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We investigate the mixing properties of scalars stirred by spatially smooth, divergence-
free flows and maintained by a steady source–sink distribution. We focus on the spatial
variation of the scalar field, described by the dissipation wavenumber, kd, that we
define as a function of the mean variance of the scalar and its gradient. We derive a
set of upper bounds that for large Péclet number (Pe� 1) yield four distinct regimes
for the scaling behaviour of kd, one of which corresponds to the Batchelor regime.
The transition between these regimes is controlled by the value of Pe and the ratio
ρ = `u/`s, where `u and `s are, respectively, the characteristic length scales of the
velocity and source fields. A fifth regime is revealed by homogenization theory. These
regimes reflect the balance between different processes: scalar injection, molecular
diffusion, stirring and bulk transport from the sources to the sinks. We verify the
relevance of these bounds by numerical simulations for a two-dimensional, chaotically
mixing example flow and discuss their relation to previous bounds. Finally, we note
some implications for three-dimensional turbulent flows.
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1. Introduction
Mixing of scalar fields is a problem that is crucial to several environmental issues

as well as engineering applications. In many situations the underlying flow is spatially
smooth and divergence-free while molecular diffusion is usually much weaker than
the stirring strength of the flow (see, e.g., Aref 2002). Notwithstanding the apparent
simplicity of the flow, its effect on the scalar field can be rather complex: a simple
time-dependence is often sufficient for the flow to be chaotically mixing in which case
the gradients of the scalar fields are greatly amplified (Aref 1984; Ottino 1989; Ott
1993). Batchelor (1959) recognized that this amplification is responsible for the rapid
dissipation of any initial scalar inhomogeneity and thus the efficiency at which a scalar
is mixed.

In the continual presence of sources and sinks, a statistical equilibrium is attained
in which the rate of injection of scalar variance balances the rate of its dissipation. In
this case, the most basic way to measure the flow’s mixing efficiency is to consider the
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equilibrium variance of the scalar: the lower its value, the better mixed is the scalar
field. Thiffeault, Doering & Gibbon (2004) derived a rigorous lower bound for the
scalar variance that was further enhanced by Plasting & Young (2006) using the scalar
dissipation rate as a constraint. Doering & Thiffeault (2006) and Shaw, Thiffeault
& Doering (2007) derived bounds for the small- and large-scale scalar variance
(respectively measured by the variance of the gradient 〈|∇θ |2〉 and the antigradient
〈|∇−1θ |2〉 of the scalar field θ , where 〈·〉 denotes a space–time average defined in
(2.2)). This set of bounds have successfully captured some of the key parameters in
the flow and source–sink distribution that control the scalar variances. Their general
applicability means that they can be used to test theoretical predictions of scalar
mixing for various flow and source–sink configurations. This is especially useful for
high-Péclet flows (Pe� 1) for which analytical solutions are difficult to obtain while
high-resolution numerical simulations can become prohibitively expensive. However,
the bounds on the variance of the scalar and its gradient do not depend on the
gradients of the velocity field and in many cases, can be realized by uniform flows.
They therefore do not capture the effect of stirring (The dependence on the velocity
gradients only appears in the lower bound for the large-scale variance (Shaw et al.
2007) and its decay rate in the case of no sources and sinks (Lin, Thiffeault &
Doering 2011)). These bounds are then relevant when the mixing of a scalar is mainly
controlled by the process of transport from the sources to the sinks.

Motivated by the apparent lack of control of the stirring process, we here focus
on the characteristic length scale, `d, at which the scalar variance is dissipated, or
equivalently its inverse, the dissipation wavenumber, kd ≡ `−1

d . Its value should, within
a suitable range of parameters, be directly related to the Batchelor length scale, `B .
The latter length scale, obtained in Batchelor (1959), describes the effect of stirring on
the spatial structure of the scalar field.

We here examine the behaviour of kd for different values of the control parameters,
Pe and ρ, where ρ denotes the ratio of the characteristic length scale of the
velocity, `u, and that of the source field, `s. After formulating the problem in § 2,
we next seek a set of upper bounds for kd (§ 3). In § 4, we investigate the behaviour
of these bounds as ρ varies. We find that, in the high-Péclet limit, the behaviour of
kd is characterized by four distinct regimes, one of which corresponds to the Batchelor
regime. The use of homogenization theory implies a fifth regime for kd. In § 5, we
examine the relevance of the bounds by performing a set of numerical simulations for
a renewing type of flow. We conclude in § 6.

2. Problem formulation
The temporal and spatial evolution of the concentration, θ(x, t), of a passive

scalar, continually replenished by a source–sink distribution, is given by the forced
advection–diffusion equation. Its general form, expressed in terms of dimensional
variables, is given by

∂tθ(x, t)+ u(x/`u, t) ·∇θ(x, t)= κ1θ(x, t)+ s(x/`s), (2.1)

where κ is the molecular diffusivity, u(x/`u, t) is an incompressible velocity field
(i.e. ∇ · u = 0) and s(x/`s) is a steady source field. Both u(x/`u, t) and s(x/`s) are
spatially smooth (i.e. |∇s|, | (∇u)ij | <∞), respectively varying over a characteristic
length scale `u and `s that can be taken to be the smallest (persistent) length scale in
the corresponding fields. They are prescribed within a domain, Ω , that we take to be
a d-dimensional box of size L on which we apply either periodic or no-flux boundary
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conditions. In this way, the boundaries cannot generate any additional variability in the
scalar field. The amplitude of the velocity and source field is respectively measured by
U =√〈u ·u〉 and S=√〈s2〉, where 〈·〉 represents a space–time average such that

〈f 〉 ≡ lim
T→∞

1
VΩT

∫ T

0
dt
∫
Ω

dx f (x, t), (2.2)

and VΩ denotes the volume of the domain. Without loss of generality, we can assume
that the spatial averages of θ(x, 0) and s(x) are both zero (where negative values of s
correspond to sinks for θ ) so that θ(x, t) eventually attains a statistical equilibrium
with 〈θ〉 = 0.

We are interested here in the processes that control the mixing of θ(x, t) and
how these depend on two non-dimensional parameters associated with (2.1). The first
parameter is the Péclet number, Pe, defined as

Pe≡ U`u/κ, (2.3a)

which describes the strength of stirring relative to molecular diffusion. The second
parameter is the ratio, ρ, of the velocity length scale, `u, to the source length scale, `s,
defined as

ρ ≡ `u/`s. (2.3b)

There are many ways to quantify mixing. The simplest perhaps measure is given by
the long-time spatial average of the scalar variance, which for 〈θ〉 = 0, reads

σ 2 ≡ 〈θ 2〉. (2.4)

A scalar field is well-mixed when its distribution is nearly homogeneous, i.e. has a
value of σ that is small. Conversely, a badly mixed scalar distribution is one that is
inhomogeneous, i.e. has a large value of σ .

The large-scale scalar variance introduced by the source at `s is transferred into
small scales where it is dissipated by molecular diffusion. This transfer is greatly
enhanced by the amplification of the scalar gradients induced by a stirring flow. The
average rate at which the scalar variance is dissipated is given by 2χ where

χ ≡ κ〈|∇θ |2〉. (2.5)

We can now define the dissipation length scale, `d, as the average length scale at
which the scalar variance is dissipated. Let the dissipation wavenumber, kd, denote the
inverse of `d. Then, `d and kd are given by

k2
d ≡ `−2

d ≡
〈|∇θ |2〉
〈θ 2〉 =

χ

κσ 2
. (2.6)

By construction, the dissipation scales (2.6) characterize the spatial variation of the
scalar field and as such, provide an alternative way to quantify mixing.

The dissipation wavenumber is related (although it is not always equal) to the
diffusive cut-off scale of the θ spectrum. For a freely decaying scalar (i.e. s = 0),
Batchelor (1959) estimated this cut-off length scale to be independent of the initial
configuration of the scalar field with

`B ≡
√
κ`u

U
= `u√

Pe
, (2.7)
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where `B stands for Batchelor’s length scale. Being independent of the source
properties, `B can be used as a reference to which the value of kd can be compared for
varying values of ρ and Pe.

Multiplying (2.1) by θ and taking the space–time average (2.2) gives the following
integral constraint for χ :

χ = 〈θs〉. (2.8)

Thus, the average rate at which scalar variance is injected by the source at `s is equal
to the average rate at which scalar variance is dissipated by molecular diffusion at
small scales. Using the integral constraint (2.8), it is then straightforward to show that
k2

d and σ are intimately related. In particular,

σ = 〈θs〉
σ
× σ

2

χ

= ξθ,s k−2
d

S

κ
, where ξθ,s ≡ 〈θs〉

Sσ
. (2.9)

ξθ,s expresses the correlation between the scalar and source fields and takes the values
between 0 6 ξθ,s 6 1. For fixed values of S and κ , there exist two ways to reduce
the variance of the scalar: the first relies on minimizing the correlation ξθ,s while the
second relies on maximizing the value of kd. Minimizing the correlation ξθ,s can be
achieved by choosing a flow that rapidly transports fluid parcels from a source region
(s > 0) to a sink (s < 0). In this configuration, the flow is not necessarily a stirring
flow; a uniform flow can be just as efficient in reducing ξθ,s (see Thiffeault & Pavliotis
2008) where the importance of efficient scalar transport from the sources to the sinks
is highlighted for optimal mixing). The flow process that suppresses the scalar variance
is in this case the process of transport. The second way to reduce the scalar variance
is to increase the value of kd. This increase can be achieved by choosing a flow that
rapidly stretches fluid parcels so that the magnitude of the scalar gradients are greatly
amplified. The flow process that suppresses the scalar variance is in this case the
process of stirring. Thus, information about either ξθ,s or kd can provide us with some
insight into the mechanisms involved in the reduction of σ .

In the next session we focus on bounding the value of kd.

3. Upper bounds for the dissipation wavenumber
3.1. Previously derived results

Proper manipulation of the forced advection–diffusion equation (2.1) leads to a number
of constraints that can be employed to deduce a set of upper and lower bounds for
the mixing measures under consideration. A first integral constraint is given by (2.8).
Following Thiffeault et al. (2004), a second integral constraint can be obtained by
multiplying (2.1) by an arbitrary, spatially smooth ‘test field’, ψ(x), that satisfies the
same boundary conditions as θ(x). Space–time averaging and integrating by parts leads
to

〈θu ·∇ψ〉 + κ〈θ1ψ〉 = −〈sψ〉. (3.1)

Choosing ψ = s we first apply the Cauchy–Schwartz inequality on (3.1) to isolate σ .
We then use Hölder’s inequality which leads to the following lower bound for the
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variance σ :

σ > S2

U supx|∇s| + κ〈|1s |2〉1/2 , (3.2a)

= S`s

U

1

c1 + Pe−1ρc2
(3.2b)

where c1 and c2 are non-dimensional numbers that only depend on the ‘shape’ of the
source field and not on its amplitude or characteristic length scale. Explicitly, they are
given by

c1 = supx̂ |∇̂s|
S

and c2 = 〈|1̂s |2〉1/2
S

, (3.2c)

where the hat symbol signifies differentiation with respect to x̂ = x/`s. Note that for
c1 and c2 to remain O(1), `s needs to represent the smallest length of variation in the
source field. Using expressions (2.9) and (3.2b), we obtain the following upper bound
for k2

d:

k2
d 6 S

κσ
6 U

`sκ
(c1 + Pe−1ρc2). (3.3)

Thus, for sufficiently large Péclet number, the upper bound for kd is determined by the
magnitude of U/`s, the typical time scale associated with bulk scalar transport from
the sources to the sinks, relative to κ , the molecular diffusivity. Once normalized by
the Batchelor length scale (2.7), expression (3.3) becomes

k2
d`

2
B

6 ρ(c1 + Pe−1ρc2). (3.4)

Both bounds (3.2) and (3.4) were first derived in Thiffeault et al. (2004).

3.2. A new upper bound

A new upper bound for k2
d can be obtained by considering the spatial and temporal

evolution of the gradient of θ ,

∂t∇θ + u ·∇(∇θ)= κ1∇θ − (∇u)>∇θ +∇s, (3.5)

where the upper index > stands for transpose and [(∇u)>∇θ ]i =
∑d

j=1(∇iuj)∇jθ . The
average rate at which the variance of the scalar gradient is dissipated is 2η where η is
defined by

η ≡ κ 〈|1θ |2〉. (3.6)

Multiplying (3.5) by ∇θ and taking the space–time average (2.2) gives the following
integral constraint for η:

η =−〈∇θ (∇u)sym∇θ〉 + 〈∇θ ·∇s〉, (3.7)

where the tensor (∇u)symij ≡ 1/2[(∇u)ij+ (∇u)ji] is the symmetric part of the velocity
gradient tensor. Using Hölder’s inequality, the first term in (3.7) is bounded by

|〈∇θ (∇u)sym∇θ〉|6 sup
x,t,n
|n (∇u)sym n|〈|∇θ |2〉, (3.8a)
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where n is a unit vector so that |n| = 1. Integrating by parts the second term in (3.7)
and using the Cauchy–Schwartz inequality results in

|〈∇θ ·∇s〉|6 σ 〈|1s |2〉1/2 . (3.8b)

Combining the two bounds in (3.8) leads to the following upper bound for the
dissipation rate of the variance of the scalar gradient:

η 6 c3
U

`u

χ

κ
+ c2

σS

`2
s

, (3.9)

where c2 and c3 are non-dimensional numbers that depend on the shapes of the source
and velocity field, respectively. We defined c2 previously in (3.2c) and c3 is defined by

c3 = 1
U

sup
x̃,t,n
|n (∇̃u)

sym
n|, (3.10)

where the tilde symbol signifies derivation with respect to x̃ = x/`u. Note that for c3

to remain O(1), `u needs to represent the smallest persistent length of variation in the
velocity field.

The upper bound for η in (3.9) can serve to bound kd by observing the following
inequality that relates χ , σ and η:

χ = κ|〈θ1θ〉|6 σ
√
κη, (3.11)

obtained by partial integration and application of the Cauchy–Schwartz inequality on
the definition of χ in (2.5). Using the definition (2.6) of kd and the square of (3.11) we
then have

k4
d 6 1

σ 2

η

κ
(3.12a)

6 c3

(
kd

`B

)2

+ ρ3

Pe`4
B

(c1c2 + ρc2
2Pe
−1), (3.12b)

where the bounds (3.9) on η and (3.2) on σ were employed in order to deduce the
last inequality. The above quadratic inequality in k2

d yields the following upper bound
for k2

d:

k2
d`

2
B

6 1
2

c3 + 1
2

√
c2

3 + 4ρ3Pe−1(c1c2 + ρc2
2Pe
−1), (3.13)

where, as before, k2
d is normalized by the Batchelor length scale (2.7).

Bound (3.9) can further be improved for the particular case of a monochromatic
source, i.e. a source that satisfies the Helmholtz equation:

1s=−c2k2
s s. (3.14)

It follows that |〈∇θ · ∇s〉| = c2k2
s 〈θs〉 = c2k2

sχ , where the latter is directly obtained
using the integral constraint (2.8). Substituting in (3.7), bound (3.9) becomes

η 6
(

c3
U

`uκ
+ c2

1
`2

s

)
χ. (3.15)

From constraint (2.8), χ 6 σS and thus (3.15) provides a better bound for η than (3.9).
Using this inequality, (3.11) leads to

k2
d`

2
B

6 c3 + c2ρ
2Pe−1. (3.16)
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FIGURE 1. The upper bounds (3.4) (dashed line) and (3.13) (solid line) plotted as a function
of ρ for five different values of the Péclet number: Pe = 10−3, 100, 103, 106 and in the limit
of Pe→∞ (the constants c1, c2 and c3 are given in (5.5)). For Pe> 103, the upper bound
(3.4) remains nearly invariant within the plotted domain.

4. Different regimes
Figure 1 shows the behaviour of the two bounds, given by (3.4) and (3.13), for

various Péclet numbers, as a function of ρ. For small Péclet number (Pe . 1), bound
(3.13) does not improve bound (3.4) since for all values of ρ it is either greater
than or similar to bound (3.4). However, as the Péclet number increases beyond O(1)
values, the process of stirring becomes increasingly important and expression (3.13)
can significantly improve the upper bound for k2

d`
2
B
. This improvement depends on the

value of ρ. It is only for values of ρ> O(1) that bound (3.13) becomes smaller than
bound (3.4) and thus a better upper bound for k2

d`
2
B
. Thus, in the high-Péclet limit

(Pe� 1), the two bounds capture different regimes of mixing that we now describe.
We first focus on ρ> O(1). The three terms inside the square root in (3.13) give rise

to three different power-law regimes for the behaviour of the upper bound of k2
d`

2
B
.

4.1. Regime I
For ρ � Pe, the last term inside the square root in (3.13) dominates. Thus,
k2

d`
2
B

6 c2ρ
2Pe−1, whence

kd 6
√

c2

`s
for Pe� ρ, (4.1)

where subdominant terms have been dropped. In the case of a monochromatic source,
the validity of this regime extends to ρ�√Pe.

For this range of values of ρ, the flow is nearly uniform with respect to the
source while diffusion acts faster than transport. As a result, the scalar variance that is
injected by the source is directly balanced by diffusion. Thus, to first order, the effect
of the flow can be ignored from where we obtain that k2

d ≈ c`−2
s with c another non-

dimensional number defined as c = 〈|∇̂−1
s |2〉1/2 /S. Note that for a monochromatic

source, χ = κc2k2
sσ

2 and thus bound (4.1) is saturated.
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4.2. Regime II

For Pe1/3 � ρ � Pe, it is the second term inside the square root in (3.13) that
dominates. In this case, k2

d`
2
B

6
√

c1c2ρ3/Pe and thus the following applies for kd:

kd 6 1
`s

(
c1c2

U`s

κ

)1/4

for Pe1/3� ρ� Pe, (4.2)

where subdominant terms have been dropped. The flow continues to be slowly varying
for these values of ρ. However in this case, diffusion is not the only dominant
process: the time of transport between the sources and the sinks becomes important.
Bound (4.2) reflects this importance in its dependence on Pe/ρ, the ratio of times
of diffusion and transport between the sources and the sinks. At the same time, the
non-trivial Pe-dependent scaling of bound (4.2) cannot be deduced by the balance
of only two processes (as is the case for regime I). This scaling is likely to be
related to the formation of boundary layers within which the scalar variance is large.
Their generation is associated with regions in which the continual injection of scalar
variance cannot be suppressed by sweeping across the sources and sinks. Shaw et al.
(2007) examined the case of a steady, unidirectional shear flow and a monochromatic
source from where they obtained that for Pe� 1, kd ∼ Pe1/3ρ−2/3ks. Nevertheless, we
here find that regime II is absent in the case of a monochromatic source. Whether
the scaling suggested by bound (4.2) is realized by more complex flows and source
functions than the one in Shaw et al. (2007) or if bound (3.13) can be improved
remains an open question.

4.3. Regime III

The third regime appears for O(1) 6 ρ � Pe1/3. In this case, the first term inside the
square root in (3.13) dominates and bound (3.13) becomes k2

d`
2
B

6 c3. Thus, in this
regime, the bound for k2

d`
2
B

implies that kd and `B are inversely proportional to each
other. This relation corresponds to the prediction made in Batchelor (1959). It follows
that

kd 6
√

c3
U

κ`u
for O(1)6 ρ� Pe1/3, (4.3)

where subdominant terms have been dropped. Note the dependence of (4.3) on the
stirring time scale, `u/U. It is therefore clear that in this regime, the dissipation
wavenumber is governed by the balance between the processes of diffusion and
stirring. Note that for a monochromatic source, this regime appears for O(1) 6 ρ �
Pe1/2.

4.4. Regime IV
When ρ 6 O(1), the characteristic length scale of the source becomes larger than that
of the velocity field and bound (3.4) becomes relevant. In this case, k2

d`
2
B

6 c1ρ and
thus

kd 6
√

c1
U

κ`s
for ρ 6 O(1). (4.4)

Thus, in this regime, both the processes of transport between the sources and sinks and
diffusion control the behaviour of the dissipation wavenumber.
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4.5. Regime V
Although not captured by the two bounds, a fifth regime is expected to appear when
the characteristic length scale of the flow is much smaller than that of the source
(ρ � 1). In this case, the large-scale solution to (2.1) is well-approximated by θ̄ (x, t)
that satisfies the following equation:

∂tθ̄ =∇ ·K ·∇θ̄ + s, (4.5)

where an effective diffusion operator has replaced the advective term in (2.1). The
effective diffusivity tensor, K , can be written as

K = κ(I + KT), (4.6)

where I is the identity tensor and KT is a (non-dimensional) tensor that represents the
enhancement of the diffusivity due to the flow. It thus follows that for this range of
values of ρ, the dissipation wavenumber can be approximated by

k2
d =

χ

κσ 2
≈ 〈∇θ̄ (I + KT)∇θ̄〉

〈θ̄ 2〉 , ρ� 1. (4.7)

This approximation is obtained using σ 2 ≈ 〈θ̄ 2〉, χ ≈ 〈sθ̄〉 and multiplying (4.5) by θ̄
and space–time averaging to estimate 〈sθ̄〉.

The coefficients of KT can be rigourously obtained within the framework of
homogenization theory in which multiscale asymptotic methods are employed in order
to derive the large-scale effect of the small-scale velocity field (for derivation see the
review by Majda & Kramer 1999 and also Kramer & Keating 2009 in which the
case of a continuously replenished scalar is examined). In general, the coefficients of
KT depend on the value of Pe with ‖KT‖ ∼ Peα, where the exponent α depends on
the type of flow under consideration. For shear flows (Taylor transport), α = 2; for
globally mixing chaotic advection flows, α = 1; for cellular flows with closed field
lines, α = 1/2 (see Majda & Kramer 1999). Thus, depending on the value of α,

kd ∼ Peα/2`−1
s , (4.8)

whence

k2
d`

2
B
∼ ρ2Peα−1. (4.9)

For fixed value of Pe, the above scaling increases faster in ρ than the bound for k2
d`

2
B

in regime IV. It follows that the validity of the asymptotic result (4.9) is constrained
by the upper bound (3.4). For sufficiently high Péclet values, this is the case when
ρ . O(Pe1−α). Based on this argument, the scalings (4.8) and (4.9) are expected to be
valid at most when

ρ�min{1,Pe1−α}. (4.10)

In general, the range of validity of the homogenization theory is limited to ρ � Pe−1

(see Kramer & Keating 2009; Lin, Bod’ová & Doering 2010). The relevance of
Pe−1 was shown to be true for the mixing measures of Doering & Thiffeault (2006),
calculated for a particular class of steady flows (with α = 2) in Lin et al. (2010) and
for a family of steady flows of various values for α in Keating, Kramer & Smith
(2010). For chaotic flows (α = 1), however, the predictions of homogenization theory
have been shown in Plasting & Young (2006) to be surprisingly accurate even for
ρ = O(1).
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5. Numerical simulations for a representative flow and source
We now examine how close the bounds are to the dissipation wavenumber, obtained

from the solution of the forced advection–diffusion equation (2.1). To that end, we
perform a set of numerical simulations for a passive scalar, advected by a renewing
chaotic advection flow, the widely employed alternating sine flow (e.g. Pierrehumbert
1994; Antonsen et al. 1996). This flow is explicitly given by

u(x/`u, t)=
[
Θ(τ/2− t mod τ)

√
2U sin(y/`u + φ1)

Θ(t mod τ − τ/2)√2U sin(x/`u + φ2)

]
, (5.1)

where Θ(t) is the Heaviside step function defined to be unity for t > 0 and zero
otherwise. φ1 and φ2 are independent random angles, uniformly distributed in [0, 2π],
whose value changes at each time interval τ in order to eliminate the presence of
transport barriers in the flow. In this way the flow is globally mixing. The alternating
sine flow is isotropic and homogeneous in the sense that

〈uiuj〉 = 1
2 U2δij. (5.2)

For this flow, the Strouhal number St can be defined in terms of the stirring time scale
and the correlation time scale, τ :

St ≡
√

2π`u

Uτ
. (5.3)

We choose a monochromatic source field that is given by

s(x/`s)= 2S sin(x/`s) sin(y/`s). (5.4)

This source field satisfies (3.14) and thus the two relevant bounds are (3.4) and (3.16).
Note that Plasting & Young (2006) showed that for this particular set-up, the choice of
ψ = s in constraint (2.8) is an optimal one for the variance. We take the domain to be
a doubly periodic square box whose size L is equal to the largest of the two spatial
length scales L = 2πmax(`u, `s). For this flow and source fields, the coefficients c1, c2

and c3, defined in (3.2c) and (3.10), are given by

c1 = 2
√

2, c2 = 2, c3 =
√

2. (5.5)

In the high-Péclet limit (Pe � 1), the effective diffusivity tensor in (4.6) can be
calculated from the single-particle diffusivity of the velocity field (see Taylor 1921;
Majda & Kramer 1999). For flow (5.1), the enhancement diffusivity tensor, KT , is
found (see also Plasting & Young 2006) to satisfy

KT = U2τ

8κ
I = πPe

4
√

2 St
I. (5.6)

Employing (4.9), we can derive the following prediction for the dissipation
wavenumber:

k2
d`

2
B
≈
√

2π
4 St

ρ2. (5.7)

We solve the forced advection–diffusion equation (2.1) for flow (5.1) and source (5.4)
using a pseudospectral method with resolution of up to N = 8192 grid points in each
direction. We consider different values of the two control parameters, ρ and Pe. We
first focus on two values of Pe: Pe = 3.5 × 103 and Pe = 1.4 × 105 and keep St
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FIGURE 2. Numerically obtained values for k2
d`

2
B

plotted as a function of ρ for Pe= 3.5×103

(diamonds) and Pe= 1.4×105 (squares). The values are obtained from a set of simulations for
flow (5.1) and source (5.4) for which St = 1. Also plotted for comparison the upper bounds
(3.4) (dashed line) and (3.16) for Pe= 3.5× 103 (solid line) and Pe= 1.4× 105 (dash-dotted
line). The dotted line on the left shows the prediction (5.7) of homogenization theory while
the two dotted lines on the right show the diffusive scaling associated with regime I. The filled
symbols mark the simulations associated with figures 4(a–c).

fixed with St = 1. For the first value of Pe, ρ varies in powers of 2 between 1/32
and 128. The second value concerns larger values of ρ, varying between 1 and 128.
In all simulations, the grid size is chosen to be smaller than the Batchelor length
scale, `B . Thus, N > L/`B . We let the simulation evolve in time until a well-observed,
statistically steady state is reached. The time averages of all quantities of interest are
thereafter calculated over several time periods τ .

5.1. Scaling regimes
Figure 2 compares the two theoretical upper bounds, (3.4) and (3.16), with the
numerical values for k2

d`
2
B
. Also shown is the prediction for k2

d`
2
B
, obtained from

homogenization theory. The two upper bounds combined with the prediction of
homogenization theory capture the non-trivial dependence of k2

d`
2
B

on ρ. In particular,
the theoretical curves and the numerical results share, for similar range of values of ρ,
similar slopes.

However, the different scaling regimes associated with the bounds are more difficult
to discern. This is not surprising since for each power law to clearly appear, ρ needs
to vary by at least an order of magnitude. This is numerically prohibitive, especially
for ρ � 1 in which case N >

√
Pe/ρ. At the same time, for the chosen flow (5.1)

and source (5.4), it is not clear that the dissipation wavenumber will, in each of the
regimes, scale like the bound.

Still, in figure 2 we see that for ρ � 1, the ρ2-dependent prediction (5.7) of
the homogenization theory, i.e. regime V, is in good agreement with the numerical
results. As ρ increases to O(1) values, regime III becomes relevant: the slope of k2

d`
2
B

decreases significantly with k2
d`

2
B

becoming nearly constant. This is particularly true
for the simulations corresponding to Pe = 1.4 × 105 for which regime III extends to a
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FIGURE 3. Numerically obtained values for k2
d`

2
B

for various ρ and three values of St:
St = 1 (diamonds), St = 1/4 (triangles) and St = 1/16 (squares). Values obtained from a
set of simulations for flow (5.1) and source (5.4) for Pe = 3.5 × 102. The dashed and solid
lines respectively indicate the upper bounds (3.4) and (3.13) while the dotted lines indicate
prediction (5.7) obtained from homogenization theory.

larger range of values of ρ. For simulations with Pe= 3.5 × 103, regime III is limited
to a smaller range of values of ρ and a transition to the diffusive regime I appears, as
demonstrated in the figure. Note that, as expected, the bound in regime I is saturated
(see the discussion in § 4.1).

Although the homogenization prediction (5.7) provides a good description of kd at
small ρ, its dependence on the Strouhal number suggests that the range of validity
of regime V can be limited. An estimate for the validity range of regime V can be
obtained by calculating the point of intersection between (5.7) and (3.4). Thus, for
flow (5.1) and source (5.4), (4.10) becomes

ρ�min
{

1,
8
π
St

}
. (5.8)

According to (5.8), we expect that as the value of the Strouhal number decreases
below O(1) values, the transition to regime V will occur at increasingly small values
of ρ. This expectation is reflected in the numerical values for k2

d`
2
B

that are shown
in figure 3, obtained from a set of simulations for St = 1, St = 1/4 and St = 1/16
and ρ 6 1. Note how closely prediction (5.7) matches the numerics. At the same time,
for min{1, (8/π)St} . ρ . O(1), the numerical results all collapse to the same power-
law regime whose exponent β ' 0.5 lies in between the corresponding exponents
associated with regimes III and IV. We anticipate that further decrease in the values of
St and ρ, will bring out the ρ-dependent scaling of regime IV.

5.2. Spatial structures
It is interesting to relate the variation of the dissipation wavenumber with the different
spatial structures of the scalar field that result from varying ρ. Figures 4(a–c) show
three snapshots of θ(x, t) obtained for three different values of ρ, chosen for their
clear representation of the different spatial structures that can be obtained. Also shown
in the same figures are the time-averaged variance spectra, σ 2

k , defined in terms
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FIGURE 4. (Colour online available at journals.cambridge.org/flm) Snapshots of the scalar
fields (left panels) and their normalized variance spectrum (right panel) for various values of
ρ and Pe. The dotted line shows Batchelor’s k−1 power-law prediction for the spectrum. The
vertical dash-dot line shows the location of the Batchelor wavenumber kB = 1/`B . The vertical
dash-dot–dot-dot line shows the location of the dissipation waver number, kd. For figure 4(c),
the dashed line in the variance spectrum (right panel) shows the k+1 scaling that is related to
the δ-like structures shown in the left panel: (a) ρ = 1/16 and 3.5 × 103; (b) ρ = 1 and Pe =
1.4× 105; and (c) ρ = 32 and Pe= 1.4× 105.

of θ̂q(t), where θ(x, t)=Σqθ̂q(t)eq·x:

σ 2
k =

1
T2 − T1

∫ T2

T1

∑
k6|q|<k+1

|θ̂q(t) |2 dt, (5.9)

http://journals.cambridge.org/flm
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where T1 is chosen to be sufficiently large for a steady state to have been established
and T2 − T1� τ .

Figure 4(a) displays the case of ρ = 1/16 and Pe = 3.5 × 103. This set of values
corresponds more closely to the homogenization regime V (see also figure 2). The
scalar field (left panel) is essentially a superposition of a large-scale component that
is proportional to the source field and a small-scale component that is generated
by the stirring velocity field. This superposition is clearly depicted in the spectrum
of the variance (right panel) in which we observe that the majority of the
scalar variance is concentrated on a single wavenumber which corresponds to the
characteristic wavenumber of the source, ks ≡ 1/`s. Small-scale fluctuations are present
for kB < k < ku, where ku ≡ 1/`u is the characteristic wavenumber of the velocity
and kB ≡ 1/`B is the Batchelor wavenumber beyond which the spectrum falls off
exponentially. The spectrum associated with the small-scale fluctuations exhibits a
power-law scaling with an exponent that is somewhat smaller than the Batchelor
prediction of −1. The difference between kd and kB arises because of the large
concentration of scalar variance at small wavenumbers which shifts the value of kd to
values smaller than kB . With decreasing ρ, the amplitude of the large-scale variance
increases and so does the difference between kd and kB .

Figure 4(b) displays the case of ρ = 1 and Pe = 1.4 × 105 that most closely
corresponds to regime III. For this set of values, we observe the classical filamental
structures that are obtained when stirring dominates. In this case, the field has no
memory of the functional form of the source. For k < kB , the variance spectrum is
characterized by a clean power law that behaves in agreement with the Batchelor
prediction.

Figure 4(c) displays the case of ρ = 32 and Pe = 1.4 × 105 which corresponds
to the region of transition between regimes I and III (recall that for source (5.4)
there is no regime II). In this case, the flow is slowly varying with respect to the
source. As a result, the scalar variance is, in the bulk of the domain, controlled by
the process of sweeping between the sources and the sinks and thus its value is
small. The only exception is a small number of isolated thin, boundary layers within
which the scalar field is highly varying. These thin layers are formed in regions
where the background flow is nearly stagnant so that the continual injection of scalar
variance cannot be suppressed by the process of sweeping. For our particular flow
(5.1) the regions of zero velocity are lines that, depending on time, are either vertical
or horizontal. Thus, in each half of the period (horizontal/vertical) thin layers of
alternating sign of θ are formed. These layers are similar to those obtained in Shaw
et al. (2007) for a steady, sine flow. The (horizontal/vertical) thin layers that are
formed in the first half of the period are then stretched in the second half at the same
time as new (vertical/horizontal) thin layers are formed. The formation of these highly
varying, thin layers yields two power-law scalings for the variance spectrum: For small
wavenumbers (k < ks), the spectrum has a positive, power-law behaviour, given by
σ 2

k ∼ k. This behaviour can be deduced by noting that, for scales much larger than the
source length scale, these structures are ‘δ-like’. Conversely, for large wavenumbers,
albeit smaller than the Batchelor wavenumber (ks < k < kB), the Batchelor spectrum is
recovered.

6. Conclusion
In this work we have obtained a set of upper bounds for the dissipation

wavenumber, kd, of a continuously forced scalar field that is stirred by a spatially
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Regime k2
d Range of validity Type

I 6c2/`
2
s ρ� Pe Diffusion-dominated

regime
ρ� Pe1/2 (monochromatic source)

II 6 (c1c2U`s/κ)
1/2 /`2

s Pe1/3� ρ� Pe
(absent) (monochromatic source)

III 6c3/`
2
B

O(1). ρ� Pe1/3 Batchelor regime
O(1). ρ� Pe1/2 (monochromatic source)

IV 6 c1U/κ`s min{1,Pe1−α} � ρ . O(1)

V ∼ ρ2Peα−1/`2
B

ρ�min{1,Pe1−α} Homogenization regime

TABLE 1. The four regimes deduced from bounds (3.4) and (3.13) and from
homogenization theory. Also noted the case of a monochromatic source satisfying (3.14)
(adapted from the review by Thiffeault 2011).

smooth velocity field. We focused on the dissipation wavenumber because it provides
a measure for the enhancement of mixing due to the process of stirring. Unlike the
freely decaying case in which stirring is the only mechanism for efficient mixing, in
the forced case, transport can be as effective as stirring. This is clear from (2.9) in
which it is easy to see that the scalar variance can be reduced either by increasing the
dissipation wavenumber or by decreasing the correlation between the scalar and source
fields.

Previous investigations have considered a number of mixing measures for which
a set of bounds were derived (see Thiffeault et al. 2004; Plasting & Young 2006;
Doering & Thiffeault 2006; Shaw et al. 2007). However, these bounds do not always
distinguish between the processes of stirring and transport. In particular, the bounds
on the average variance of the scalar 〈θ 2〉 and its gradient 〈|∇θ |2〉 do not explicitly
depend on the velocity gradients. Thus, the effect of stirring is not captured. As a
result, the bound for kd does not follow the scaling predicted in Batchelor (1959).

With the aid of an additional constraint, we here derived a new upper bound
for kd which, within a range of values of Pe and ρ, is, up to a constant, equal
to the inverse of the Batchelor length scale, `−1

B
. The process of stirring is thus

reflected in this bound. For large Péclet values, both the previous and the new bound
become important, with the new bound significantly improving the previous bound for
ρ & O(1). The scalings associated with these bounds suggest four different regimes
for kd. The use of homogenization theory implies a fifth regime. The most interesting,
perhaps, behaviour occurs for ρ ∼ O(1). For these range of values of ρ, the scaling
suggested by the upper bounds for kd transitions from a behaviour controlled by
transport to a behaviour controlled by stirring. A summary of our results is provided in
table 1.

We tested the relevance of our theoretical predictions for the particular example of
the ‘alternating sine flow’ and a monochromatic source. We considered a large range
of values for ρ, covering more than three orders of magnitude: from ρ � 1 (in which
case homogenization theory becomes relevant) to ρ� 1 (in which case diffusion starts
to dominate). The theoretical results were shown in figure 2 to give a qualitatively
good description of the non-trivial dependence of kd on ρ. In particular, the numerical
results were found to share a similar scaling behaviour with the diffusion-dominated
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regime I, saturating it for large values of ρ, and the Batchelor regime III, with the
agreement for the latter being closer for larger values of Pe. The scaling of regime IV
did not appear in our numerical results. Instead, we found that for sufficiently small ρ,
the numerical results match prediction (5.7) that corresponds to regime V. Thus, for
these values of ρ, homogenization theory provides a better estimate to the estimates
derived from the bounds. Since the transition between regimes IV and V depends
on the value of the Strouhal number St (see (5.8) and figure 3), we anticipate that
when this becomes sufficiently small, the range of validity of regime IV will become
sufficiently large for its scaling to be realized in the numerics.

The numerically obtained values were, in some cases, found to be more than one
order of magnitude smaller than the values estimated by the bounds (the exception
being regime I which for ρ � 1 is saturated). An enhancement of the bounds can, in
general, be made by finding the optimal ‘test field’ ψ in constraint (3.1) (see Doering
& Thiffeault 2006; Plasting & Young 2006; Shaw et al. 2007). Such variational
methods are expected to only improve the prefactor and not the scaling of bound (3.4)
(and, thus, regime IV). In fact, Plasting & Young (2006) have shown that for the
particular example of the ‘alternating sine flow’ and monochromatic source, the choice
ψ = s is optimal and any improvement relies on knowledge of χ that is generally
unknown. Conversely, the leading-order term in bound (3.13) is independent of the
choice of the ‘test field’ and, thus, with the current constraints, such methods are not
likely to improve the bound in regime III. It should be noted, however, that the biggest
advantage of these upper bounds lies in predicting (or, to be more exact, restricting)
the scaling behaviour of the dissipation wavenumber and how this is controlled by the
parameters of the system. In that respect, the present investigation has proven to be
very fruitful.

We now discuss the relation of our results with a particular set of mixing measures,
the so-called mixing efficiencies, Ep. These were defined in Doering & Thiffeault
(2006) and Shaw et al. (2007) in terms of 〈|∇pθ |2〉, for p ∈ Z, and the same variances
obtained for θ0 satisfying (2.1) in the absence of a flow (u= 0):

Ep ≡
√
〈|∇pθ0 |2〉
〈|∇pθ |2〉 . (6.1)

Ep are commonly larger than unity. In the high-Péclet limit and for spatially
smooth source fields, they were shown to satisfy Ep . Pe/ρ, for p = −1, 0, 1. Using
θ0 = (1/κ)∇−2s and (2.9) into the definition for E0, we obtain that

E0 = c4
k2

d`
2
s

ξθ,s
, (6.2)

where c4 is a non-dimensional number defined as c4 = 〈(1̂−1s)2〉1/2/S (the hat symbol
denotes differentiation with respect to x̂= x/`s). Similarly, using (2.6),

E1 = c5
kd`s

ξθ,s
, (6.3)

where c5 is a non-dimensional number defined as c5 = 〈(∇̂−1
s)2〉

1/2
/S. Thus, neither

E0 nor E1 include separate information about kd or ξ−1
θ,s . Since we have no control

over the value of ξθ,s, we cannot directly compare the bounds for kd with those for E0

or E1. Instead, the two sets of bounds provide complementary information. We note



Bounding the scalar dissipation scale for mixing flows 459

that from (6.2) and (6.3), we expect that if the suppression of variance is solely due
to the suppression of ξθ,s (the case of a uniform flow), the two efficiencies E0 and E1

should scale similarly with Pe. If, however, the suppression of the variance is due to
an increase in kd, E0 and E1 are expected to scale differently. A separate investigation
of the behaviour of kd and ξθ,s will be useful to clarify the types of flow that suppress
the scalar variance mainly due to transport and those that do so mainly due to stirring.

Throughout this paper we have been working under the assumption that the spatial
gradients of the velocity and the source fields are finite. Still, it is worth speculating
on the implications of our results for rough sources and flows. The case of rough
sources was considered in Doering & Thiffeault (2006) and Shaw et al. (2007) for the
mixing efficiencies (6.1). In this case, the roughness exponent of the source becomes
crucial. For our bound (3.13), the source roughness will change the balance of the
three terms inside the square root in (3.13), giving rise to different scalings for
the dissipation length scale. A detailed examination would need to be performed to
determine the scaling behaviour in this case.

The case of rough velocity fields is also very important because of its relevance to
turbulent flows. Although in this case bound (3.13) cannot be defined, it is still worth
examining the implications of our results using simple scaling arguments at the cost
of losing some of the mathematical rigour. In three-dimensional turbulent flows, the
most energetic scales, Lf , are large and control the transport between the sources and
the sinks. Conversely, the smallest eddies have the largest shearing rate and control the
stirring. A transition in the behaviour of kd is thus expected when bound (3.4) (that
is still valid for rough velocity fields) intersects the Batchelor scaling, kd ∼ `−1

B
. In

terms of the Reynolds number, Re ≡ ULf /ν (where ν is the kinematic viscosity), the
Batchelor scale reads,

`2
B
∼ κLf

U
Re−1/2, (6.4)

where we assume that Pe� Re. Comparing (6.4) with bound (3.4), we obtain that
a transition occurs when `s ∼ `∗s ≡ LfRe

−1/2. For `s . `∗s , the scaling k2
d ∼ `−2

B
holds

while for `s & `∗s , bound (3.4) becomes smaller than `−1
B

and the scaling induced
from (4.4) is expected. This prediction, however, should still be verified by numerical
simulations.

We plan to address a number of the above-mentioned issues in our future work.
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