with e an ar-
bitrary vector [20, 21]. By doing that we can write the
magnetic energy spectrum as Eb(k) = E+

b (k) + E−
b (k)

and the magnetic helicity spectrum as H(k) = (E+
b (k)−

E−
b (k))/k where E±

b (k)dk =
∑

k≤|k|<k+dk |b
±
k |2 is the

sum of the energy of the b± Fourier modes on a spherical
shell of width dk and radius k. Since magnetic helicity
is primarily generated at Ohmic wavenumbers kη = 1/ℓη

for any wavenumber k in the range k ≤ kη we can write

|ΠH(k)| = |ϵH |

≃ η

∣∣∣∣∫ ∞

k

q[E+
b (q)− E−

b (q)]dq

∣∣∣∣
≤ ηk−1

∫ ∞

k

q2
∣∣E+

b (q) + E−
b (q)

∣∣dq
= k−1ϵb (9)

Choosing as k the largest allowed k ≃ kη and adding the
viscous damping ϵu/kη we obtain our final result

|ΠH(k)| ≤ ϵ/kη. (10)

In other words the flux of magnetic helicity is bounded by
the energy injection rate divided by the Ohmic dissipa-
tion wavenumber kη. Note that this bound is saturated
if the magnetic field at small scales is fully helical. If not,
|ΠH| can be much smaller than (10). Using the estimates
for kη for isotropic MHD turbulence we obtain

|ΠH(k)| ≤ cϵk−1
f Rm−3/4 max[1, P r]1/4, (11)

where c is an order one constant. Given the very large
values of Rm in nature this gives very little hope of ob-
serving such fluxes.
However, despite having a diminishing flux of magnetic

helicity for large Rm, this does not mean that large scale
dynamos cannot be observed. In a finite domain of size
L a magnetic helicity condensate will form. Its magnetic
field amplitude B will be determined by a balance of mag-
netic helicity flux with the magnetic helicity dissipation
at that scale so that ΠH ∝ ηB2/L. Using the previous
estimate for the flux leads to the prediction for the large
scale energy Em = B2 given by

Em ≲ ϵ2/3Lk
1/3
f Rm1/4 max[1, P r]1/4. (12)

We note that a very long time T ∼ (B2L)/ΠH ∝ Rm
would be required for such a field to be formed. Fur-
thermore if there is an other η-independent mechanism
for magnetic helicity saturation, like magnetic helicity
expulsion [22, 23], then the amplitude of the large scale
magnetic field will diminish to zero as Rm → ∞.
Finally we note that this result is based on strong

turbulence scaling of kη. One can argue that as the
large scale magnetic field builds up the relation between
kη and Rm can change from that of strong turbulence
to that of weak turbulence [24] or turbulence driven
by the large scale magnetic shear [25]. Both of these
options lead to a faster increase of Em with Rm as

Em ≲ ϵ2/3L5/6k
−8/15
f Rm2/5 that is not found however

in the numerical studies that follow.

III. NUMERICAL SIMULATIONS

To demonstrate the above arguments we perform a se-
ries of numerical simulations that solve the MHD equa-
tions (1–2) using the pseudo-spectral code Ghost [26] in
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FIG. 1. Magnetic helicity flux ΠH (top) and total energy
flux ΠE (bottom) for several values of the magnetic Reynolds
number Rm for kf/k0 = 8.
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FIG. 2. Magnetic helicity dissipation/generation spectrum
ηk2H(k) and normalized magnetic energy spectrum ηkEb(k)
for the case with hypo-dissipation with kf/k0 = 8 and the
largest attained magnetic Reynolds number Rm.

a cubic domain of side 2πL with a fully helical random
delta correlated forcing at wavenumber kf = 1/ℓf that
fixes the energy injection rate ϵ. The Prandtl number
Pm = ν/η was set to unity for all runs. The resolution
used varied from 1283 grid points to 10243 grid points
for the largest Rm. The resolution was chosen so that
the largest inertial range is obtained while remaining well
resolved with a clear dissipation wavenumber range.

As a first step to accommodate for the the large scale
pile up of magnetic helicity we introduce a magnetic
hypo-dissipation term ηh∇−2b in (2) that arrests large
scale magnetic helicity. With the inclusion of this term,
the simulations reach quickly a steady state where the he-
licity generated at the small scales by ϵH is transported
and dissipated at the largest scales by hypo-dissipation.

Figure 1 shows the magnetic helicity flux (top) and
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FIG. 3. Magnetic helicity generation rate ϵH (circles) and
magnetic flux ΠH(kf/2) (crosses) as a function of the mag-
netic Reynolds number Rm for three different values of kfL =
4 (blue), kfL = 8 (green) and kfL = 16 (red).

energy flux (bottom) for a series of runs varying Rm as
shown in the legend for kfL = 8. The energy flux shows
its classical behavior increasing as Rm is increased, ap-
proaching its maximal value ΠE ∼ ϵ in the inertial range.
On the other hand, ΠH(k) first starts to increase with
Rm once the dynamo onset is crossed, reaches a maxi-
mum and then starts to decrease again. The magnetic
helicity generation spectrum ηk2H(k) for the largest Rm
is shown in figure 2. Solid line corresponds to positive
values of ηk2H(k) while dashed line corresponds to neg-
ative values of ηk2H(k), thus negative magnetic helicity
is generated at the smallest scales. In the same plot we
show the normalized magnetic energy spectrum ηkEb(k)
that bounds ηk2|H(k)| ≤ ηkEb(k) with the equality cor-
responding to a fully helical magnetic field.

The dependence of the magnetic helicity cascade with
Rm is best seen in figure 3 where the magnetic helicity
generation rate ϵHkf/ϵ (circles) and the magnetic helicity
flux ΠH(k) at k = kf/2 (crosses) are plotted as a function
of Rm for three different scale separations kfL = 4, 8, 16
in a log-log plot. All series show an initial increase of ϵH
and ΠH(kf/2) followed afterwards by a power-law de-
crease with ϵH ≃ ΠH(kf/2). The dashed lines give the

predicted scaling Rm−3/4 that appears to fit very well
the observed power verifying our prediction in (11).

A second series of numerical simulations with kfL = 8
were performed without the hypo-viscous term. The sim-
ulations were run for very long times until a steady state
is reached such that magnetic energy does not increase
further. The time scale to reach saturation is very long
and this has limited us to use grids of size up to 5123

and values of Rm four times smaller than the case with
hypo-dissipation. Figure 4 shows with a red line the
magnetic helicity dissipation spectrum ηk2H(k) for the
largest Rm examined for these runs. Positive magnetic
helicity is concentrated in a large scale condensate at
k = 1/L = kf/8 while it is negative for all smaller scales.
As in figure 2 we also show ηkEb(k) with a blue line.
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FIG. 4. Top panel: Magnetic helicity dissipation/generation
spectrum ηk2H(k) and normalized magnetic energy spectrum
ηkEb(k) for the runs with no hypo-dissipation, with kfL =
8 and the largest attained magnetic Reynolds number Rm.
Bottom panel: magnetic helicity flux for the same run.

Note that while the large scales are fully helical small
scales are less. The amplitude of the large scale conden-
sate (at the smallest k = kf/8) is so large that despite
the small value of η the negative magnetic helicity gener-
ated at small scales by Ohmic diffusion is balanced by the
positive helicity generated at the largest scale again by
Ohmic diffusion. This leads to the flux of (negative) he-
licity from small to large scales shown in the lower panel
of the same figure.

The balance between the magnetic helicity generated
at small scales and dissipated at the large leads to the
prediction (12) of a weak power-law increase of magnetic
energy Em with Rm. Figure 5 shows Em as a function
of Rm in a log-log plot. The last three points appear to
agree with the predicted power-law. The range of values
of Rm compatible with this law is however rather limited
and smaller power-laws or logarithmic increase cannot
be excluded. In the inset of the same figure we show
the same data in a lin-log plot demonstrating that the
data could also be fitted to a logarithmic increase. A
logarithmic increase, if true, is still compatible with the
bound (12) but does not saturate it, and would imply
that small scales become less and less helical as Rm is
increased.
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FIG. 5. Saturation of the magnetic energy Em,sat as a function
of the magnetic Reynolds number Rm for kfL = 8 in a log-

log plot. The dashed line gives the prediction Rm1/4. Inset:
same figure in lin-log plot.

IV. CONCLUSION

The present work gives for the first time estimates for
the flux of magnetic helicity and the saturation of the
magnetic field for the nonlinear state of a large Rm tur-
bulent helical dynamo. Remarkably, even for asymptoti-
cally large values of Rm it has been shown that the mag-
netic helicity flux still depends on Rm and in fact it has
to decrease at least as fast as ΠH ≤ ϵ/kη ∼ ϵ/kfRm−3/4.
This analytical result has also been clearly demonstrated
by numerical simulations that are shown to follow this
upper bound scaling. This excludes any inviscid non-
linear theory for large scale dynamos from being realized!

Furthermore it was shown that saturation is achieved
by a balance of the inverse magnetic helicity flux with
the helicity dissipation at the condensate scale. This has
lead to the prediction that the magnetic field amplitude
at steady state is smaller than Rm1/4. Numerical simula-
tions are compatible with this result although the covered
range of Rm cannot exclude other small power-laws or
logarithmic increase with Rm.

It is important to note that these results are based on
magnetic helicity conservation and are independent of
the actual dynamo mechanism involved (alpha or other).
They are thus rather general. Finally, we stress that if
an η−independent mechanism exists at large scales to
saturate the large scale magnetic helicity (like magnetic
flux expulsion), our result (10) implies that no dominant
large scale magnetic field will be present in the Rm → ∞
limit.

The present results have critical implications for large
magnetic fields in astrophysical systems and their origin.
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